1
|
Yang S, Gao S, Zhuang Y, Hu W, Zhao J, Yi Z. Non-Destructive Sensor for Glucose Solution Concentration Detection Using Electromagnetic Technology. MICROMACHINES 2024; 15:758. [PMID: 38930728 PMCID: PMC11205294 DOI: 10.3390/mi15060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
In this paper, a sensor using a complementary split ring resonator (CSRR) is proposed for non-destructive testing of blood glucose. By depicting the complementary split ring structure on the ground, the electromagnetic field strength between the split rings can be enhanced effectively. The structure size of the sensor by CSRR is determined by simulation, so that the insertion loss curve of the device has a resonance point at the frequency of 3.419 GHz. With a special holder created by three-dimensional (3D) printing technology, the test platform was established when the concentration of the solution varied from 0 mg/mL to 20 mg/mL. The experimental results indicate that there is an obvious linear relationship between the insertion loss S21 and the glucose concentration at the resonant frequency. Similarly, the measured real part and imaginary part of the S21 both vary with glucose concentration linearly. Based on the above experimental results, the feasibility of the sensor using a CSRR proposed in this paper for non-destructive detection of blood glucose is preliminarily verified.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenxiang Yi
- The Key Laboratory of MEMS, Ministry of Education, Southeast University, Nanjing 210096, China; (S.Y.); (S.G.); (Y.Z.); (W.H.); (J.Z.)
| |
Collapse
|
2
|
Arvinte A, Lungoci AL, Coroaba A, Pinteala M. Electrochemical Sensor for Tryptophan Determination Based on Trimetallic-CuZnCo-Nanoparticle-Modified Electrodes. Molecules 2023; 29:28. [PMID: 38202611 PMCID: PMC10779962 DOI: 10.3390/molecules29010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The superior properties of electrodeposited trimetallic CuZnCo nanoparticles, arising from the synergistic effect of combining the unique features of metallic components, were confirmed using voltametric measurements. The surface morphology and structure of the as-prepared electrocatalysts were determined using scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy techniques. Here, the trimetallic CuZnCo nanoparticles were synthesized as a powerful redox probe and highly efficient signal amplifier for the electrochemical oxidation of tryptophan. Differential pulse voltammetry studies showed a linear relationship with a tryptophan concentration of 5-230 μM, and the low detection limit was identified at 1.1 μM with a sensitivity of 0.1831 μA μM-1 cm-2.
Collapse
Affiliation(s)
- Adina Arvinte
- “Petru Poni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania (A.C.); (M.P.)
| | | | | | | |
Collapse
|
3
|
Islam MS, Banik S, Collinson MM. Recent Advances in Bimetallic Nanoporous Gold Electrodes for Electrochemical Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2515. [PMID: 37764545 PMCID: PMC10535497 DOI: 10.3390/nano13182515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Bimetallic nanocomposites and nanoparticles have received tremendous interest recently because they often exhibit better properties than single-component materials. Improved electron transfer rates and the synergistic interactions between individual metals are two of the most beneficial attributes of these materials. In this review, we focus on bimetallic nanoporous gold (NPG) because of its importance in the field of electrochemical sensing coupled with the ease with which it can be made. NPG is a particularly important scaffold because of its unique properties, including biofouling resistance and ease of modification. In this review, several different methods to synthesize NPG, along with varying modification approaches are described. These include the use of ternary alloys, immersion-reduction (chemical, electrochemical, hybrid), co-electrodeposition-annealing, and under-potential deposition coupled with surface-limited redox replacement of NPG with different metal nanoparticles (e.g., Pt, Cu, Pd, Ni, Co, Fe, etc.). The review also describes the importance of fully characterizing these bimetallic nanocomposites and critically analyzing their structure, surface morphology, surface composition, and application in electrochemical sensing of chemical and biochemical species. The authors attempt to highlight the most recent and advanced techniques for designing non-enzymatic bimetallic electrochemical nanosensors. The review opens up a window for readers to obtain detailed knowledge about the formation and structure of bimetallic electrodes and their applications in electrochemical sensing.
Collapse
Affiliation(s)
| | | | - Maryanne M. Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA; (M.S.I.); (S.B.)
| |
Collapse
|
4
|
Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2023; 9:1037741. [PMID: 36684578 PMCID: PMC9846151 DOI: 10.3389/fcvm.2022.1037741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in China, with increasingly serious negative effects on people and society. Despite significant advances in preventing and treating cardiovascular diseases, such as atrial fibrillation/flutter and heart failure over the last few years, much more remains to be done. Therefore, developing innovative methods for identifying and managing cardiovascular disorders is critical. Nanomaterials provide multiple benefits in biomedicine, primarily better catalytic activity, drug loading, targeting, and imaging. Biomimetic materials and nanoparticles are specially combined to synthesize biomimetic nanoparticles that successfully reduce the nanoparticles' toxicity and immunogenicity while enhancing histocompatibility. Additionally, the biological targeting capability of nanoparticles facilitates the diagnosis and therapy of cardiovascular disease. Nowadays, nanomedicine still faces numerous challenges, which necessitates creating nanoparticles that are highly selective, toxic-free, and better clinically applicable. This study reviews the scientific accomplishments in this field over the past few years covering the classification, applications, and prospects of noble metal biomimetic nanozymes and biomimetic nanocarriers.
Collapse
Affiliation(s)
- Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Li Zhuo,
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China,*Correspondence: Haibin Wang,
| |
Collapse
|
5
|
Nanomaterial Constructs for Catalytic Applications in Biomedicine: Nanobiocatalysts and Nanozymes. Top Catal 2022; 66:707-722. [PMID: 36597435 PMCID: PMC9798949 DOI: 10.1007/s11244-022-01766-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability. Graphical Abstract
Collapse
|
6
|
Izadyar A, Van MN, Miranda M, Weatherford S, Hood EE, Seok I. Development of a highly sensitive glucose nanocomposite biosensor based on recombinant enzyme from corn. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6530-6538. [PMID: 35587543 DOI: 10.1002/jsfa.12019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Enzymes are biocatalysts that play a vital role in the production of biomolecules. Plants can be a valuable and cost-effective source for producing well-structured recombinant enzymes. Glucose is one of the most important biological molecules, providing energy to most living systems. An electrochemical method for immobilization of enzyme is promising because it is economic, generates less component waste, improves the signal-to-noise ratio, leads to a lower limit of detection, and stabilizes and protects the enzyme structure. RESULTS A glucose biosensor was constructed using polyaniline (PANI) and a recombinant enzyme from corn, plant-produced manganese peroxidase (PPMP), with polymerization of aniline as a monomer in the presence of gold nanoparticles (AuNPs)-glucose oxidase (GOx), and bovine serum albumin. Using linear sweep voltammetry and cyclic voltammetry techniques, PANI-AuNPs-GOx-PPMP/Au electrode exhibited a superior sensing property with a wider linear range of 0.005-16.0 mm, and a lower detection limit of 0.001 mm compared to PANI-GOx-PPMP/Au electrode and PANI-GOx-PPMP/AuNPs/Au electrode. The biosensor selectivity was assessed by determining glucose concentrations in the presence of ascorbic acid, dopamine, aspartame, and caffeine. CONCLUSION We conclude that a plant-produced Mn peroxidase enzyme combined with conductive polymers and AuNPs results in a promising nanocomposite biosensor for detecting glucose. The use of such devices for quality control in the food industry can have a significant economic impact. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anahita Izadyar
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - My Ni Van
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - Marcela Miranda
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - Scout Weatherford
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - Elizabeth E Hood
- Arkansas Biosciences Institute and College of Agriculture, Arkansas State University, Jonesboro, AR, USA
| | - Ilwoo Seok
- College of Engineering and Computer Science, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
7
|
Maduraiveeran G. Nanomaterials-based portable electrochemical sensing and biosensing systems for clinical and biomedical applications. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMiniaturized electrochemical sensing systems are employed in day-to-day uses in the several area from public health to scientific applications. A variety of electrochemical sensor and biosensor systems may not be effectively employed in real-world diagnostic laboratories and biomedical industries due to their limitation of portability, cost, analytical period, and need of skilled trainer for operating devices. The design of smart and portable sensors with high sensitivity, good selectivity, rapid measurement, and reusable platforms is the driving strength for sensing glucose, lactate, hydrogen peroxide, nitric oxide, mRNA, etc. The enhancement of sensing abilities of such sensor devices through the incorporation of both novel sensitive nanomaterials and design of sensor strategies are evidenced. Miniaturization, cost and energy efficient, online and quantitative detection and multiple sensing ability are the beneficial of the nanostructured-material-based electrochemical sensor and biosensor systems. Owing to the discriminating catalytic action, solidity and biocompatibility for designing sensing system, nanoscale materials empowered electrochemical detection systems are accomplished of being entrenched into/combined with portable or miniaturized devices for specific applications. In this review, the advance development of portable and smart sensing/biosensing systems derived from nanoscale materials for clinical and biomedical applications is described.
Graphical Abstract
Collapse
|
8
|
Mehmandoust M, Pourhakkak P, Tiris G, Karimi-Maleh H, Erk N. A reusable and sensitive electrochemical sensor for determination of idarubicin in environmental and biological samples based on NiFe 2O 4 nanospheres anchored N-doped graphene quantum dots composite; an electrochemical and molecular docking investigation. ENVIRONMENTAL RESEARCH 2022; 212:113264. [PMID: 35427589 DOI: 10.1016/j.envres.2022.113264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
An ultrasensitive and selective voltammetric sensor with ultra-trace level detection limit is introduced for idarubicin (IDA) determination in real samples. The as-synthesized nanocomposite was characterized by several techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, Energy-dispersive X-ray spectroscopy (EDX), and Field emission scanning electron microscopy (FE-SEM). The electrocatalytic performance of the developed electrode was observed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronoamperometry. The limit of detection (LOD) of the developed sensor for idarubicin is 1.0 nM, and the response is found to be in the dynamic concentration range of 0.01-1.9 μmol/L in a Britton-Robinson buffer (B-R, pH = 6.0). Moreover, the fabricated electrode illustrated high selectivity with good repeatability and reproducibility for diagnosing idarubicin as an anthracycline antileukemic drug. Furthermore, to evaluate the validity of the recommended method, three real samples, including human plasma, urine, and water samples, were analyzed with satisfactory recovery and compared with high-performance liquid chromatography (HPLC). The minor groove-binding mode of interaction was also supported by docking simulation studies, emphasizing that IDA can bind to ds-DNA preferably and confirmed experimental results. The reduced assay time and the possibility of measuring a single sample with another anticancer drug without any interference are significant advantages compared to the HPLC. The developed and validated sensor could be a valuable point-of-care diagnostic tool for IDA quantification in patients.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | | | - Gizem Tiris
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, 34093, Istanbul, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box, 17011, South Africa.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
9
|
Stasyuk N, Demkiv O, Gayda G, Zakalskiy A, Klepach H, Bisko N, Gonchar M, Nisnevitch M. Highly Porous 3D Gold Enhances Sensitivity of Amperometric Biosensors Based on Oxidases and CuCe Nanoparticles. BIOSENSORS 2022; 12:472. [PMID: 35884275 PMCID: PMC9312547 DOI: 10.3390/bios12070472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 12/15/2022]
Abstract
Metallic nanoparticles potentially have wide practical applications in various fields of science and industry. In biosensorics, they usually act as catalysts or nanozymes (NZs) and as mediators of electron transfer. We describe here the development of amperometric biosensors (ABSs) based on purified oxidases, synthesized nanoparticles of CuCe (nCuCe), and micro/nanoporous gold (pAu), which were electro-deposited on a graphite electrode (GE). As an effective peroxidase (PO)-like NZ, nCuCe was used here as a hydrogen-peroxide-sensing platform in ABSs that were based on glucose oxidase, alcohol oxidase, methylamine oxidase, and L-arginine oxidase. At the same time, nCuCe is an electroactive mediator and has been used in laccase-based ABSs. As a result, the ABSs we constructed and characterized were based on glucose, methanol, methyl amine, L-arginine, and catechol, respectively. The developed nCuCe-based ABSs exhibited improved analytical characteristics in comparison with the corresponding PO-based ABSs. Additionally, the presence of pAu, with its extremely advanced chemo-sensing surface layer, was shown to significantly increase the sensitivities of all constructed ABSs. As an example, the bioelectrodes containing laccase/GE, laccase/nCuCe/GE, and laccase/nCuCe/pAu/GE exhibited sensitivities to catechol at 2300, 5055, and 9280 A·M-1·m-2, respectively. We demonstrate here that pAu is an effective carrier of electroactive nanomaterials coupled with oxidases, which may be promising in biosensors.
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine;
| | - Olha Demkiv
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
| | - Galina Gayda
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
| | - Andriy Zakalskiy
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
- Institute of Animal Biology of the National Academy of Agrarian Sciences of Ukraine, 79034 Lviv, Ukraine
| | - Halyna Klepach
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine;
| | - Nina Bisko
- M. G. Kholodny Botany Institute, National Academy of Sciences of Ukraine, 01601 Kyiv, Ukraine;
| | - Mykhailo Gonchar
- Institute of Cell Biology National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.D.); (A.Z.); (M.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine;
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel
| |
Collapse
|
10
|
Laser-assisted surface activation for fabrication of flexible non-enzymatic Cu-based sensors. Mikrochim Acta 2022; 189:259. [PMID: 35704127 DOI: 10.1007/s00604-022-05347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
A rapid and effective technique has been develped for the fabrication of sensor-active copper-based materials on the surface of such flexible polymers as terephthalate, polyethylene naphthalate, and polyimide using the method of laser surface modification. For this purpose, we optimized the polymer surface activation parameters using laser sources with a picosecond pulse duration for subsequent selective metallization within the activated region. Furthermore, the fabricated copper structures were modified with gold nanostructures and by electrochemical passivation to produce copper-gold and oxide-containing copper species, respectively. As a result, in comparison with pure copper electrodes, these composite materials exhibit much better electrocatalytic performance concerning the non-enzymatic identification of biologically important disease markers such as glucose, hydrogen peroxide, and dopamine.
Collapse
|
11
|
Albaqami MD, Alothman AA, Nafady A, Medany SS, Shah AA, Aftab U, Ibupoto MH, Mallah AB, Tahira A, Tonezzer M, Vigolo B, Ibupoto ZH. Utilization of polyvinyl amine hydrolysis product in enhancing the catalytic properties of Co3O4 nanowires: toward potentiometric glucose bio-sensing application. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 2022; 33:11555-11568. [DOI: 10.1007/s10854-022-08128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/18/2022] [Indexed: 07/11/2023]
|
12
|
Zaheiritousi N, Zamani HA, Karimi-Maleh H. Fast and Unique Electrochemical Sensor Amplified with MgO/CNTs and Ionic Liquid for Monitoring of Isuprel in Pharmaceutical and Biological Fluid Samples. Top Catal 2022. [DOI: 10.1007/s11244-022-01598-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Shojaei M, Taher MA. Monitoring of Promazine in Injection and Dextrose Saline Samples Using Electrochemical Tool Based on Amplified Nanostructure Sensor. Top Catal 2022. [DOI: 10.1007/s11244-022-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|