1
|
He S, Yu H, Kouwenhoven MBN, Paoletti P, Dijkstra M, Xuan C. Rolling of stimuli-bent cylindrical robots using contact finite element simulations. SOFT MATTER 2025. [PMID: 40066626 PMCID: PMC11894519 DOI: 10.1039/d5sm00080g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Curved cylinders, if rigid, cannot roll on a surface like straight cylinders, but soft cylinders bent by specific stimuli can! Studying the autonomous locomotion of these soft robots and their interactions with the environment using finite element analysis is challenging due to the complex multiphysics of stimuli-responsive soft materials and nonlinear contact mechanics. In this pioneering work, we simulate the rolling of stimuli-bent cylinders on a surface using contact finite elements and introduce a simple yet effective pseudo-thermal field method. Our approach successfully reproduces several modes of autonomous locomotion observed experimentally, including phototropic locomotion, phototropic climbing on a slanted surface, steering under partial illumination, and backward rolling under alternating heat-light stimuli. Parametric analysis demonstrates strong agreement between the experiments and our numerical results, validating the effectiveness of our approach. This study reveals the intriguing and highly nonintuitive dynamics of photo- or thermally bent cylindrical soft robots, and serves as a paradigm for modelling and simulating such rolling robots.
Collapse
Affiliation(s)
- Shaobo He
- Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
| | - Hao Yu
- Department of Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - M B N Kouwenhoven
- Department of Physics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Paolo Paoletti
- School of Engineering, University of Liverpool, Liverpool L69 3BX, UK
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Chen Xuan
- Department of Foundational Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Soft Condensed Matter & Biophysics group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- XJTLU-JITRI Academy of Industrial Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
- Advanced Materials Research Center, Department of Chemistry and Materials Science, School of Science, Xi'an-Jiaotong Liverpool University, Suzhou, 215123, China
| |
Collapse
|
2
|
Chen B, Sun H, Zhang J, Xu J, Song Z, Zhan G, Bai X, Feng L. Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304607. [PMID: 37653591 DOI: 10.1002/smll.202304607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Micro/nano-robots are powerful tools for biomedical applications and are applied in disease diagnosis, tumor imaging, drug delivery, and targeted therapy. Among the various types of micro-robots, cell-based micro-robots exhibit unique properties because of their different cell sources. In combination with various actuation methods, particularly externally propelled methods, cell-based microrobots have enormous potential for biomedical applications. This review introduces recent progress and applications of cell-based micro/nano-robots. Different actuation methods for micro/nano-robots are summarized, and cell-based micro-robots with different cell templates are introduced. Furthermore, the review focuses on the combination of cell-based micro/nano-robots with precise control using different external fields. Potential challenges, further prospects, and clinical translations are also discussed.
Collapse
Affiliation(s)
- Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Zeyu Song
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Guangdong Zhan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
3
|
Zhu F, Du C, Dai Y, Li K. Thermally Driven Continuous Rolling of a Thick-Walled Cylindrical Rod. MICROMACHINES 2022; 13:2035. [PMID: 36422464 PMCID: PMC9698442 DOI: 10.3390/mi13112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Self-sustained motion can take advantage of direct energy extraction from a steady external environment to maintain its own motion, and has potential applications in energy harvesting, robotic motion, and transportation. Recent experiments have found that a thermally responsive rod can perform self-sustained rolling on a flat hot plate with an angular velocity determined by the competition between the thermal driving moment and the friction moment. A rod with a hollow cross section tends to greatly reduce the frictional resistance, while promising improvements in thermal conversion efficiency. In this paper, through deriving the equilibrium equations for steady-state self-sustained rolling of the thick-walled cylindrical rod, estimating the temperature field on the rod cross-section, and solving the analytical solution of the thermally induced driving moment, the dynamic behavior of the thermally driven self-sustained rolling of the thick-walled cylindrical rod is theoretically investigated. In addition, we investigate in detail the effects of radius ratio, heat transfer coefficient, heat flux, contact angle, thermal expansion coefficient, and sliding friction coefficient on the angular velocity of the self-sustained rolling of the thick-walled cylindrical rod to obtain the optimal ratio of internal and external radius. The results are instructive for the application of thick-walled cylindrical rods in the fields of waste heat harvesters and soft robotics.
Collapse
|
4
|
Zhou L, Yu W, Li K. Dynamical Behaviors of a Translating Liquid Crystal Elastomer Fiber in a Linear Temperature Field. Polymers (Basel) 2022; 14:polym14153185. [PMID: 35956704 PMCID: PMC9371172 DOI: 10.3390/polym14153185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Liquid crystal elastomer (LCE) fiber with a fixed end in an inhomogeneous temperature field is capable of self-oscillating because of coupling between heat transfer and deformation, and the dynamics of a translating LCE fiber in an inhomogeneous temperature field are worth investigating to widen its applications. In this paper, we propose a theoretic constitutive model and the asymptotic relationship of a LCE fiber translating in a linear temperature field and investigate the dynamical behaviors of a corresponding fiber-mass system. In the three cases of the frame at rest, uniform, and accelerating translation, the fiber-mass system can still self-oscillate, which is determined by the combination of the heat-transfer characteristic time, the temperature gradient, and the thermal expansion coefficient. The self-oscillation is maintained by the energy input from the ambient linear temperature field to compensate for damping dissipation. Meanwhile, the amplitude and frequency of the self-oscillation are not affected by the translating frame for the three cases. Compared with the cases of the frame at rest, the translating frame can change the equilibrium position of the self-oscillation. The results are expected to provide some useful recommendations for the design and motion control in the fields of micro-robots, energy harvesters, and clinical surgical scenarios.
Collapse
Affiliation(s)
- Lin Zhou
- School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Wangyang Yu
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Kai Li
- School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- Correspondence:
| |
Collapse
|
5
|
Beating of a Spherical Liquid Crystal Elastomer Balloon under Periodic Illumination. MICROMACHINES 2022; 13:mi13050769. [PMID: 35630236 PMCID: PMC9146708 DOI: 10.3390/mi13050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Periodic excitation is a relatively simple and common active control mode. Owing to the advantages of direct access to environmental energy and controllability under periodic illumination, it enjoys broad prospects for application in soft robotics and opto-mechanical energy conversion systems. More new oscillating systems need to be excavated to meet the various application requirements. A spherical liquid crystal elastomer (LCE) balloon model driven by periodic illumination is proposed and its periodic beating is studied theoretically. Based on the existing dynamic LCE model and the ideal gas model, the governing equation of motion for the LCE balloon is established. The numerical calculations show that periodic illumination can cause periodic beating of the LCE balloon, and the beating period of the LCE balloon depends on the illumination period. For the maximum steady-state amplitude of the beating, there exists an optimum illumination period and illumination time rate. The optimal illumination period is proved to be equivalent to the natural period of balloon oscillation. The effect of system parameters on beating amplitude are also studied. The amplitude is mainly affected by light intensity, contraction coefficient, amount of gaseous substance, volume of LCE balloon, mass density, external pressure, and damping coefficient, but not the initial velocity. It is expected that the beating LCE balloon will be suitable for the design of light-powered machines including engines, prosthetic blood pumps, aircraft, and swimmers.
Collapse
|
6
|
A Light-Powered Liquid Crystal Elastomer Spring Oscillator with Self-Shading Coatings. Polymers (Basel) 2022; 14:polym14081525. [PMID: 35458275 PMCID: PMC9028186 DOI: 10.3390/polym14081525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
The self-oscillating systems based on stimuli-responsive materials, without complex controllers and additional batteries, have great application prospects in the fields of intelligent machines, soft robotics, and light-powered motors. Recently, the periodic oscillation of an LCE fiber with a mass block under periodic illumination was reported. This system requires periodic illumination, which limits the application of self-sustained systems. In this paper, we creatively proposed a light-powered liquid crystal elastomer (LCE) spring oscillator with self-shading coatings, which can self-oscillate continuously under steady illumination. On the basis of the well-established dynamic LCE model, the governing equation of the LCE spring oscillator is formulated, and the self-excited oscillation is studied theoretically. The numerical calculations show that the LCE spring oscillator has two motion modes, static mode and oscillation mode, and the self-oscillation arises from the coupling between the light-driven deformation and its movement. Furthermore, the contraction coefficient, damping coefficient, painting stretch, light intensity, spring constant, and gravitational acceleration all affect the self-excited oscillation of the spring oscillator, and each parameter is a critical value for triggering self-excited oscillation. This work will provide effective help in designing new optically responsive structures for engineering applications.
Collapse
|