1
|
Liao K, Wang W, Wang C, Cheung CF. Silica Glass-Based Droplet Generation Microfluidic Chips Enabled by Femtosecond Laser: Simulation Analysis, Controllable Fabrication, and Performance Evaluation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17530-17542. [PMID: 40040275 DOI: 10.1021/acsami.4c21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Microdroplet technology is widely used in biomedicine, material synthesis, and the petrochemical industry due to its unique biological and mechanical properties. Silica glass has emerged as a key substrate for droplet microfluidic chips because of its excellent physical, chemical, and biocompatible characteristics. However, its intrinsic hardness and brittleness create significant challenges in fabrication. This study investigates the use of femtosecond laser processing for the fabrication of silica glass-based microfluidic devices for droplet generation. A combined approach of simulation, numerical calculations, and experimental validation is employed to investigate key factors influencing droplet size and generation frequency, including channel wall wettability and phase flow rates. The results demonstrate that femtosecond laser direct writing enables the high-precision fabrication of microfluidic structures, such as microchannels and functional features at the channel bottom and through holes. Furthermore, ultrafast laser processing allows the creation of a cross-junction microfluidic device with superhydrophobic walls, confirming its feasibility for liquid-liquid droplet generation. This work highlights the potential of femtosecond laser processing for manufacturing high-performance microfluidic devices with exceptional precision, efficiency, and functionality, providing valuable insights for advancing microfluidic applications.
Collapse
Affiliation(s)
- Kai Liao
- State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Wenjun Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No. 99, Yanxiang Road, Xi'an, Shaanxi 710054, China
| | - Chunjin Wang
- State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Chi Fai Cheung
- State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
2
|
Ionel L, Jipa F, Bran A, Axente E, Popescu-Pelin G, Sima F, Sugioka K. Effect of varied beam diameter of picosecond laser on Foturan glass volume microprocessing. OPTICS EXPRESS 2024; 32:20109-20118. [PMID: 38859127 DOI: 10.1364/oe.524602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024]
Abstract
Foturan glass is a photosensitive transparent material which has attracted much interest for microfluidic applications due to possibility of volume processing by ultrafast lasers. In this work, we have investigated the effect of picosecond laser on volume processing in Foturan glass when varying the beam diameter incident on a lens. To this end, specific laser focusing configurations have been designed using raytracing models and an analysis protocol has been developed in the lens focusing region in order to describe the focal point displacement occurring at the variation of the incident laser beam diameter. The numerically simulated results were explained in association with Rayleigh length and found to be in good agreement with the experimental data obtained at well-defined conditions. Specifically, it was found that the hollow microstructures developed by thermal treatment and chemical etching after laser irradiation were significantly displaced along the propagation direction when the incident beam diameter varied in the range of 1-3.5 times. This approach aims to bring an essential contribution to the field of ultrashort pulse lasers micro- and nanoprocessing in transparent materials proving that the laser beam focus position and its size can be precisely controlled with high precision by automated optics for the variation of incident laser beam diameter in predefined conditions. This approach has the potential for laser multi-beam processing at various volume depths using the same optics setup and may even be applicable to two-photon excitation microscopy. On the other hand, the processing protocol in Foturan glass may allow understanding transparent material modification by tailoring laser beam characteristics.
Collapse
|
3
|
Zhao Z, Yu Y, Sun R, Zhao W, Guo H, Zhang Z, Wang C. Design of a Femtosecond Laser Percussion Drilling Process for Ni-Based Superalloys Based on Machine Learning and the Genetic Algorithm. MICROMACHINES 2023; 14:2110. [PMID: 38004967 PMCID: PMC10673156 DOI: 10.3390/mi14112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Femtosecond laser drilling is extensively used to create film-cooling holes in aero-engine turbine blade processing. Investigating and exploring the impact of laser processing parameters on achieving high-quality holes is crucial. The traditional trial-and-error approach, which relies on experiments, is time-consuming and has limited optimization capabilities for drilling holes. To address this issue, this paper proposes a process design method using machine learning and a genetic algorithm. A dataset of percussion drilling using a femtosecond laser was primarily established to train the models. An optimal method for building a prediction model was determined by comparing and analyzing different machine learning algorithms. Subsequently, the Gaussian support vector regression model and genetic algorithm were combined to optimize the taper and material removal rate within and outside the original data ranges. Ultimately, comprehensive optimization of drilling quality and efficiency was achieved relative to the original data. The proposed framework in this study offers a highly efficient and cost-effective solution for optimizing the femtosecond laser percussion drilling process.
Collapse
Affiliation(s)
- Zhixi Zhao
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; (Z.Z.); (Z.Z.); (C.W.)
| | - Yunhe Yu
- Shagang School of Iron and Steel, Soochow University, Suzhou 215137, China
| | - Ruijia Sun
- AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China;
| | - Wanrong Zhao
- Science and Technology on Advanced High-Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China; (W.Z.); (H.G.)
| | - Hao Guo
- Science and Technology on Advanced High-Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China; (W.Z.); (H.G.)
| | - Zhen Zhang
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; (Z.Z.); (Z.Z.); (C.W.)
| | - Chenchong Wang
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; (Z.Z.); (Z.Z.); (C.W.)
| |
Collapse
|
4
|
Jiang LX, Polack M, Li X, Yang M, Belder D, Laskin J. A monolithic microfluidic probe for ambient mass spectrometry imaging of biological tissues. LAB ON A CHIP 2023; 23:4664-4673. [PMID: 37782224 PMCID: PMC10823490 DOI: 10.1039/d3lc00637a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Ambient mass spectrometry imaging (MSI) is a powerful technique that allows for the simultaneous mapping of hundreds of molecules in biological samples under atmospheric conditions, requiring minimal sample preparation. We have developed nanospray desorption electrospray ionization (nano-DESI), a liquid extraction-based ambient ionization technique, which has proven to be sensitive and capable of achieving high spatial resolution. We have previously described an integrated microfluidic probe, which simplifies the nano-DESI setup, but is quite difficult to fabricate. Herein, we introduce a facile and scalable strategy for fabricating microfluidic devices for nano-DESI MSI applications. Our approach involves the use of selective laser-assisted etching (SLE) of fused silica to create a monolithic microfluidic probe (SLE-MFP). Unlike the traditional photolithography-based fabrication, SLE eliminates the need for the wafer bonding process and allows for automated, scalable fabrication of the probe. The chamfered design of the sampling port and ESI emitter significantly reduces the amount of polishing required to fine-tune the probe thereby streamlining and simplifying the fabrication process. We have also examined the performance of a V-shaped probe, in which only the sampling port is fabricated using SLE technology. The V-shaped design of the probe is easy to fabricate and provides an opportunity to independently optimize the size and shape of the electrospray emitter. We have evaluated the performance of SLE-MFP by imaging mouse tissue sections. Our results demonstrate that SLE technology enables the fabrication of robust monolithic microfluidic probes for MSI experiments. This development expands the capabilities of nano-DESI MSI and makes the technique more accessible to the broader scientific community.
Collapse
Affiliation(s)
- Li-Xue Jiang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Leipzig, 04103, Germany.
| | - Xiangtang Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Leipzig, 04103, Germany.
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Huang S, Jiang C, Tian Z, Xie F, Ren B, Tang Y, Huang J, Gao Q. Mechanism Study of Ultrasonic Vibration-Assisted Microgroove Forming of Precise Hot-Pressed Optical Glass. MICROMACHINES 2023; 14:1299. [PMID: 37512609 PMCID: PMC10384574 DOI: 10.3390/mi14071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023]
Abstract
Microgroove structures with helical pitches in a wavelength level are increasingly required in optical areas. However, conventional manufacturing techniques generate relatively high stresses during pressing, resulting in poor precision when forming microgrooves. This paper reports on the mechanism of the ultrasonic vibration-assisted microgroove forming of precise hot-pressed optical glass. A finite element (FE) thermocompression model of the viscoelastic material was developed and the entire forming process was numerically simulated using coupled thermal-structural analysis. The analysis of several process parameters was carried out using orthogonal experiments, from which the optimum combination of parameters was selected. The glass thermoforming process is also assisted by ultrasonic vibration. The thermal and mechanical effects of vibration improved material flow and optimized forming results. The average maximum stress in the glass during the forming process was only 3.04 × 10-3 Mpa, while the maximum stress in the hot-pressing stage without ultrasound was 1.648 Mpa. The stress results showed that the material-forming stress is significantly reduced.
Collapse
Affiliation(s)
- Shengzhou Huang
- School of Artificial Intelligence, Anhui Polytechnic University, Wuhu 241000, China
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
- Anhui East China Photoelectric Technology Research Institute, Wuhu 241002, China
| | - Chengwei Jiang
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhaowei Tian
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Fanglin Xie
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Bowen Ren
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yuanzhuo Tang
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jinjin Huang
- Wuhu Changpeng Auto Parts Co., Ltd., Wuhu 241002, China
| | - Qingzhen Gao
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
6
|
Butkutė A, Jurkšas T, Baravykas T, Leber B, Merkininkaitė G, Žilėnaitė R, Čereška D, Gulla A, Kvietkauskas M, Marcinkevičiūtė K, Schemmer P, Strupas K. Combined Femtosecond Laser Glass Microprocessing for Liver-on-Chip Device Fabrication. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2174. [PMID: 36984055 PMCID: PMC10056550 DOI: 10.3390/ma16062174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, lab-on-chip (LOC) devices are attracting more and more attention since they show vast prospects for various biomedical applications. Usually, an LOC is a small device that serves a single laboratory function. LOCs show massive potential for organ-on-chip (OOC) device manufacturing since they could allow for research on the avoidance of various diseases or the avoidance of drug testing on animals or humans. However, this technology is still under development. The dominant technique for the fabrication of such devices is molding, which is very attractive and efficient for mass production, but has many drawbacks for prototyping. This article suggests a femtosecond laser microprocessing technique for the prototyping of an OOC-type device-a liver-on-chip. We demonstrate the production of liver-on-chip devices out of glass by using femtosecond laser-based selective laser etching (SLE) and laser welding techniques. The fabricated device was tested with HepG2(GS) liver cancer cells. During the test, HepG2(GS) cells proliferated in the chip, thus showing the potential of the suggested technique for further OOC development.
Collapse
Affiliation(s)
- Agnė Butkutė
- Femtika Ltd., Keramikų Str. 2, LT-10233 Vilnius, Lithuania
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
| | - Tomas Jurkšas
- Femtika Ltd., Keramikų Str. 2, LT-10233 Vilnius, Lithuania
| | | | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, AT-8036 Graz, Austria
| | - Greta Merkininkaitė
- Femtika Ltd., Keramikų Str. 2, LT-10233 Vilnius, Lithuania
- Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | | | | | - Aiste Gulla
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Mindaugas Kvietkauskas
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Kristina Marcinkevičiūtė
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29, AT-8036 Graz, Austria
| | - Kęstutis Strupas
- Institute of Clinical Medicine, Faculty of Medicine, Center of Visceral Medicine and Translational Research, Vilnius University, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| |
Collapse
|
7
|
Li M, Yang T, Yang Q, Wang S, Fang Z, Cheng Y, Hou X, Chen F. Slippery quartz surfaces for anti‐fouling optical windows. DROPLET 2023; 2. [DOI: 10.1002/dro2.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2025]
Abstract
AbstractThe surface of camera‐based medical devices is easily smeared by blood and fog during the surgical procedure, causing visual field loss and bringing great distress to both doctors and patients. In this article, a slippery liquid‐infused porous surface (SLIPS) on a quartz window surface that can repel various liquids, especially blood droplets is reported. A femtosecond laser pulse train was used to create periodic microhole structures on the silica surface. The subsequent low surface energy treatment and lubricant infusion led to the successful preparation of a slippery surface. Such blood‐repellent windows exhibited high transparency, great antifogging, and antibacterial properties. In addition, the slippery ability of the as‐prepared surface exhibited outstanding stability since the surface could withstand harsh treatments/environments, such as repeated pipette scratches and immersion in different pH solutions. The as‐prepared millimeter‐sized quartz samples with SLIPS were attached to the endoscope lens as a protective coating and could maintain high visibility after repeated immersion in blood. We believe that the coating developed in this study will provide inspiration for the design of next‐generation endoscopes or other camera‐guided devices that will resist fouling, keep clear vision, and reduce operation time, thus offering great potential applications in lesion diagnosis and therapy.
Collapse
Affiliation(s)
- Minjing Li
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Tongzhen Yang
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Qing Yang
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Shaokun Wang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an China
| | - Zheng Fang
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Yang Cheng
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an China
| |
Collapse
|
8
|
Yang Q, Zhang B, Li Y, Wang X, Chen F, Wu P, Liu H. Femtosecond Laser Induced Lattice Deformation in KTN Crystal. MICROMACHINES 2022; 13:2120. [PMID: 36557417 PMCID: PMC9782094 DOI: 10.3390/mi13122120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In recent years, many novel optical phenomena have been discovered based on perovskite materials, but the practical applications are limited because of the difficulties of device fabrication. Here, we propose a method to directly induce localized lattice modification inside the potassium tantalate niobate crystal by using the femtosecond laser. This selective modification at the processed regions and the surrounding areas is characterized by two-dimensional Raman spectrum mapping. The spectrum variations corresponding to specific lattice vibration modes demonstrate the lattice structure deformation. In this way, the lattice expansion at the femtosecond laser irradiated regions and the lattice compression at the surrounding areas are revealed. Furthermore, surface morphology measurement confirms this lattice expansion and suggests the extension of lattice structure along the space diagonal direction. Moreover, the existence of an amorphization core is revealed. These modifications on the sample lattice can induce localized changes in physicochemical properties; therefore, this method can realize the fabrication of both linear diffraction and nonlinear frequency conversion devices by utilizing the novel optical responses of perovskite materials.
Collapse
Affiliation(s)
- Quanxin Yang
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Bin Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, Jinan 250100, China
| | - Yuanbo Li
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, Jinan 250100, China
| | - Pengfei Wu
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin 300350, China
| | - Hongliang Liu
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
- School of Physics, State Key Laboratory of Crystal Materials, Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, Jinan 250100, China
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Peculiarities of Integrating Mechanical Valves in Microfluidic Channels Using Direct Laser Writing. Appl Bionics Biomech 2022; 2022:9411024. [PMID: 36245929 PMCID: PMC9568359 DOI: 10.1155/2022/9411024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/20/2022] [Indexed: 12/03/2022] Open
Abstract
Regenerative medicine is a fast expanding scientific topic. One of the main areas of development directions in this field is the usage of additive manufacturing to fabricate functional components that would be later integrated directly into the human body. One such structure could be a microfluidic valve which could replace its biological counterpart in veins as it is worn out over the lifetime of a patient. In this work, we explore the possibility to produce such a structure by using multiphoton polymerization (MPP). This technology allows the creation of 3D structures on a micro- and nanometric scale. In this work, the fabrication of microfluidic systems by direct laser writing was carried out. These devices consist of a 100 μm diameter channel and within it a 200 μm long three-dimensional one-way mechanical valve. The idea of this device is to have a single flow direction for a fluid. For testing purposes, the valve was integrated into a femtosecond laser-made glass microfluidic system. Such a system acts as a platform for testing such small and delicate devices. Measurements of the dimensions of the device within such a testing platform were taken and the repeatability of this process was analyzed. The capability to use it for flow direction control is measured. Possible implications to the field of regenerative medicine are discussed.
Collapse
|
10
|
Andriukaitis D, Vargalis R, Šerpytis L, Drevinskas T, Kornyšova O, Stankevičius M, Bimbiraitė-Survilienė K, Kaškonienė V, Maruškas AS, Jonušauskas L. Fabrication of Microfluidic Tesla Valve Employing Femtosecond Bursts. MICROMACHINES 2022; 13:mi13081180. [PMID: 35893178 PMCID: PMC9332475 DOI: 10.3390/mi13081180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
Expansion of the microfluidics field dictates the necessity to constantly improve technologies used to produce such systems. One of the approaches which are used more and more is femtosecond (fs) direct laser writing (DLW). The subtractive model of DLW allows for directly producing microfluidic channels via ablation in an extremely simple and cost-effective manner. However, channel surface roughens are always a concern when direct fs ablation is used, as it normally yields an RMS value in the range of a few µm. One solution to improve it is the usage of fs bursts. Thus, in this work, we show how fs burst mode ablation can be optimized to achieve sub-µm surface roughness in glass channel fabrication. It is done without compromising on manufacturing throughput. Furthermore, we show that a simple and cost-effective channel sealing methodology of thermal bonding can be employed. Together, it allows for production functional Tesla valves, which are tested. Demonstrated capabilities are discussed.
Collapse
Affiliation(s)
- Deividas Andriukaitis
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (D.A.); (R.V.); (L.J.)
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
| | - Rokas Vargalis
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (D.A.); (R.V.); (L.J.)
| | - Lukas Šerpytis
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania;
| | - Tomas Drevinskas
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Olga Kornyšova
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Mantas Stankevičius
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Kristina Bimbiraitė-Survilienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Vilma Kaškonienė
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
| | - Audrius Sigitas Maruškas
- Instrumental Analysis Open Access Centre, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania; (T.D.); (O.K.); (M.S.); (K.B.-S.); (V.K.)
- Correspondence:
| | - Linas Jonušauskas
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (D.A.); (R.V.); (L.J.)
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania
| |
Collapse
|
11
|
Zhang L, Liu J, Zhu J, Jiang H, Liu S. Femtosecond laser induced damaging inside fused silica detected by a single-pulse ultrafast measurement system. OPTICS EXPRESS 2022; 30:26111-26119. [PMID: 36236808 DOI: 10.1364/oe.461477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/26/2022] [Indexed: 06/16/2023]
Abstract
The dynamics of damage inside the fused silica induced by a femtosecond laser has been characterized by a single-pulse ultrafast measurement system that is built upon the pump-probe mechanism. Our investigation disclosed the quantitative relationship between the size of the damaged area and the pulse energy. The dynamic measurement experiments showed that the radial size of the damaged area increased rapidly from 0 to 21 µm within ∼10 ps before stabilizing at 21 µm with the pulse energy of 1.1 mJ, which follows the rule of Boltzmann function. Moreover, we demonstrated that the structure inside the damaged area kept changing for about 200 ps before the formation of a double-void structure. The developed system alongside the proposed analysis method is expected to be of great importance in understanding the dynamics of laser-induced damage process in laser micromachining.
Collapse
|
12
|
Xie X, Li Y, Wang G, Bai Z, Yu Y, Wang Y, Ding Y, Lu Z. Femtosecond Laser Processing Technology for Anti-Reflection Surfaces of Hard Materials. MICROMACHINES 2022; 13:mi13071084. [PMID: 35888901 PMCID: PMC9322106 DOI: 10.3390/mi13071084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
The anti-reflection properties of hard material surfaces are of great significance in the fields of infrared imaging, optoelectronic devices, and aerospace. Femtosecond laser processing has drawn a lot of attentions in the field of optics as an innovative, efficient, and green micro-nano processing method. The anti-reflection surface prepared on hard materials by femtosecond laser processing technology has good anti-reflection properties under a broad spectrum with all angles, effectively suppresses reflection, and improves light transmittance/absorption. In this review, the recent advances on femtosecond laser processing of anti-reflection surfaces on hard materials are summarized. The principle of anti-reflection structure and the selection of anti-reflection materials in different applications are elaborated upon. Finally, the limitations and challenges of the current anti-reflection surface are discussed, and the future development trend of the anti-reflection surface are prospected.
Collapse
Affiliation(s)
- Xiaofan Xie
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
| | - Yunfei Li
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
- Correspondence: (Y.L.); (G.W.); (Y.D.)
| | - Gong Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
- Correspondence: (Y.L.); (G.W.); (Y.D.)
| | - Zhenxu Bai
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| | - Yu Yu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| | - Yulei Wang
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| | - Yu Ding
- Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
- Correspondence: (Y.L.); (G.W.); (Y.D.)
| | - Zhiwei Lu
- Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China; (X.X.); (Z.B.); (Y.Y.); (Y.W.); (Z.L.)
- Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
- Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
- National Demonstration Center for Experimental (Electronic and Communication Engineering) Education, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
13
|
Yang M, Sun N, Luo Y, Lai X, Li P, Zhang Z. Emergence of debubblers in microfluidics: A critical review. BIOMICROFLUIDICS 2022; 16:031503. [PMID: 35757146 PMCID: PMC9217167 DOI: 10.1063/5.0088551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 05/10/2023]
Abstract
Bubbles in microfluidics-even those that appear to be negligibly small-are pervasive and responsible for the failure of many biological and chemical experiments. For instance, they block current conduction, damage cell membranes, and interfere with detection results. To overcome this unavoidable and intractable problem, researchers have developed various methods for capturing and removing bubbles from microfluidics. Such methods are multifarious and their working principles are very different from each other. In this review, bubble-removing methods are divided into two broad categories: active debubblers (that require external auxiliary equipment) and passive debubblers (driven by natural processes). In each category, three main types of methods are discussed along with their advantages and disadvantages. Among the active debubblers, those assisted by lasers, acoustic generators, and negative pressure pumps are discussed. Among the passive debubblers, those driven by buoyancy, the characteristics of gas-liquid interfaces, and the hydrophilic and hydrophobic properties of materials are discussed. Finally, the challenges and prospects of the bubble-removal technologies are reviewed to refer researchers to microfluidics and inspire further investigations in this field.
Collapse
Affiliation(s)
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | | | | | - Peiru Li
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhenyu Zhang
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
14
|
Butkutė A, Merkininkaitė G, Jurkšas T, Stančikas J, Baravykas T, Vargalis R, Tičkūnas T, Bachmann J, Šakirzanovas S, Sirutkaitis V, Jonušauskas L. Femtosecond Laser Assisted 3D Etching Using Inorganic-Organic Etchant. MATERIALS 2022; 15:ma15082817. [PMID: 35454510 PMCID: PMC9030282 DOI: 10.3390/ma15082817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/20/2023]
Abstract
Selective laser etching (SLE) is a technique that allows the fabrication of arbitrarily shaped glass micro-objects. In this work, we show how the capabilities of this technology can be improved in terms of selectivity and etch rate by applying an etchant solution based on a Potassium Hydroxide, water, and isopropanol mixture. By varying the concentrations of these constituents, the wetting properties, as well as the chemical reaction of fused silica etching, can be changed, allowing us to achieve etching rates in modified fused silica up to 820 μm/h and selectivity up to ∼3000. This is used to produce a high aspect ratio (up to 1:1000), straight and spiral microfluidic channels which are embedded inside a volume of glass. Complex 3D glass micro-structures are also demonstrated.
Collapse
Affiliation(s)
- Agnė Butkutė
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania; (J.S.); (V.S.); (L.J.)
- Correspondence:
| | - Greta Merkininkaitė
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
- Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Tomas Jurkšas
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
| | - Jokūbas Stančikas
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania; (J.S.); (V.S.); (L.J.)
| | - Tomas Baravykas
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
| | - Rokas Vargalis
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
| | - Titas Tičkūnas
- Femtika Ltd., Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (G.M.); (T.J.); (T.B.); (R.V.); (T.T.)
| | - Julien Bachmann
- Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058 Erlangen, Germany;
| | - Simas Šakirzanovas
- Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Valdas Sirutkaitis
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania; (J.S.); (V.S.); (L.J.)
| | - Linas Jonušauskas
- Laser Research Center, Vilnius University, Saulėtekio Ave. 10, LT-10223 Vilnius, Lithuania; (J.S.); (V.S.); (L.J.)
| |
Collapse
|
15
|
Infrared Nanosecond Laser Texturing of Cu-Doped Bioresorbable Calcium Phosphate Glasses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The surface modification of bioactive glasses significantly impacts their performance for in-vivo biomedical applications. An affordable nanosecond pulsed laser surface-modification technique would provide great flexibility in applications such as cell scaffolding and fouling/anti-fouling engineered surfaces. This study reports on an infrared nanosecond laser modification technique we developed and applied to a Cu-doped bioresorbable calcium phosphate glass. With this technique, clean micro-protrusion features could be produced. By tuning the laser parameters such as the laser scan speed and average power, the width and height of the formed protrusions could be controlled. Finally, optimal laser parameters were defined to obtain complex surface textures without significant damage or thermal-stress-induced cracks. These results could provide effective aid for the affordable, fast, and selective surface texturing of metal-doped bioglasses, opening new possibilities in their application in the biological field.
Collapse
|
16
|
Čereška D, Žemaitis A, Kontenis G, Nemickas G, Jonušauskas L. On-Demand Wettability via Combining fs Laser Surface Structuring and Thermal Post-Treatment. MATERIALS 2022; 15:ma15062141. [PMID: 35329593 PMCID: PMC8954413 DOI: 10.3390/ma15062141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023]
Abstract
Laser surface texturing (LST) is one of the surface modification methods that increase or provide new abilities for the material surface. Textured surfaces could be applied in different industrial areas to reduce wear and friction, promote anti-fouling, improve osseointegration, and other similar uses. However, LST is still in development and for reaching industrial level further optimization is required. In this paper, different metal alloy surfaces were fabricated with several patterns using the same laser parameters on each material and the results were compared. This could lead to possible optimization on the industrial level. Furthermore, research on the wettability properties of material and texture patterns depending on heat treatment in different temperatures was performed, showing complete control for wettability (from hydrophilic to hydrophobic).
Collapse
Affiliation(s)
- Deividas Čereška
- Femtika, Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (A.Ž.); (G.K.); (G.N.); (L.J.)
- Correspondence:
| | - Arnas Žemaitis
- Femtika, Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (A.Ž.); (G.K.); (G.N.); (L.J.)
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, LT-10223 Vilnius, Lithuania
| | - Gabrielius Kontenis
- Femtika, Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (A.Ž.); (G.K.); (G.N.); (L.J.)
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, LT-10223 Vilnius, Lithuania
| | - Gedvinas Nemickas
- Femtika, Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (A.Ž.); (G.K.); (G.N.); (L.J.)
| | - Linas Jonušauskas
- Femtika, Saulėtekio Ave. 15, LT-10224 Vilnius, Lithuania; (A.Ž.); (G.K.); (G.N.); (L.J.)
- Laser Research Center, Physics Faculty, Vilnius University, Sauletekio Ave. 10, LT-10223 Vilnius, Lithuania
| |
Collapse
|
17
|
Bragheri F, Paiè P, Vázquez RM. Editorial for the Special Issue on New Trends and Applications in Femtosecond Laser Micromachining. MICROMACHINES 2022; 13:mi13020150. [PMID: 35208275 PMCID: PMC8879651 DOI: 10.3390/mi13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023]
|
18
|
Nanoscale-Precision Removal of Copper in Integrated Circuits Based on a Hybrid Process of Plasma Oxidation and Femtosecond Laser Ablation. MICROMACHINES 2021; 12:mi12101188. [PMID: 34683239 PMCID: PMC8537610 DOI: 10.3390/mi12101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Copper (Cu) is the main interconnect conductor for integrated circuits (IC), and its processing quality is very important to device performance. Herein, a hybrid process of plasma oxidation and femtosecond laser (fs-laser) ablation was proposed for the nanoscale precision removal of Cu in integrated circuits. In this hybrid process, the surface layer of Cu was oxidized to the copper oxide by plasma oxidation, and then the fs-laser with a laser fluence lower than the Cu ablation threshold was used to remove the copper oxide without damaging the underlying Cu. Theoretically, the surface temperature evolutions of Cu and copper oxide under the femtosecond laser were studied by the two-temperature model, and it was revealed that the ablation threshold of copper oxide is much lower than that of Cu. The experimental results showed that the ablation threshold of copper oxide is lower than that of Cu, which is consistent with the theoretical analysis. Using the hybrid process, a surface roughness of 3 nm and a removal accuracy of 4 nm were obtained in the process of Cu film processing, which were better than those obtained by fs-laser ablation. This demonstrated that the hybrid process has good application potential in the field of copper micromachining.
Collapse
|
19
|
Perrone E, Cesaria M, Zizzari A, Bianco M, Ferrara F, Raia L, Guarino V, Cuscunà M, Mazzeo M, Gigli G, Moroni L, Arima V. Potential of CO 2-laser processing of quartz for fast prototyping of microfluidic reactors and templates for 3D cell assembly over large scale. Mater Today Bio 2021; 12:100163. [PMID: 34901818 PMCID: PMC8637645 DOI: 10.1016/j.mtbio.2021.100163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Carbon dioxide (CO2)-laser processing of glasses is a versatile maskless writing technique to engrave micro-structures with flexible control on shape and size. In this study, we present the fabrication of hundreds of microns quartz micro-channels and micro-holes by pulsed CO2-laser ablation with a focus on the great potential of the technique in microfluidics and biomedical applications. After discussing the impact of the laser processing parameters on the design process, we illustrate specific applications. First, we demonstrate the use of a serpentine microfluidic reactor prepared by combining CO2-laser ablation and post-ablation wet etching to remove surface features stemming from laser-texturing that are undesirable for channel sealing. Then, cyclic olefin copolymer micro-pillars are fabricated using laser-processed micro-holes as molds with high detail replication. The hundreds of microns conical and square pyramidal shaped pillars are used as templates to drive 3D cell assembly. Human Umbilical Vein Endothelial Cells are found to assemble in a compact and wrapping way around the micro-pillars forming a tight junction network. These applications are interesting for both Lab-on-a-Chip and Organ-on-a-Chip devices.
Collapse
Affiliation(s)
- Elisabetta Perrone
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Maura Cesaria
- University of Salento, Department of Mathematics and Physics “E. De Giorgi”, Lecce, Italy
| | - Alessandra Zizzari
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Francesco Ferrara
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- STMicroelectronics S.r.l, Lecce, Italy
| | - Lillo Raia
- STMicroelectronics S.r.l, Agrate Brianza, Monza Brianza, Italy
| | - Vita Guarino
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- University of Salento, Department of Mathematics and Physics “E. De Giorgi”, Lecce, Italy
| | - Massimo Cuscunà
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Marco Mazzeo
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- University of Salento, Department of Mathematics and Physics “E. De Giorgi”, Lecce, Italy
| | - Giuseppe Gigli
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- University of Salento, Department of Mathematics and Physics “E. De Giorgi”, Lecce, Italy
| | - Lorenzo Moroni
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, department of complex tissue regeneration, Maastricht, the Netherlands
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| |
Collapse
|
20
|
Butkutė A, Baravykas T, Stančikas J, Tičkūnas T, Vargalis R, Paipulas D, Sirutkaitis V, Jonušauskas L. Optimization of selective laser etching (SLE) for glass micromechanical structure fabrication. OPTICS EXPRESS 2021; 29:23487-23499. [PMID: 34614613 DOI: 10.1364/oe.430623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
In this work, we show how femtosecond (fs) laser-based selective glass etching (SLE) can be used to expand capabilities in fabricating 3D structures out of a single piece of glass. First, an investigation of the etching process is performed, taking into account various laser parameters and scanning strategies. These results provide critical insights into the optimization of the process allowing to increase manufacturing throughput. Afterward, various complex 3D glass structures such as microfluidic elements embedded inside the volume of glass or channel systems with integrated functional elements are produced. A single helix spring of 1 mm diameter is also made, showing the possibility to compress it by 50%. Finally, 3D structuring capabilities are used to produce an assembly-free movable ball-joint-based chain and magnet-actuated Geneva mechanism. Due to minimized friction caused by low (down to 200 nm RMS) surface roughness of SLE-produced structures, the Geneva mechanism was shown to be capable of rotating up to 2000 RPM.
Collapse
|