1
|
Gupta AK, Krasnoslobodtsev AV. Fueling the Future: The Emergence of Self-Powered Enzymatic Biofuel Cell Biosensors. BIOSENSORS 2024; 14:316. [PMID: 39056592 PMCID: PMC11274387 DOI: 10.3390/bios14070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Self-powered biosensors are innovative devices that can detect and analyze biological or chemical substances without the need for an external power source. These biosensors can convert energy from the surrounding environment or the analyte itself into electrical signals for sensing and data transmission. The self-powered nature of these biosensors offers several advantages, such as portability, autonomy, and reduced waste generation from disposable batteries. They find applications in various fields, including healthcare, environmental monitoring, food safety, and wearable devices. While self-powered biosensors are a promising technology, there are still challenges to address, such as improving energy efficiency, sensitivity, and stability to make them more practical and widely adopted. This review article focuses on exploring the evolving trends in self-powered biosensor design, outlining potential advantages and limitations. With a focal point on enzymatic biofuel cell power generation, this article describes various sensing mechanisms that employ the analyte as substrate or fuel for the biocatalyst's ability to generate current. Technical aspects of biofuel cells are also examined. Research and development in the field of self-powered biosensors is ongoing, and this review describes promising areas for further exploration within the field, identifying underexplored areas that could benefit from further investigation.
Collapse
|
2
|
Ji D, Zhu Y, Li M, Fan X, Zhang T, Li Y. Skin Comfort Sensation with Mechanical Stimulus from Electronic Skin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2920. [PMID: 38930289 PMCID: PMC11204911 DOI: 10.3390/ma17122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
The field of electronic skin has received considerable attention due to its extensive potential applications in areas including tactile sensing and health monitoring. With the development of electronic skin devices, electronic skin can be attached to the surface of human skin for long-term health monitoring, which makes comfort an essential factor that cannot be ignored in the design of electronic skin. Therefore, this paper proposes an assessment method for evaluating the comfort of electronic skin based on neurodynamic analysis. The holistic analysis framework encompasses the mechanical model of the skin, the modified Hodgkin-Huxley model for the transduction of stimuli, and the gate control theory for the modulation and perception of pain sensation. The complete process, from mechanical stimulus to the generation of pain perception, is demonstrated. Furthermore, the influence of different factors on pain perception is investigated. Sensation and comfort diagrams are provided to assess the mechanical comfort of electronic skin. The comfort assessment method proposed in this paper provides a theoretical basis when assessing the comfort of electronic skin.
Collapse
Affiliation(s)
- Dongcan Ji
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
| | - Yunfan Zhu
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
| | - Min Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
- International Innovation Institute, Beihang University (BUAA), Yuhang District, Hangzhou 311115, China
| | - Xuanqing Fan
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
- International Innovation Institute, Beihang University (BUAA), Yuhang District, Hangzhou 311115, China
| | - Taihua Zhang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing 100191, China
- Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University (BUAA), Ningbo 315100, China
| |
Collapse
|
3
|
Youn S, Ki MR, Abdelhamid MAA, Pack SP. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics (Basel) 2024; 9:278. [PMID: 38786488 PMCID: PMC11117890 DOI: 10.3390/biomimetics9050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Biomimetic materials have become a promising alternative in the field of tissue engineering and regenerative medicine to address critical challenges in wound healing and skin regeneration. Skin-mimetic materials have enormous potential to improve wound healing outcomes and enable innovative diagnostic and sensor applications. Human skin, with its complex structure and diverse functions, serves as an excellent model for designing biomaterials. Creating effective wound coverings requires mimicking the unique extracellular matrix composition, mechanical properties, and biochemical cues. Additionally, integrating electronic functionality into these materials presents exciting possibilities for real-time monitoring, diagnostics, and personalized healthcare. This review examines biomimetic skin materials and their role in regenerative wound healing, as well as their integration with electronic skin technologies. It discusses recent advances, challenges, and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung-Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| |
Collapse
|
4
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
5
|
Godin R, Hejazi S, Reuel NF. Advancements in Airborne Viral Nucleic Acid Detection with Wearable Devices. ADVANCED SENSOR RESEARCH 2024; 3:2300061. [PMID: 38764891 PMCID: PMC11101210 DOI: 10.1002/adsr.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 05/21/2024]
Abstract
Wearable health sensors for an expanding range of physiological parameters have experienced rapid development in recent years and are poised to disrupt the way healthcare is tracked and administered. The monitoring of environmental contaminants with wearable technologies is an additional layer of personal and public healthcare and is also receiving increased focus. Wearable sensors that detect exposure to airborne viruses could alert wearers of viral exposure and prompt proactive testing and minimization of viral spread, benefitting their own health and decreasing community risk. With the high levels of asymptomatic spread of COVID-19 observed during the pandemic, such devices could dramatically enhance our pandemic response capabilities in the future. To facilitate advancements in this area, this review summarizes recent research on airborne viral detection using wearable sensing devices as well as technologies suitable for wearables. Since the low concentration of viral particles in the air poses significant challenges to detection, methods for airborne viral particle collection and viral sensing are discussed in detail. A special focus is placed on nucleic acid-based viral sensing mechanisms due to their enhanced ability to discriminate between viral subtypes. Important considerations for integrating airborne viral collection and sensing on a single wearable device are also discussed.
Collapse
Affiliation(s)
- Ryan Godin
- Department of Chemical and Biological Engineering, Iowa State University
| | - Sepehr Hejazi
- Department of Chemical and Biological Engineering, Iowa State University
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University
| |
Collapse
|
6
|
Iravani S, Rabiee N, Makvandi P. Advancements in MXene-based composites for electronic skins. J Mater Chem B 2024; 12:895-915. [PMID: 38194290 DOI: 10.1039/d3tb02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
MXenes are a class of two-dimensional (2D) materials that have gained significant attention in the field of electronic skins (E-skins). MXene-based composites offer several advantages for E-skins, including high electrical conductivity, mechanical flexibility, transparency, and chemical stability. Their mechanical flexibility allows for conformal integration onto various surfaces, enabling the creation of E-skins that can closely mimic human skin. In addition, their high surface area facilitates enhanced sensitivity and responsiveness to external stimuli, making them ideal for sensing applications. Notably, MXene-based composites can be integrated into E-skins to create sensors that can detect various stimuli, such as temperature, pressure, strain, and humidity. These sensors can be used for a wide range of applications, including health monitoring, robotics, and human-machine interfaces. However, challenges related to scalability, integration, and biocompatibility need to be addressed. One important challenge is achieving long-term stability under harsh conditions such as high humidity. MXenes are susceptible to oxidation, which can degrade their electrical and mechanical properties over time. Another crucial challenge is the scalability of MXene synthesis, as large-scale production methods need to be developed to meet the demand for commercial applications. Notably, the integration of MXenes with other components, such as energy storage devices or flexible electronics, requires further developments to ensure compatibility and optimize overall performance. By addressing issues related to material stability, mechanical flexibility, scalability, sensing performance, and power supply, MXene-based E-skins can develop the fields of healthcare monitoring/diagnostics, prosthetics, motion monitoring, wearable electronics, and human-robot interactions. The integration of MXenes with emerging technologies, such as artificial intelligence or internet of things, can unlock new functionalities and applications for E-skins, ranging from healthcare monitoring to virtual reality interfaces. This review aims to examine the challenges, advantages, and limitations of MXenes and their composites in E-skins, while also exploring the future prospects and potential advancements in this field.
Collapse
Affiliation(s)
- Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China.
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| |
Collapse
|
7
|
Xu W, Ren Q, Li J, Xu J, Bai G, Zhu C, Li W. Triboelectric Contact Localization Electronics: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:449. [PMID: 38257543 PMCID: PMC10819133 DOI: 10.3390/s24020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
The growing demand from the extended reality and wearable electronics market has led to an increased focus on the development of flexible human-machine interfaces (HMI). These interfaces require efficient user input acquisition modules that can realize touch operation, handwriting input, and motion sensing functions. In this paper, we present a systematic review of triboelectric-based contact localization electronics (TCLE) which play a crucial role in enabling the lightweight and long-endurance designs of flexible HMI. We begin by summarizing the mainstream working principles utilized in the design of TCLE, highlighting their respective strengths and weaknesses. Additionally, we discuss the implementation methods of TCLE in realizing advanced functions such as sliding motion detection, handwriting trajectory detection, and artificial intelligence-based user recognition. Furthermore, we review recent works on the applications of TCLE in HMI devices, which provide valuable insights for guiding the design of application scene-specified TCLE devices. Overall, this review aims to contribute to the advancement and understanding of TCLE, facilitating the development of next-generation HMI for various applications.
Collapse
Affiliation(s)
- Wei Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (W.X.); (Q.R.)
| | - Qingying Ren
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (W.X.); (Q.R.)
| | - Jinze Li
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Jie Xu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Gang Bai
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Chen Zhu
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| | - Wei Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (W.X.); (Q.R.)
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (J.L.); (J.X.); (G.B.); (C.Z.)
| |
Collapse
|
8
|
Roy AC, Kumar N, Subramanya SB, Gupta A, Kumar A, Bid A, Venkataraman V. Large-Area 3D Printable Soft Electronic Skin for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:5319-5328. [PMID: 35895720 DOI: 10.1021/acsbiomaterials.2c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soft electronic skin (soft-e-skin) capable of sensing touch and pressure similar to human skin is essential in many applications, including robotics, healthcare, and augmented reality. However, most of the research effort on soft-e-skin was confined to the lab-scale demonstration. Several hurdles remain challenging, such as highly complex and expensive fabrication processes, instability in long-term use, and difficulty producing large areas and mass production. Here, we present a robust 3D printable large-area electronic skin made of a soft and resilient polymer capable of detecting touch and load, and bending with extreme sensitivity (up to 150 kPa-1) to touch and load, 750 times higher than earlier work. The soft-e-skin shows excellent long-term stability and consistent performance up to almost a year. In addition, we describe a fabrication process capable of producing large areas and in large numbers, yet is cost-effective. The soft-e-skin consists of a uniquely designed optical waveguide and a layer of a soft membrane with an array of soft structures which work as passive sensing nodes. The use of a soft structure gives the liberty of stretching to the soft-e-skin without considering the disjoints among the sensing nodes. We have shown the functioning of the soft-e-skin under various conditions.
Collapse
Affiliation(s)
- Abhijit Chandra Roy
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Navin Kumar
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Ananya Gupta
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Aveek Bid
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | |
Collapse
|
9
|
Huang TY, Lim HL. Electrogenic Staphylococcus warneri in lactate-rich skin. Biochem Biophys Res Commun 2022; 618:67-72. [PMID: 35716597 DOI: 10.1016/j.bbrc.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
The electrogenicity of environmental bacteria has been thoroughly explored and has been known to have the unique capability of decomposing hazardous chemicals for environmental remediation. However, electrogenic bacteria in human skin in regards to their electrical properties and locations have not yet been determined. Here, electrodermal activities and metabolite compositions at different locations of arm skin were assessed. Compared to the uppermost part of arm, we found that the forearm elicited high electrodermal activity and carried abundant lactate and alpha-ketoglutarate, two components commonly present in sweat. Upon culturing bacteria from the forearm, an iron-resistant strain of Staphylococcus warneri (S. warneri) was identified through 16S ribosomal RNA sequencing. Voltage changes induced by S. warneri in the presence of glucose were detected by two voltmeters of different electrode materials, demonstrating the electrogenicity of skin bacteria. Furthermore, we discovered that S. warneri has the ability to metabolize lactate to generate electricity. The results of this study reveal changes in skin conductance caused by bacterial electricity that are mediated by skin endogenous molecules and may provide a novel method of monitoring environmental skin insults.
Collapse
|
10
|
Early Notice Pointer, an IoT-like Platform for Point-of-Care Feet and Body Balance Screening. MICROMACHINES 2022; 13:mi13050682. [PMID: 35630149 PMCID: PMC9144081 DOI: 10.3390/mi13050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
Improper foot biomechanics associated with uneven bodyweight distribution contribute to impaired balance and fall risks. There is a need to complete the panel of commercially available devices for the self-measurement of BMI, fat, muscle, bone, weight, and hydration with one that measures weight-shifting at home as a pre-specialist assessment system. This paper reports the development of the Early Notice Pointer (ENP), a user-friendly screening device based on weighing scale technology. The ENP is designed to be used at home to provide a graphic indication and customised and evidence-based foot and posture triage. The device electronically detects and maps the bodyweight and distinct load distributions on the main areas of the feet: forefoot and rearfoot. The developed platform also presents features that assess the user's balance, and the results are displayed as a simple numerical report and map. The technology supports data display on mobile phones and accommodates multiple measurements for monitoring. Therefore, the evaluation could be done at non-specialist and professional levels. The system has been tested to validate its accuracy, precision, and consistency. A parallel study to describe the frequency of arch types and metatarsal pressure in young adults (1034 healthy subjects) was conducted to explain the importance of self-monitoring at home for better prevention of foot arch- and posture-related conditions. The results showed the potential of the newly created platform as a screening device ready to be wirelessly connected with mobile phones and the internet for remote and personalised identification and monitoring of foot- and body balance-related conditions. The real-time interpretation of the reported physiological parameters opens new avenues toward IoT-like on-body monitoring of human physiological signals through easy-to-use devices on flexible substrates for specific versatility.
Collapse
|
11
|
Iliescu FS, Ionescu AM, Gogianu L, Simion M, Dediu V, Chifiriuc MC, Pircalabioru GG, Iliescu C. Point-of-Care Testing-The Key in the Battle against SARS-CoV-2 Pandemic. MICROMACHINES 2021; 12:1464. [PMID: 34945314 PMCID: PMC8708595 DOI: 10.3390/mi12121464] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
The deleterious effects of the coronavirus disease 2019 (COVID-19) pandemic urged the development of diagnostic tools to manage the spread of disease. Currently, the "gold standard" involves the use of quantitative real-time polymerase chain reaction (qRT-PCR) for SARS-CoV-2 detection. Even though it is sensitive, specific and applicable for large batches of samples, qRT-PCR is labour-intensive, time-consuming, requires trained personnel and is not available in remote settings. This review summarizes and compares the available strategies for COVID-19: serological testing, Point-of-Care Testing, nanotechnology-based approaches and biosensors. Last but not least, we address the advantages and limitations of these methods as well as perspectives in COVID-19 diagnostics. The effort is constantly focused on understanding the quickly changing landscape of available diagnostic testing of COVID-19 at the clinical levels and introducing reliable and rapid screening point of care testing. The last approach is key to aid the clinical decision-making process for infection control, enhancing an appropriate treatment strategy and prompt isolation of asymptomatic/mild cases. As a viable alternative, Point-of-Care Testing (POCT) is typically low-cost and user-friendly, hence harbouring tremendous potential for rapid COVID-19 diagnosis.
Collapse
Affiliation(s)
- Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Ana Maria Ionescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, UK
| | - Larisa Gogianu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Monica Simion
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Violeta Dediu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Mariana Carmen Chifiriuc
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania;
- The Romanian Academy, 25, Calea Victoriei, Sector 1, 010071 Bucharest, Romania
| | | | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
- Academy of Romanian Scientists, 010071 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|