1
|
Li JX, Fan WT, Sun MY, Zhao Y, Lu YF, Yang YB, Huang WH, Liu YL. Flexible Fiber Sensors for Real-Time Monitoring of Redox Signaling Molecules in Exercise-Mimicking Engineered Skeletal Muscle. Angew Chem Int Ed Engl 2024:e202421684. [PMID: 39714374 DOI: 10.1002/anie.202421684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Real-time monitoring of reactive oxygen and nitrogen species (RONS) in skeletal muscle provides crucial insights into the cause-and-effect relationships between physical activity and health benefits. However, the dynamic production of exercise-induced RONS remains poorly explored, due to the lack of sensing tools that can conform to soft skeletal muscle while monitor RONS release during exercise. Here we introduce dual flexible sensors via twisting carbon nanotubes into helical bundles of fibers and subsequent assembling electrochemical sensing components. These flexible sensors exhibit low bending stiffness, excellent H2O2 and NO sensing abilities, outstanding biocompatibility and compliance with engineered skeletal muscle tissue. This allows real-time and simultaneous monitoring of H2O2 and NO release from engineered skeletal muscle in response to different exercise-mimicking stretches, which reveals that warm-up activities before high-intensity exercise may enhance adaptive responses by down-regulating H2O2 and up-regulating NO production. The proposed sensing strategy demonstrates great versatility in monitoring multiple biomarkers of soft tissue and organs.
Collapse
Affiliation(s)
- Jia-Xin Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Core Facility of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Meng-Yuan Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi-Fei Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Bing Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Hu W, Chen Y, Tsao C, Chen S, Tzeng C. Development of a multifunctional bioreactor to evaluate the promotion effects of cyclic stretching and electrical stimulation on muscle differentiation. Bioeng Transl Med 2024; 9:e10633. [PMID: 38435819 PMCID: PMC10905532 DOI: 10.1002/btm2.10633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024] Open
Abstract
A multifunctional bioreactor was fabricated in this study to investigate the facilitation efficiency of electrical and mechanical stimulations on myogenic differentiation. This bioreactor consisted of a highly stretchable conductive membrane prepared by depositing polypyrrole (PPy) on a flexible polydimethylsiloxane (PDMS) film. The tensile deformation of the PPy/PDMS membrane can be tuned by adjusting the channel depth. In addition, PPy/PDMS maintained its electrical conductivity under continuous cyclic stretching in the strain range of 6.5%-13% for 24 h. This device can be used to individually or simultaneously perform cyclic stretching and electrical stimulation. The results of single stimulation showed that either cyclic stretching or electrical stimulation upregulated myogenic gene expression and promoted myotube formation, where electrical stimulation improved better than cyclic stretching. However, only cyclic stretching can align C2C12 cells perpendicular to the stretching direction, and electrical stimulation did not affect cell morphology. Myosin heavy chain (MHC) immunostaining demonstrated that oriented cells under cyclic stretching resulted in parallel myotubes. The combination of these two stimuli exhibited synergetic effects on both myogenic gene regulation and myotube formation, and the incorporated electrical field did not affect the orientation effect of the cyclic stretching. These results suggested that these two treatments likely influenced cells through different pathways. Overall, the simultaneous application of cyclic stretching and electrical stimulation preserved both stimuli's advantages, so myo-differentiation can be highly improved to obtain abundant parallel myotubes, suggesting that our developed multifunctional bioreactor should benefit muscle tissue engineering applications.
Collapse
Affiliation(s)
- Wei‐Wen Hu
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
| | - Yen‐Chi Chen
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
| | - Chia‐Wen Tsao
- Department of Mechanical EngineeringNational Central UniversityTaoyuanTaiwan
| | - Shen‐Liang Chen
- Department of Life SciencesNational Central UniversityTaoyuanTaiwan
| | - Chung‐Yuh Tzeng
- Department of OrthopedicsTaichung Veterans General HospitalTaichungTaiwan
- Department of RehabilitationJen‐Teh Junior College of Medicine, Nursing and ManagementMiaoliTaiwan
- Department of Medicinal Botanicals and Foods on Health ApplicationsDa‐Yeh UniversityChanghuaTaiwan
- Institute of Biomedical SciencesNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
3
|
Shi X, Wang Y, Liu H, Han R. Targeting Hub Genes Involved in Muscle Injury Induced by Jumping Load Based on Transcriptomics. DNA Cell Biol 2023; 42:498-506. [PMID: 37339448 DOI: 10.1089/dna.2022.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The purpose of this study was to find hub genes that may play key roles in skeletal muscle injury induced by jumping load. Twelve female Sprague Dawley rats were divided into the normal control (NC) group and the jumping-induced muscle injury (JI) group. After 6 weeks of jumping, transmission electron microscopy, hematoxylin-eosin staining, transcriptomics sequencing and genes analysis, interaction network prediction of multiple proteins, real-time PCR detection, and Western blotting were performed on gastrocnemius muscles from NC and JI groups. As compared with NC rats, excessive jumping can result in notable structural damage and inflammatory infiltration in JI rats. A total of 112 differentially expressed genes were confirmed in NC rats versus JI rats, with 59 genes upregulated and 53 genes downregulated. Using the online String database, four hub genes in the transcriptional regulatory network were targeted, including FOS, EGR1, ATF3, and NR4A3. All expression levels of FOS, EGR1, ATF3, and NR4A3 mRNAs were decreased in JI rats compared with NC rats (p < 0.05 or p < 0.01). All expression levels of c-Fos, EGR1, ATF3, and NOR1 proteins were upregulated in JI rats (p < 0.01, p < 0.05, p > 0.05, and p < 0.01, respectively). Collectively, these findings indicate that FOS, EGR1, ATF3, and NR4A3 genes may be functionally important in jumping-induced muscle injury.
Collapse
Affiliation(s)
- Xiaolan Shi
- Wushu College, Henan University, Kaifeng, China
| | - Yijie Wang
- School of Physical Education and Sport, Henan University, Kaifeng, China
| | - Haitao Liu
- School of Physical Education and Sport, Henan University, Kaifeng, China
- Sports Reform and Development Research Center, Henan University, Kaifeng, China
| | - Rui Han
- School of Physical Education and Sport, Henan University, Kaifeng, China
- Sports Reform and Development Research Center, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Zommiti M, Connil N, Tahrioui A, Groboillot A, Barbey C, Konto-Ghiorghi Y, Lesouhaitier O, Chevalier S, Feuilloley MGJ. Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation. Bioengineering (Basel) 2022; 9:646. [PMID: 36354557 PMCID: PMC9687856 DOI: 10.3390/bioengineering9110646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 08/28/2023] Open
Abstract
Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology. The wide range of OOC platforms involves the miniaturization of cell culture systems and enables a variety of novel experimental techniques. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living biosystems, the development of vascular structure is the salient feature common to almost all organ-on-a-chip platforms. Herein, we provide a snapshot of this fast-evolving sophisticated technology. We will review cutting-edge developments and advances in the OOC realm, discussing current applications in the biomedical field with a detailed description of how this technology has enabled the reconstruction of complex multi-scale and multifunctional matrices and platforms (at the cellular and tissular levels) leading to an acute understanding of the physiopathological features of human ailments and infections in vitro.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| | | | | | | | | | | | | | | | - Marc G. J. Feuilloley
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| |
Collapse
|
5
|
Photobiomodulation Using Different Infrared Light Sources Promotes Muscle Precursor Cells Migration and Proliferation. PHOTONICS 2022. [DOI: 10.3390/photonics9070469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photobiomodulation (PBM) has demonstrated positive effects on the muscle repair process. The aim of the study was to evaluate the effects of infrared PBM using different light sources—low-level laser (LLL) at 780 nm (40 or 70 mW, 10 J/cm2, 0.4 J) or LED at 850 nm (40 or 70 mW, 0.13 J/cm2, 0.4 J)—and dosimetric parameters on the proliferation and migration of muscle cells. The results showed that LLL 40 mW and 70 mW, with the same radiation exposure, led to an increase in proliferation after 24 h, but no differences at 48 and 72 h. Cells irradiated with LED 70 mW exhibited an increase in proliferation in comparison to the control group and 40mW after 24 and 48 h, but not at 72 h. Moreover, cell migration was greater in comparison to the control after 6 and 24 h, and no differences were found at 12 h when LLL was used with an output power of 70 mW. Furthermore, no differences were found at 6 and 12 h with the 70 mW output power-LED, but an increase was observed in the cell migration after 24 h. In conclusion, PBM using different light sources and dosimetric parameters was able to modulate the proliferation of C2C12 myoblasts, but only PBM at 70 mW was able to modulate the migration of these cells.
Collapse
|
6
|
Jiang Y, Torun T, Maffioletti SM, Serio A, Tedesco FS. Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives. Exp Cell Res 2022; 416:113133. [DOI: 10.1016/j.yexcr.2022.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/30/2021] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
|
7
|
Ahn J, Kim J, Jeon JS, Jang YJ. A Microfluidic Stretch System Upregulates Resistance Exercise-Related Pathway. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Minai L, Yelin D. Plasmonic fusion between fibroblasts and skeletal muscle cells for skeletal muscle regeneration. BIOMEDICAL OPTICS EXPRESS 2022; 13:608-619. [PMID: 35284171 PMCID: PMC8884231 DOI: 10.1364/boe.445290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Normal regeneration of skeletal muscle takes place by the differentiation of muscle-specific stem cells into myoblasts that fuse with existing myofibers for muscle repair. This natural repair mechanism could be ineffective in some cases, for example in patients with genetic muscular dystrophies or massive musculoskeletal injuries that lead to volumetric muscle loss. In this study we utilize the effect of plasmonic cell fusion, i.e. the fusion between cells conjugated by gold nanospheres and irradiated by resonant femtosecond laser pulses, for generating human heterokaryon cells of myoblastic and fibroblastic origin, which further develop into viable striated myotubes. The heterokaryon cells were found to express the myogenic transcription factors MyoD and Myogenin, as well as the Desmin protein that is essential in the formation of sarcomeres, and could be utilized in various therapeutic approaches that involve transplantation of cells or engineered tissue into the damaged muscle.
Collapse
|
9
|
Ren D, Song J, Liu R, Zeng X, Yan X, Zhang Q, Yuan X. Molecular and Biomechanical Adaptations to Mechanical Stretch in Cultured Myotubes. Front Physiol 2021; 12:689492. [PMID: 34408658 PMCID: PMC8365838 DOI: 10.3389/fphys.2021.689492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Myotubes are mature muscle cells that form the basic structural element of skeletal muscle. When stretching skeletal muscles, myotubes are subjected to passive tension as well. This lead to alterations in myotube cytophysiology, which could be related with muscular biomechanics. During the past decades, much progresses have been made in exploring biomechanical properties of myotubes in vitro. In this review, we integrated the studies focusing on cultured myotubes being mechanically stretched, and classified these studies into several categories: amino acid and glucose uptake, protein turnover, myotube hypertrophy and atrophy, maturation, alignment, secretion of cytokines, cytoskeleton adaption, myotube damage, ion channel activation, and oxidative stress in myotubes. These biomechanical adaptions do not occur independently, but interconnect with each other as part of the systematic mechanoresponse of myotubes. The purpose of this review is to broaden our comprehensions of stretch-induced muscular alterations in cellular and molecular scales, and to point out future challenges and directions in investigating myotube biomechanical manifestations.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Jing Song
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Intermittent pressure imitating rolling manipulation ameliorates injury in skeletal muscle cells through oxidative stress and lipid metabolism signalling pathways. Gene 2021; 778:145460. [PMID: 33515727 DOI: 10.1016/j.gene.2021.145460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/25/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Traditional Chinese medicine manipulation (TCMM) is often used to treat human skeletal muscle injury, but its mechanism remains unclear due to difficulty standardizing and quantifying manipulation parameters. METHODS Here, dexamethasone sodium phosphate (DSP) was utilized to induce human skeletal muscle cell (HSkMC) impairments. Cells in a three-dimensional environment were divided into the control normal group (CNG), control injured group (CIG) and rolling manipulation group (RMG). The RMG was exposed to intermittent pressure imitating rolling manipulation (IPIRM) of TCMM via the FX‑5000™ compression system. Skeletal muscle damage was assessed via the cell proliferation rate, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and creatine kinase (CK) activity. Isobaric tagging for relative and absolute protein quantification (iTRAQ) and bioinformatic analysis were used to evaluate differentially expressed proteins (DEPs). RESULTS Higher-pressure IPIRM ameliorated the skeletal muscle cell injury induced by 1.2 mM DSP. Thirteen common DEPs after IPIRM were selected. Key biological processes, molecular functions, cellular components, and pathways were identified as mechanisms underlying the protective effect of TCMM against skeletal muscle damage. Some processes (response to oxidative stress, response to wounding, response to stress and lipid metabolism signalling pathways) were related to skeletal muscle cell injury. Western blotting for 4 DEPs confirmed the reliability of iTRAQ. CONCLUSIONS Higher-pressure IPIRM downregulated the CD36, Hsp27 and FABP4 proteins in oxidative stress and lipid metabolism pathways, alleviating excessive oxidative stress and lipid metabolism disorder in injured HSkMCs. The techniques used in this study might provide novel insights into the mechanism of TCMM.
Collapse
|
11
|
Griffith CM, Huang SA, Cho C, Khare TM, Rich M, Lee GH, Ligler FS, Diekman BO, Polacheck WJ. Microfluidics for the study of mechanotransduction. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:224004. [PMID: 33840837 PMCID: PMC8034607 DOI: 10.1088/1361-6463/ab78d4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanical forces regulate a diverse set of biological processes at cellular, tissue, and organismal length scales. Investigating the cellular and molecular mechanisms that underlie the conversion of mechanical forces to biological responses is challenged by limitations of traditional animal models and in vitro cell culture, including poor control over applied force and highly artificial cell culture environments. Recent advances in fabrication methods and material processing have enabled the development of microfluidic platforms that provide precise control over the mechanical microenvironment of cultured cells. These devices and systems have proven to be powerful for uncovering and defining mechanisms of mechanotransduction. In this review, we first give an overview of the main mechanotransduction pathways that function at sites of cell adhesion, many of which have been investigated with microfluidics. We then discuss how distinct microfluidic fabrication methods can be harnessed to gain biological insight, with description of both monolithic and replica molding approaches. Finally, we present examples of how microfluidics can be used to apply both solid forces (substrate mechanics, strain, and compression) and fluid forces (luminal, interstitial) to cells. Throughout the review, we emphasize the advantages and disadvantages of different fabrication methods and applications of force in order to provide perspective to investigators looking to apply forces to cells in their own research.
Collapse
Affiliation(s)
- Christian M Griffith
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Crescentia Cho
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Tanmay M Khare
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Matthew Rich
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Gi-Hun Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Brian O Diekman
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
12
|
Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, Wen W, Gong X. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online 2020; 19:9. [PMID: 32050989 PMCID: PMC7017614 DOI: 10.1186/s12938-020-0752-0] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
The organ-on-a-chip (OOAC) is in the list of top 10 emerging technologies and refers to a physiological organ biomimetic system built on a microfluidic chip. Through a combination of cell biology, engineering, and biomaterial technology, the microenvironment of the chip simulates that of the organ in terms of tissue interfaces and mechanical stimulation. This reflects the structural and functional characteristics of human tissue and can predict response to an array of stimuli including drug responses and environmental effects. OOAC has broad applications in precision medicine and biological defense strategies. Here, we introduce the concepts of OOAC and review its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs. We further discuss existing challenges and provide future perspectives for its application.
Collapse
Affiliation(s)
- Qirui Wu
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| |
Collapse
|
13
|
Lei S, She Y, Zeng J, Chen R, Zhou S, Shi H. Expression patterns of regulatory lncRNAs and miRNAs in muscular atrophy models induced by starvation in vitro and in vivo. Mol Med Rep 2019; 20:4175-4185. [PMID: 31545487 PMCID: PMC6798001 DOI: 10.3892/mmr.2019.10661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Starvation or severe deprivation of nutrients, which is commonly seen in surgical patients, can result in catabolic changes in skeletal muscles, such as muscle atrophy. Therefore, it is important to elucidate the underlying molecular regulatory mechanisms during skeletal muscle atrophy. In the present study, muscular atrophy was induced by starvation and the results demonstrated that myosin heavy chain was decreased, whereas muscle RING finger protein 1 and atrogin-1 were increased, both in vitro and in vivo. The impact of starvation on the expression patterns of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) was next determined. The expression patterns of miR-23a, miR-206 and miR-27b in the starved mice exhibited similar trends as those in starved C2C12 cells in vitro, whereas the expression patterns of six other miRNAs (miR-18a, miR-133a, miR-133b, miR-186, miR-1a and miR-29b) differed between the in vivo and the in vitro starvation models. The present study indicated that in vitro expression of the selected miRNAs was not completely consistent with that in vivo. By contrast, lncRNAs showed excellent consistency in their expression patterns in both the in vitro and in vivo starvation models; six of the lncRNAs (Atrolnc-1, long intergenic non-protein coding RNA of muscle differentiation 1, Myolinc, lncRNA myogenic differentiation 1, Dum and muscle anabolic regulator 1) were significantly elevated in starved tissues and cells, while lnc-mg was significantly decreased, compared with the control groups. Thus, lncRNAs involved in muscle atrophy have the potential to be developed as diagnostic tools.
Collapse
Affiliation(s)
- Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Jie Zeng
- Department of Medical Ultrasonics, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
14
|
Bansai S, Morikura T, Onoe H, Miyata S. Effect of Cyclic Stretch on Tissue Maturation in Myoblast-Laden Hydrogel Fibers. MICROMACHINES 2019; 10:mi10060399. [PMID: 31208059 PMCID: PMC6630375 DOI: 10.3390/mi10060399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
Abstract
Engineering of the skeletal muscles has attracted attention for the restoration of damaged muscles from myopathy, injury, and extraction of malignant tumors. Reconstructing a three-dimensional muscle using living cells could be a promising approach. However, the regenerated tissue exhibits a weak construction force due to the insufficient tissue maturation. The purpose of this study is to establish the reconstruction system for the skeletal muscle. We used a cell-laden core-shell hydrogel microfiber as a three-dimensional culture to control the cellular orientation. Moreover, to mature the muscle tissue in the microfiber, we also developed a custom-made culture device for imposing cyclic stretch stimulation using a motorized stage and the fiber-grab system. As a result, the directions of the myotubes were oriented and the mature myotubes could be formed by cyclic stretch stimulation.
Collapse
Affiliation(s)
- Shinako Bansai
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| | - Takashi Morikura
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| |
Collapse
|