1
|
Luo S, Notaro A, Lin L. ATLAS-seq: a microfluidic single-cell TCR screen for antigen-reactive TCRs. Nat Commun 2025; 16:216. [PMID: 39746936 PMCID: PMC11696065 DOI: 10.1038/s41467-024-54675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Discovering antigen-reactive T cell receptors (TCRs) is central to developing effective engineered T cell immunotherapies. However, the conventional technologies for isolating antigen-reactive TCRs (i.e., major histocompatibility complex (MHC) multimer staining) focus on high-affinity interactions between the TCR and MHC-antigen complex, and may fail to identify TCRs with high efficacy for activating T cells. Here, we develop a microfluidic single-cell screening method for antigen-reactive T cells named ATLAS-seq (Aptamer-based T Lymphocyte Activity Screening and SEQuencing). This technology isolates and characterizes activated T cells via an aptamer-based fluorescent molecular sensor, which monitors the cytotoxic cytokine IFNγ secretion from single T cells upon antigen stimulation, followed by single-cell RNA and single-cell TCR sequencing. We use ATLAS-seq to screen TCRs reactive to cytomegalovirus (CMV) or prostate specific antigen (PSA) from peripheral blood mononuclear cells (PBMCs). ATLAS-seq identifies distinct TCR clonotype populations with higher T cell activation levels compared to TCRs recovered by MHC multimer staining. Select TCR clonotypes from ATLAS-seq are more efficient in target cell killing than those from MHC multimer staining. Collectively, ATLAS-seq provides an efficient and broadly applicable technology to screen antigen-reactive TCRs for engineered T cell immunotherapy.
Collapse
Affiliation(s)
- Siwei Luo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amber Notaro
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lan Lin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Peng AY, Lee BE. Microphysiological Systems for Cancer Immunotherapy Research and Development. Adv Biol (Weinh) 2024; 8:e2300077. [PMID: 37409385 PMCID: PMC10770294 DOI: 10.1002/adbi.202300077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Cancer immunotherapy focuses on the use of patients' adaptive immune systems to combat cancer. In the past decade, FDA has approved many immunotherapy products for cancer patients who suffer from primary tumors, tumor relapse, and metastases. However, these immunotherapies still show resistance in many patients and often lead to inconsistent responses in patients due to variations in tumor genetic mutations and tumor immune microenvironment. Microfluidics-based organ-on-a-chip technologies or microphysiological systems have opened new ways that can provide relatively fast screening for personalized immunotherapy and help researchers and clinicians understand tumor-immune interactions in a patient-specific manner. They also have the potential to overcome the limitations of traditional drug screening and testing, given the models provide a more realistic 3D microenvironment with better controllability, reproducibility, and physiological relevance. This review focuses on the cutting-edge microphysiological organ-on-a-chip devices developed in recent years for studying cancer immunity and testing cancer immunotherapeutic agents, as well as some of the largest challenges of translating this technology to clinical applications in immunotherapy and personalized medicine.
Collapse
Affiliation(s)
- A. Yansong Peng
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - B. Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
van Mourik M, Tiemeijer BM, van Zon M, Abinzano F, Tel J, Foolen J, Ito K. Cartilage-derived cells display heterogeneous pericellular matrix synthesis in agarose microgels. Matrix Biol Plus 2024; 23:100157. [PMID: 39139760 PMCID: PMC11321428 DOI: 10.1016/j.mbplus.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The pericellular matrix (PCM) surrounding chondrocytes is essential for articular cartilage tissue engineering. As the current isolation methods to obtain chondrocytes with their PCM (chondrons) result in a heterogeneous mixture of chondrocytes and chondrons, regenerating the PCM using a tissue engineering approach could prove beneficial. In this study, we aimed to discern the behavior of articular chondrocytes (ACs) in regenerating the PCM in such an approach and whether this would also be true for articular cartilage-derived progenitor cells (ACPCs), as an alternative cell source. Bovine ACs and ACPCs were encapsulated in agarose microgels using droplet-based microfluidics. ACs were stimulated with TGF-β1 and dexamethasone and ACPCs were sequentially stimulated with BMP-9 followed by TGF-β1 and dexamethasone. After 0, 3, 5, and 10 days of culture, PCM components, type-VI collagen and perlecan, and ECM component, type-II collagen, were assessed using flow cytometry and fluorescence microscopy. Both ACs and ACPCs synthesized the PCM before the ECM. It was seen for the first time that synthesis of type-VI collagen always preceded perlecan. While the PCM synthesized by ACs resembled native chondrons after only 5 days of culture, ACPCs often made less well-structured PCMs. Both cell types showed variations between individual cells and donors. On one hand, this was more prominent in ACPCs, but also a subset of ACPCs showed superior PCM and ECM regeneration, suggesting that isolating these cells may potentially improve cartilage repair strategies.
Collapse
Affiliation(s)
- Marloes van Mourik
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Bart M. Tiemeijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Maarten van Zon
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Florencia Abinzano
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Jurjen Tel
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Jasper Foolen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| |
Collapse
|
4
|
Zhong R, Sullivan M, Upreti N, Chen R, De Ganzó A, Yang K, Yang S, Jin K, He Y, Li K, Xia J, Ma Z, Lee LP, Konry T, Huang TJ. Cellular immunity analysis by a modular acoustofluidic platform: CIAMAP. SCIENCE ADVANCES 2023; 9:eadj9964. [PMID: 38134285 PMCID: PMC10745697 DOI: 10.1126/sciadv.adj9964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
The study of molecular mechanisms at the single-cell level holds immense potential for enhancing immunotherapy and understanding neuroinflammation and neurodegenerative diseases by identifying previously concealed pathways within a diverse range of paired cells. However, existing single-cell pairing platforms have limitations in low pairing efficiency, complex manual operation procedures, and single-use functionality. Here, we report a multiparametric cellular immunity analysis by a modular acoustofluidic platform: CIAMAP. This platform enables users to efficiently sort and collect effector-target (i.e., NK92-K562) cell pairs and monitor the real-time dynamics of immunological response formation. Furthermore, we conducted transcriptional and protein expression analyses to evaluate the pathways that mediate effector cytotoxicity toward target cells, as well as the synergistic effect of doxorubicin on the cellular immune response. Our CIAMAP can provide promising building blocks for high-throughput quantitative single-cell level coculture to understand intercellular communication while also empowering immunotherapy by precision analysis of immunological synapses.
Collapse
Affiliation(s)
- Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| | - Matthew Sullivan
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Neil Upreti
- Biomedical Engineering Department, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Roy Chen
- Biomedical Engineering Department, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Agustin De Ganzó
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ke Jin
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| | - Luke P. Lee
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Tania Konry
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Zhu P. Editorial for the Special Issue on Droplet-Based Microfluidics: Design, Fabrication, and Applications. MICROMACHINES 2023; 14:693. [PMID: 36985100 PMCID: PMC10053248 DOI: 10.3390/mi14030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics is a rapidly growing field of research that involves the manipulation and analysis of fluids in small-scale channels, usually with dimensions ranging from sub-micrometer to sub-millimeter [...].
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|