1
|
Godier C, Baka Z, Lamy L, Gribova V, Marchal P, Lavalle P, Gaffet E, Bezdetnaya L, Alem H. A 3D Bio-Printed-Based Model for Pancreatic Ductal Adenocarcinoma. Diseases 2024; 12:206. [PMID: 39329875 PMCID: PMC11431387 DOI: 10.3390/diseases12090206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease with a very poor prognosis, characterized by incidence rates very close to death rates. Despite the efforts of the scientific community, preclinical models that faithfully recreate the PDAC tumor microenvironment remain limited. Currently, the use of 3D bio-printing is an emerging and promising method for the development of cancer tumor models with reproducible heterogeneity and a precisely controlled structure. This study presents the development of a model using the extrusion 3D bio-printing technique. Initially, a model combining pancreatic cancer cells (Panc-1) and cancer-associated fibroblasts (CAFs) encapsulated in a sodium alginate and gelatin-based hydrogel to mimic the metastatic stage of PDAC was developed and comprehensively characterized. Subsequently, efforts were made to vascularize this model. This study demonstrates that the resulting tumors can maintain viability and proliferate, with cells self-organizing into aggregates with a heterogeneous composition. The utilization of 3D bio-printing in creating this tumor model opens avenues for reproducing tumor complexity in the future, offering a versatile platform for improving anti-cancer therapy models.
Collapse
Affiliation(s)
- Claire Godier
- IJL, CNRS, Université de Lorraine, 54000 Nancy, France; (C.G.); (Z.B.); (E.G.)
| | - Zakaria Baka
- IJL, CNRS, Université de Lorraine, 54000 Nancy, France; (C.G.); (Z.B.); (E.G.)
| | - Laureline Lamy
- CRAN, CNRS, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France; (L.L.); (L.B.)
- Département Recherche, Institut de Cancérologie de Lorraine (ICL), 6 Avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1121, Biomaterials and Bioengineering, 1 rue Eugène Boeckel, 67100 Strasbourg, France; (V.G.); (P.L.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | | | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1121, Biomaterials and Bioengineering, 1 rue Eugène Boeckel, 67100 Strasbourg, France; (V.G.); (P.L.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Eric Gaffet
- IJL, CNRS, Université de Lorraine, 54000 Nancy, France; (C.G.); (Z.B.); (E.G.)
| | - Lina Bezdetnaya
- CRAN, CNRS, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France; (L.L.); (L.B.)
- Département Recherche, Institut de Cancérologie de Lorraine (ICL), 6 Avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Halima Alem
- IJL, CNRS, Université de Lorraine, 54000 Nancy, France; (C.G.); (Z.B.); (E.G.)
- Institut Universitaire de France, 75000 Paris, France
| |
Collapse
|
2
|
Wu BX, Wu Z, Hou YY, Fang ZX, Deng Y, Wu HT, Liu J. Application of three-dimensional (3D) bioprinting in anti-cancer therapy. Heliyon 2023; 9:e20475. [PMID: 37800075 PMCID: PMC10550518 DOI: 10.1016/j.heliyon.2023.e20475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a novel technology that enables the creation of 3D structures with bioinks, the biomaterials containing living cells. 3D bioprinted structures can mimic human tissue at different levels of complexity from cells to organs. Currently, 3D bioprinting is a promising method in regenerative medicine and tissue engineering applications, as well as in anti-cancer therapy research. Cancer, a type of complex and multifaceted disease, presents significant challenges regarding diagnosis, treatment, and drug development. 3D bioprinted models of cancer have been used to investigate the molecular mechanisms of oncogenesis, the development of cancers, and the responses to treatment. Conventional 2D cancer models have limitations in predicting human clinical outcomes and drug responses, while 3D bioprinting offers an innovative technique for creating 3D tissue structures that closely mimic the natural characteristics of cancers in terms of morphology, composition, structure, and function. By precise manipulation of the spatial arrangement of different cell types, extracellular matrix components, and vascular networks, 3D bioprinting facilitates the development of cancer models that are more accurate and representative, emulating intricate interactions between cancer cells and their surrounding microenvironment. Moreover, the technology of 3D bioprinting enables the creation of personalized cancer models using patient-derived cells and biomarkers, thereby advancing the fields of precision medicine and immunotherapy. The integration of 3D cell models with 3D bioprinting technology holds the potential to revolutionize cancer research, offering extensive flexibility, precision, and adaptability in crafting customized 3D structures with desired attributes and functionalities. In conclusion, 3D bioprinting exhibits significant potential in cancer research, providing opportunities for identifying therapeutic targets, reducing reliance on animal experiments, and potentially lowering the overall cost of cancer treatment. Further investigation and development are necessary to address challenges such as cell viability, printing resolution, material characteristics, and cost-effectiveness. With ongoing progress, 3D bioprinting can significantly impact the field of cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
3
|
Magré L, Verstegen MMA, Buschow S, van der Laan LJW, Peppelenbosch M, Desai J. Emerging organoid-immune co-culture models for cancer research: from oncoimmunology to personalized immunotherapies. J Immunother Cancer 2023; 11:jitc-2022-006290. [PMID: 37220953 DOI: 10.1136/jitc-2022-006290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
In the past decade, treatments targeting the immune system have revolutionized the cancer treatment field. Therapies such as immune checkpoint inhibitors have been approved as first-line treatment in a variety of solid tumors such as melanoma and non-small cell lung cancer while other therapies, for instance, chimeric antigen receptor (CAR) lymphocyte transfer therapies, are still in development. Although promising results are obtained in a small subset of patients, overall clinical efficacy of most immunotherapeutics is limited due to intertumoral heterogeneity and therapy resistance. Therefore, prediction of patient-specific responses would be of great value for efficient use of costly immunotherapeutic drugs as well as better outcomes. Because many immunotherapeutics operate by enhancing the interaction and/or recognition of malignant target cells by T cells, in vitro cultures using the combination of these cells derived from the same patient hold great promise to predict drug efficacy in a personalized fashion. The use of two-dimensional cancer cell lines for such cultures is unreliable due to altered phenotypical behavior of cells when compared with the in vivo situation. Three-dimensional tumor-derived organoids, better mimic in vivo tissue and are deemed a more realistic approach to study the complex tumor-immune interactions. In this review, we present an overview of the development of patient-specific tumor organoid-immune co-culture models to study the tumor-specific immune interactions and their possible therapeutic infringement. We also discuss applications of these models which advance personalized therapy efficacy and understanding the tumor microenvironment such as: (1) Screening for efficacy of immune checkpoint inhibition and CAR therapy screening in a personalized manner. (2) Generation of tumor reactive lymphocytes for adoptive cell transfer therapies. (3) Studying tumor-immune interactions to detect cell-specific roles in tumor progression and remission. Overall, these onco-immune co-cultures might hold a promising future toward developing patient-specific therapeutic approaches as well as increase our understanding of tumor-immune interactions.
Collapse
Affiliation(s)
- Luc Magré
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Sonja Buschow
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Maikel Peppelenbosch
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jyaysi Desai
- Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Baka Z, Godier C, Lamy L, Mallick A, Gribova V, Figarol A, Bezdetnaya L, Chateau A, Magne Z, Stiefel M, Louaguef D, Lavalle P, Gaffet E, Joubert O, Alem H. A Coculture Based, 3D Bioprinted Ovarian Tumor Model Combining Cancer Cells and Cancer Associated Fibroblasts. Macromol Biosci 2023; 23:e2200434. [PMID: 36448191 DOI: 10.1002/mabi.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Ovarian cancer remains a major public health issue due to its poor prognosis. To develop more effective therapies, it is crucial to set-up reliable models that closely mimic the complexity of the ovarian tumor's microenvironment. 3D bioprinting is currently a promising approach to build heterogenous and reproducible cancer models with controlled shape and architecture. However, this technology is still poorly investigated to model ovarian tumors. In this study, a 3D bioprinted ovarian tumor model combining cancer cells (SKOV-3) and cancer associated fibroblasts (CAFs) are described. The resulting tumor models show their ability to maintain cell viability and proliferation. Cells are observed to self-assemble in heterotypic aggregates. Moreover, CAFs are observed to be recruited and to circle cancer cells reproducing an in vivo process taking place in the tumor microenvironment. Interestingly, this approach also shows its ability to rapidly generate a high number of reproducible tumor models that can be subjected to usual characterizations (cell viability and metabolic activity; histology and immunological studies; and real-time imaging). Therefore, these ovarian tumor models can be an interesting tool for high throughput drug screening applications.
Collapse
Affiliation(s)
- Zakaria Baka
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Claire Godier
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Laureline Lamy
- Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifque (CNRS), UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, Vandoeuvre-lès-Nancy, 54506, France.,Département Recherche, Institut de Cancérologie de Lorraine (ICL), 6 Avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - Abhik Mallick
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1121, Biomaterials and Bioengineering, 1 rue Eugène Boeckel, Strasbourg, 67100, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, Strasbourg, 67000, France
| | - Agathe Figarol
- Institut FEMTO ST, Centre National de la Recherche Scientifique (CNRS), UMR 6174, Université Bourgogne Franche Comté, 15B Avenue des Montboucons, Besançon, F-25000, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifque (CNRS), UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, Vandoeuvre-lès-Nancy, 54506, France.,Département Recherche, Institut de Cancérologie de Lorraine (ICL), 6 Avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - Alicia Chateau
- Centre de Recherche en Automatique de Nancy (CRAN), Centre National de la Recherche Scientifque (CNRS), UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, Vandoeuvre-lès-Nancy, 54506, France
| | - Zoé Magne
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Marie Stiefel
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Dounia Louaguef
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1121, Biomaterials and Bioengineering, 1 rue Eugène Boeckel, Strasbourg, 67100, France
| | - Eric Gaffet
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Olivier Joubert
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France
| | - Halima Alem
- Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS), UMR 7198, Université de Lorraine, Campus Artem, 2 allée André Guinier, Nancy, 54011, France.,Institut Universitaire de France, Paris, 75000, France
| |
Collapse
|
5
|
Immune Evasion as the Main Challenge for Immunotherapy of Cancer. Cancers (Basel) 2022; 14:cancers14153622. [PMID: 35892880 PMCID: PMC9330814 DOI: 10.3390/cancers14153622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Immune evasion is currently considered one of the most prominent hallmarks of cancer [...].
Collapse
|
6
|
Staros R, Michalak A, Rusinek K, Mucha K, Pojda Z, Zagożdżon R. Perspectives for 3D-Bioprinting in Modeling of Tumor Immune Evasion. Cancers (Basel) 2022; 14:cancers14133126. [PMID: 35804898 PMCID: PMC9265021 DOI: 10.3390/cancers14133126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
In a living organism, cancer cells function in a specific microenvironment, where they exchange numerous physical and biochemical cues with other cells and the surrounding extracellular matrix (ECM). Immune evasion is a clinically relevant phenomenon, in which cancer cells are able to direct this interchange of signals against the immune effector cells and to generate an immunosuppressive environment favoring their own survival. A proper understanding of this phenomenon is substantial for generating more successful anticancer therapies. However, classical cell culture systems are unable to sufficiently recapture the dynamic nature and complexity of the tumor microenvironment (TME) to be of satisfactory use for comprehensive studies on mechanisms of tumor immune evasion. In turn, 3D-bioprinting is a rapidly evolving manufacture technique, in which it is possible to generate finely detailed structures comprised of multiple cell types and biomaterials serving as ECM-analogues. In this review, we focus on currently used 3D-bioprinting techniques, their applications in the TME research, and potential uses of 3D-bioprinting in modeling of tumor immune evasion and response to immunotherapies.
Collapse
Affiliation(s)
- Rafał Staros
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
| | - Agata Michalak
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Kinga Rusinek
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Krzysztof Mucha
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
| | - Radosław Zagożdżon
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-006 Warsaw, Poland; (R.S.); (K.M.)
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Institute of Oncology, 02-781 Warsaw, Poland; (A.M.); (K.R.); (Z.P.)
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-502-14-72; Fax: +48-22-502-21-59
| |
Collapse
|
7
|
Godau B, Stefanek E, Gharaie SS, Amereh M, Pagan E, Marvdashti Z, Libert-Scott E, Ahadian S, Akbari M. Non-destructive mechanical assessment for optimization of 3D bioprinted soft tissue scaffolds. iScience 2022; 25:104251. [PMID: 35521534 PMCID: PMC9062268 DOI: 10.1016/j.isci.2022.104251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 10/25/2022] Open
Abstract
Characterizing the mechanical properties of engineered tissue constructs provides powerful insight into the function of engineered tissues for their desired application. Current methods of mechanical characterization of soft hydrogels used in tissue engineering are often destructive and ignore the effect of 3D bioprinting on the overall mechanical properties of a whole tissue construct. This work reports on using a non-destructive method of viscoelastic analysis to demonstrate the influence of bioprinting strategy on mechanical properties of hydrogel tissue scaffolds. Structure-function relationships are developed for common 3D bioprinting parameters such as printed fiber size, printed scaffold pattern, and bioink formulation. Further studies include mechanical properties analysis during degradation, real-time monitoring of crosslinking, mechanical characterization of multi-material scaffolds, and monitoring the effect of encapsulated cell growth on the mechanical strength of 3D bioprinted scaffolds. We envision this method of characterization opening a new wave of understanding and strategy in tissue engineering.
Collapse
Affiliation(s)
- Brent Godau
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Sadaf Samimi Gharaie
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Meitham Amereh
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Erik Pagan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Zohreh Marvdashti
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Eryn Libert-Scott
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| |
Collapse
|
8
|
Nothdurfter D, Ploner C, Coraça-Huber DC, Wilflingseder D, Müller T, Hermann M, Hagenbuchner J, Ausserlechner MJ. 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing. Biofabrication 2022; 14. [PMID: 35333193 DOI: 10.1088/1758-5090/ac5fb7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Neuroblastoma is an extracranial solid tumor which develops in early childhood and still has a poor prognosis. One strategy to increase cure rates is the identification of patient-specific drug responses in tissue models that mimic the interaction between patient cancer cells and tumor environment. We therefore developed a perfused and micro-vascularized tumor-environment model that is directly bioprinted into custom-manufactured fluidic chips. A gelatin-methacrylate/fibrin-based matrix containing multiple cell types mimics the tumor-microenvironment that promotes spontaneous micro-vessel formation by embedded endothelial cells. We demonstrate that both, adipocyte- and iPSC-derived mesenchymal stem cells can guide this process. Bioprinted channels are coated with endothelial cells post printing to form a dense vessel - tissue barrier. The tissue model thereby mimics structure and function of human soft tissue with endothelial cell-coated larger vessels for perfusion and micro-vessel networks within the hydrogel-matrix. Patient-derived neuroblastoma spheroids are added to the matrix during the printing process and grown for more than two weeks. We demonstrate that micro-vessels are attracted by and grow into tumor spheroids and that neuroblastoma cells invade the tumor-environment as soon as the spheroids disrupt. In summary, we describe the first bioprinted, micro-vascularized neuroblastoma - tumor-environment model directly printed into fluidic chips and a novel medium-throughput biofabrication platform suitable for studying tumor angiogenesis and metastasis in precision medicine approaches in future.
Collapse
Affiliation(s)
- Daniel Nothdurfter
- Department of Pediatrics I and 3D Bioprinting Lab, Medical University Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic and Reconstructive Surgery, Medical University Innsbruck, Austria
| | - Débora C Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopedics, Department of Orthopedic Surgery, Medical University Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I and 3D Bioprinting Lab, Medical University Innsbruck, Austria
| | - Martin Hermann
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Hagenbuchner
- Department of Pediatrics II and 3D Bioprinting Lab, Medical University Innsbruck, Austria
| | | |
Collapse
|
9
|
Special Issue on Versatile Organ-on-a-Chip Devices. MICROMACHINES 2021; 12:mi12121444. [PMID: 34945294 PMCID: PMC8707123 DOI: 10.3390/mi12121444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022]
|