1
|
Sokol M, Galajda P, Saliga J, Jurik P. Design of AD Converters in 0.35 µm SiGe BiCMOS Technology for Ultra-Wideband M-Sequence Radar Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:2838. [PMID: 38732942 PMCID: PMC11086366 DOI: 10.3390/s24092838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
The article presents the analysis, design, and low-cost implementation of application-specific AD converters for M-sequence-based UWB applications to minimize and integrate the whole UWB sensor system. Therefore, the main goal of this article is to integrate the AD converter's own design with the UWB analog part into the system-in-package (SiP) or directly into the system-on-a-chip (SoC), which cannot be implemented with commercial AD converters, or which would be disproportionately expensive. Based on the current and used UWB sensor system requirements, to achieve the maximum possible bandwidth in the proposed semiconductor technology, a parallel converter structure is designed and presented in this article. Moreover, 5-bit and 4-bit parallel flash AD converters were initially designed as part of the research and design of UWB M-sequence radar systems for specific applications, and are briefly introduced in this article. The requirements of the newly proposed specific UWB M-sequence systems were established based on the knowledge gained from these initial designs. After thorough testing and evaluation of the concept of the early proposed AD converters for these specific UWB M-sequence systems, the design of a new AD converter was initiated. After confirming sufficient characteristics based on the requirements of UWB M-sequence systems for specific applications, a 7-bit AD converter in low-cost 0.35 µm SiGe BiCMOS technology from AMS was designed, fabricated, and presented in this article. The proposed 7-bit AD converter achieves the following parameters: ENOB = 6.4 bits, SINAD = 38 dB, SFDR = 42 dBc, INL = ±2-bit LSB, and DNL = ±1.5 LSB. The maximum sampling rate reaches 1.4 Gs/s, the power consumption at 20 Ms/s is 1050 mW, and at 1.4 Gs/s is 1290 mW, with a power supply of -3.3 V.
Collapse
Affiliation(s)
| | | | | | - Patrik Jurik
- Department of Electronics and Multimedia Telecommunications, Technical University of Košice, 042 00 Kosice, Slovakia; (M.S.); (P.G.); (J.S.)
| |
Collapse
|
2
|
Zhang L, Du W, Kim JH, Yu CC, Dagdeviren C. An Emerging Era: Conformable Ultrasound Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307664. [PMID: 37792426 DOI: 10.1002/adma.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Conformable electronics are regarded as the next generation of personal healthcare monitoring and remote diagnosis devices. In recent years, piezoelectric-based conformable ultrasound electronics (cUSE) have been intensively studied due to their unique capabilities, including nonradiative monitoring, soft tissue imaging, deep signal decoding, wireless power transfer, portability, and compatibility. This review provides a comprehensive understanding of cUSE for use in biomedical and healthcare monitoring systems and a summary of their recent advancements. Following an introduction to the fundamentals of piezoelectrics and ultrasound transducers, the critical parameters for transducer design are discussed. Next, five types of cUSE with their advantages and limitations are highlighted, and the fabrication of cUSE using advanced technologies is discussed. In addition, the working function, acoustic performance, and accomplishments in various applications are thoroughly summarized. It is noted that application considerations must be given to the tradeoffs between material selection, manufacturing processes, acoustic performance, mechanical integrity, and the entire integrated system. Finally, current challenges and directions for the development of cUSE are highlighted, and research flow is provided as the roadmap for future research. In conclusion, these advances in the fields of piezoelectric materials, ultrasound transducers, and conformable electronics spark an emerging era of biomedicine and personal healthcare.
Collapse
Affiliation(s)
- Lin Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenya Du
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jin-Hoon Kim
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chia-Chen Yu
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
McCaskill JS, Karnaushenko D, Zhu M, Schmidt OG. Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306344. [PMID: 37814374 DOI: 10.1002/adma.202306344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Indexed: 10/11/2023]
Abstract
Microelectronic morphogenesis is the creation and maintenance of complex functional structures by microelectronic information within shape-changing materials. Only recently has in-built information technology begun to be used to reshape materials and their functions in three dimensions to form smart microdevices and microrobots. Electronic information that controls morphology is inheritable like its biological counterpart, genetic information, and is set to open new vistas of technology leading to artificial organisms when coupled with modular design and self-assembly that can make reversible microscopic electrical connections. Three core capabilities of cells in organisms, self-maintenance (homeostatic metabolism utilizing free energy), self-containment (distinguishing self from nonself), and self-reproduction (cell division with inherited properties), once well out of reach for technology, are now within the grasp of information-directed materials. Construction-aware electronics can be used to proof-read and initiate game-changing error correction in microelectronic self-assembly. Furthermore, noncontact communication and electronically supported learning enable one to implement guided self-assembly and enhance functionality. Here, the fundamental breakthroughs that have opened the pathway to this prospective path are reviewed, the extent and way in which the core properties of life can be addressed are analyzed, and the potential and indeed necessity of such technology for sustainable high technology in society is discussed.
Collapse
Affiliation(s)
- John S McCaskill
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
- European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Venice, 30123, Italy
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Minshen Zhu
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
- European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Venice, 30123, Italy
| |
Collapse
|
4
|
Fu Y, Jiang J, Zhao Z, Zhao Z, Chen K, Tao M, Chang Y, Lo G, Song J. Fully Integrated Line Array Angular Displacement Sensing Chip. SENSORS (BASEL, SWITZERLAND) 2023; 23:2431. [PMID: 36904635 PMCID: PMC10007283 DOI: 10.3390/s23052431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The angular displacement sensor is a digital angular displacement measurement device that integrates optics, mechanics, and electronics. It has important applications in communication, servo control, aerospace, and other fields. Although conventional angular displacement sensors can achieve extremely high measurement accuracy and resolution, they cannot be integrated because complex signal processing circuitry is required at the photoelectric receiver, which limits their suitability for robotics and automotive applications. The design of a fully integrated line array angular displacement-sensing chip is presented for the first time using a combination of pseudo-random and incremental code channel designs. Based on the charge redistribution principle, a fully differential 12-bit, 1 MSPS sampling rate successive approximation analog-to-digital converter (SAR ADC) is designed for quantization and subdivision of the incremental code channel output signal. The design is verified with a 0.35 μm CMOS process and the area of the overall system is 3.5 × 1.8 mm2. The fully integrated design of the detector array and readout circuit is realized for the angular displacement sensing.
Collapse
Affiliation(s)
- Yunhao Fu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Jiaqi Jiang
- Faw Jiefang Group Co., Ltd., Changchun 130012, China
| | - Zhuang Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhongyuan Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Kaixin Chen
- Northeast Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Changchun 130000, China
| | - Min Tao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yuchun Chang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- School of Microelectronics, Dalian University of Technology, Dalian 116620, China
| | - Guoqiang Lo
- Advance Micro Foundry Pte. Ltd., Singapore 117685, Singapore
| | - Junfeng Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Peng Cheng Laboratory, Shenzhen 518000, China
| |
Collapse
|
5
|
A 2.5 V, 2.56 ppm/°C Curvature-Compensated Bandgap Reference for High-Precision Monitoring Applications. MICROMACHINES 2022; 13:mi13030465. [PMID: 35334757 PMCID: PMC8953402 DOI: 10.3390/mi13030465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022]
Abstract
This work presents a high-precision high-order curvature-compensated bandgap voltage reference (BGR) for battery monitoring applications. The collector currents of bipolar junction transistor (BJT) pairs with different ratios and temperature characteristics can cause greater nonlinearities in ΔVEB. The proposed circuit additionally introduces high-order curvature compensation in the generation of ΔVEB, such that it presents high-order temperature effects complementary to VEB. Fabricated using a 0.18 µm BCD process, the proposed BGR generates a 2.5 V reference voltage with a minimum temperature coefficient of 2.65 ppm/°C in the range of −40 to 125 °C. The minimum line sensitivity is 0.023%/V when supply voltage varies from 4.5 to 5.5 V. The BGR circuit area is 382 × 270 μm2, and the BMIC area is 2.8 × 2.8 mm2.
Collapse
|