1
|
Tian S, Wang J, Jie Y, Ding Z, Wang X, Wang J, Hou X. MnO 2 nanoparticles enhance the activity of the Zr-MOF matrix electrochemical sensor for efficiently identifying ultra-trace tetracycline residues in food. Mikrochim Acta 2024; 192:12. [PMID: 39648225 DOI: 10.1007/s00604-024-06854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/17/2024] [Indexed: 12/10/2024]
Abstract
A novel nanobiosensor was constructed by in situ locating nanometer MnO2 particles with controllable size and morphology in a Zr-MOF substrate to serve as an electrochemical probe. The synergistic effect of the two components, Zr-MOFs with high specific surface area and compatibility as a carrier for MnO2, resulted in improved electrochemical activity and excellent electrochemical identification performance for the MnO2@Zr-MOF/GCE biosensor. Under optimized experimental conditions and using CV and DPV technology, the biosensor showed a wide linear detection range (2-200 μM), a low detection limit (2.577 × 10-8 M), a recovery range (106.26-115.01%), and maximum relative standard deviation (5.155) for tetracycline (TC) identification. The recognition mechanism of the sensor was investigated adopting Laviron adsorption theory. The applicability of the sensor was verified through practical measurements. Overall, the MnO2 @Zr-MOF/GCE sensor possesses the advantages of fast analysis speed, high sensitivity, high selectivity, and simple operation, making it suitable for detecting trace amounts of TC in food.
Collapse
Affiliation(s)
- Siyu Tian
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi, 716000, China
| | - Jiahui Wang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi, 716000, China
| | - Yu Jie
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi, 716000, China
| | - Zhu Ding
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi, 716000, China
| | - Xiao Wang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi, 716000, China.
| | - Jijiang Wang
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi, 716000, China
| | - Xiangyang Hou
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi, 716000, China.
| |
Collapse
|
2
|
Rodrigues H, Leite M, Oliveira B, Freitas A. Antibiotics in honey: a comprehensive review on occurrence and analytical methodologies. OPEN RESEARCH EUROPE 2024; 4:125. [PMID: 39534880 PMCID: PMC11555330 DOI: 10.12688/openreseurope.17664.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Honey is a food of great nutritional importance and has always been used for human consumption. The production of honey and other beekeeping products depends on the proper functioning of this extremely important sector, as it has a direct impact on other sectors such as agriculture. The decline in bee colony numbers has been linked, among other factors, to bacterial diseases affecting bees, including American and European foulbrood, and Nosema spp. disease. In this matter, prophylactic or therapeutic use of veterinary drugs in apiculture is common but can lead to their accumulation in bees and in honey. Consumption of contaminated honey can have adverse effects such as allergic or hypersensitivity reactions, carcinogenicity, reproductive effects, and teratogenicity. Commission Regulation (EU) N ⍛ 37/2010 sets MRLs for antibiotics in various foods, but these limits are not set for api-products. The lack of harmonized rules has led some countries to set recommended concentrations and minimum performance limits. Nonetheless, to achieve this goal, development of accurate and precise analytical methodologies is crucial. In recent years, the analysis of antibiotics in honey has led to the development of methods in an extensive range of families, including aminoglycosides, amphenicols, lincosamides, macrolides, nitroimidazoles, quinolones, sulfonamides, tetracyclines and nitrofurans. This review work entails an in-depth exploration of occurrence studies, extraction methodologies, and analytical techniques for the determination of antibiotics in apiculture products. It was found that the most used extraction methods include solid-phase extraction, dispersed solid or liquid phase extraction and QuEChERS. Due to the complexity of the honey matrix, samples are often diluted or acidified using McIlvaine buffer, H 2O, MeOH, acidified ACN and TCA solution. This is usually followed by a purification step using SPE cartridges or PSA. Golden analytical methodologies include high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer (MS/MS) with Orbitrap or Q-ToF detectors.
Collapse
Affiliation(s)
- Helena Rodrigues
- University of Porto, Faculty of Pharmacy, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vila do Conde, 4485-655, Portugal
| | - Marta Leite
- National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vila do Conde, 4485-655, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, Porto, Portugal, Porto, Portugal
| | - Beatriz Oliveira
- University of Porto, Faculty of Pharmacy, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, Porto, Portugal, Porto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vila do Conde, 4485-655, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, Porto, Portugal, Porto, Portugal
| |
Collapse
|
3
|
Jjagwe J, Olupot PW, Kulabako R, Carrara S. Electrochemical sensors modified with iron oxide nanoparticles/nanocomposites for voltammetric detection of Pb (II) in water: A review. Heliyon 2024; 10:e29743. [PMID: 38665564 PMCID: PMC11044046 DOI: 10.1016/j.heliyon.2024.e29743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Permissible limits of Pb2+ in drinking water are being reduced from 10 μgL-1 to 5 μgL-1, which calls for rapid, and highly reliable detection techniques. Electrochemical sensors have garnered attention in detection of heavy metal ions in environmental samples due to their ease of operation, low cost, and rapid detection responses. Selectivity, sensitivity and detection capabilities of these sensors, can be enhanced by modifying their working electrodes (WEs) with iron oxide nanoparticles (IONPs) and/or their composites. Therefore, this review is an in-depth analysis of the deployment of IONPs/nanocomposites in modification of electrochemical sensors for detection of Pb2+ in drinking water over the past decade. From the analyzed studies (n = 23), the optimal solution pH, deposition potential, and deposition time ranged between 3 and 5.6, -0.7 to -1.4 V vs Ag/AgCl, and 100-400 s, respectively. Majority of the studies employed square wave anodic stripping voltammetry (n = 16), in 0.1 M acetate buffer solution (n = 19) for detection of Pb2+. Limits of detection obtained (2.5 x 10-9 - 4.5 μg/L) were below the permissible levels which indicated good sensitivities of the modified electrodes. Despite the great performance of these modified electrodes, the primary source of IONPs has always been commercial iron-based salts in addition to the use of so many materials as modifying agents of these IONPs. This may limit reproducibility and sustainability of the WEs due to lengthy and costly preparation protocols. Steel and/or iron industrial wastes can be alternatively employed in generation of IONPs for modification of electrochemical sensors. Additionally, biomass-based activated carbons enriched with surface functional groups are also used in modification of bare IONPs, and subsequently bare electrodes. However, these two areas still need to be fully explored.
Collapse
Affiliation(s)
- Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Peter Wilberforce Olupot
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Robinah Kulabako
- Department of Civil and Environmental Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Sandro Carrara
- Bio/CMOS Interfaces Laboratory, School of Engineering, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
4
|
Zhou H, Zhang M, Chen Q, Shan Q, Liu S, Lin J, Ma L, Zheng G, Li L, Zhao C, Wei L, Dai X, Yin Y. Determination of amphenicol antibiotic residues in aquaculture products by response surface methodology modified QuEChERS method combined with UPLC-MS/MS. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Noor H, David IG, Jinga ML, Popa DE, Buleandra M, Iorgulescu EE, Ciobanu AM. State of the Art on Developments of (Bio)Sensors and Analytical Methods for Rifamycin Antibiotics Determination. SENSORS (BASEL, SWITZERLAND) 2023; 23:976. [PMID: 36679772 PMCID: PMC9863535 DOI: 10.3390/s23020976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
This review summarizes the literature data reported from 2000 up to the present on the development of various electrochemical (voltammetric, amperometric, potentiometric and photoelectrochemical), optical (UV-Vis and IR) and luminescence (chemiluminescence and fluorescence) methods and the corresponding sensors for rifamycin antibiotics analysis. The discussion is focused mainly on the foremost compound of this class of macrocyclic drugs, namely rifampicin (RIF), which is a first-line antituberculosis agent derived from rifampicin SV (RSV). RIF and RSV also have excellent therapeutic action in the treatment of other bacterial infectious diseases. Due to the side-effects (e.g., prevalence of drug-resistant bacteria, hepatotoxicity) of long-term RIF intake, drug monitoring in patients is of real importance in establishing the optimum RIF dose, and therefore, reliable, rapid and simple methods of analysis are required. Based on the studies published on this topic in the last two decades, the sensing principles, some examples of sensors preparation procedures, as well as the performance characteristics (linear range, limits of detection and quantification) of analytical methods for RIF determination, are compared and correlated, critically emphasizing their benefits and limitations. Examples of spectrometric and electrochemical investigations of RIF interaction with biologically important molecules are also presented.
Collapse
Affiliation(s)
- Hassan Noor
- Department of Surgery, Faculty of Medicine, “Lucian Blaga” University Sibiu, Lucian Blaga Street 25, 550169 Sibiu, Romania
| | - Iulia Gabriela David
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Maria Lorena Jinga
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Adela Magdalena Ciobanu
- Department of Psychiatry “Prof. Dr. Al. Obregia” Clinical Hospital of Psychiatry, Berceni Av. 10, District 4, 041914 Bucharest, Romania
- Discipline of Psychiatry, Neurosciences Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
| |
Collapse
|
6
|
Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotics are antibacterial agents applied in human and veterinary medicine. They are also employed to stimulate the growth of food-producing animals. Despite their benefits, the uncontrolled use of antibiotics results in serious problems, and therefore their concentration levels in different foods as well as in environmental samples were regulated. As a consequence, there is an increasing demand for the development of sensitive and selective analytical tools for antibiotic reliable and rapid detection. These requirements are accomplished by the combination of simple, cost-effective and affordable electroanalytical methods with molecularly imprinted polymers (MIPs) with high recognition specificity, based on their “lock and key” working principle, used to modify the electrode surface, which is the “heart” of any electrochemical device. This review presents a comprehensive overview of MIP-modified carbon-based electrodes developed in recent years for antibiotic detection. The MIP preparation and electrode modification procedures, along with the performance characteristics of sensors and analytical methods, as well as the applications for the antibiotics’ quantification from different matrices (pharmaceutical, biological, food and environmental samples), are discussed. The information provided by this review can inspire researchers to go deeper into the field of MIP-modified sensors and to develop efficient means for reliable antibiotic determination.
Collapse
|