1
|
Montero-Calle A, Barderas R. Analysis of Protein-Protein Interactions by Protein Microarrays. Methods Mol Biol 2021; 2344:81-97. [PMID: 34115353 DOI: 10.1007/978-1-0716-1562-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The analysis of the proteome and the interactome would be useful for a better understanding of the pathophysiology of several disorders, allowing the identification of potential specific markers for early diagnosis and prognosis, as well as potential targets of intervention. Among different proteomic approaches, high-density protein microarrays have become an interesting tool for the screening of protein-protein interactions and the interactome definition of disease-associated dysregulated proteins. This information might contribute to the identification of altered signaling pathways and protein functions involved in the pathogenesis of a disease. Remarkably, protein microarrays have been already satisfactorily employed for the study of protein-protein interactions in cancer, allergy, or neurodegenerative diseases. Here, we describe the utilization of recombinant protein microarrays for the identification of protein-protein interactions to help in the definition of disease-specific dysregulated interactomes.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Solís-Fernández G, Montero-Calle A, Alonso-Navarro M, Fernandez-Torres MÁ, Lledó VE, Garranzo-Asensio M, Barderas R, Guzman-Aranguez A. Protein Microarrays for Ocular Diseases. Methods Mol Biol 2021; 2344:239-265. [PMID: 34115364 DOI: 10.1007/978-1-0716-1562-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The eye is a multifaceted organ organized in several compartments with particular properties that reflect their diverse functions. The prevalence of ocular diseases is increasing, mainly because of its relationship with aging and of generalized lifestyle changes. However, the pathogenic molecular mechanisms of many common eye pathologies remain poorly understood. Considering the unquestionable importance of proteins in cellular processes and disease progression, proteomic techniques, such as protein microarrays, represent a valuable approach to analyze pathophysiological protein changes in the ocular environment. This technology enables to perform multiplex high-throughput protein expression profiling with minimal sample volume requirements broadening our knowledge of ocular proteome network in eye diseases.In this review, we present a brief summary of the main types of protein microarrays (antibody microarrays, reverse-phase protein microarrays, and protein microarrays) and their application for protein change detection in chronic ocular diseases such as dry eye, age-related macular degeneration, diabetic retinopathy, and glaucoma. The validation of these specific protein changes in eye pathologies may lead to the identification of new biomarkers, depiction of ocular disease pathways, and assistance in the diagnosis, prognosis, and development of new therapeutic options for eye pathologies.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Leuven, Belgium
| | - Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miren Alonso-Navarro
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ángel Fernandez-Torres
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria Eugenia Lledó
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - María Garranzo-Asensio
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Rodriguez-Moncayo R, Jimenez-Valdes RJ, Gonzalez-Suarez AM, Garcia-Cordero JL. Integrated Microfluidic Device for Functional Secretory Immunophenotyping of Immune Cells. ACS Sens 2020; 5:353-361. [PMID: 31927915 DOI: 10.1021/acssensors.9b01786] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Integrated platforms for automatic assessment of cellular functional secretory immunophenotyping could have a widespread use in the diagnosis, real-time monitoring, and therapy evaluation of several pathologies. We present a microfluidic platform with integrated biosensors and culture chambers to measure cytokine secretion from a consistent and uniform number of immune cells. The biosensor relies on a fluorescence sandwich immunoassay enabled by the mechanically induced trapping of molecular interactions method. The platform contains 32 cell culture chambers, each patterned with an array of 492 microwells, to capture and analyze both adherent and nonadherent immune cells. Multiple stimuli can be delivered to a set of culture chambers. Per chamber, we were able to capture consistently 1113 ± 191 of blood-derived monocytes and neutrophils and 348 ± 37 THP-1 monocytes. Good occupancy efficiencies of ∼70% with a uniformity of ∼90% across all of the culture chambers of the device were achieved. Furthermore, we demonstrate that up to 96% of cells remain viable for the first 48 h. The employment of epoxy-modified glass substrates and active mixing enhanced the biosensing performance compared to the use of bare glass and simple diffusion. Finally, we performed functional secretory analysis of interleukin-8 and tumor necrosis factor alpha from human neutrophils and monocytes, stimulated with various doses of lipopolysaccharide and phorbol 12-myristate 13-acetate-ionomycin, respectively. We foresee the employment of our microfluidic platform in the diagnosis of different pathologies where alterations in cytokine secretion patterns can be used as biomarkers.
Collapse
Affiliation(s)
- Roberto Rodriguez-Moncayo
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Rocio Jimena Jimenez-Valdes
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Alan Mauricio Gonzalez-Suarez
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Jose Luis Garcia-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| |
Collapse
|
4
|
Garranzo-Asensio M, Montero-Calle A, Solís-Fernández G, Barderas R, Guzman-Aranguez A. Protein Microarrays: Valuable Tools for Ocular Diseases Research. Curr Med Chem 2019; 27:4549-4566. [PMID: 31244416 DOI: 10.2174/0929867326666190627131300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
The eye is a complex organ comprised of several compartments with exclusive and specialized properties that reflect their diverse functions. Although the prevalence of eye pathologies is increasing, mainly because of its correlation with aging and of generalized lifestyle changes, the pathogenic molecular mechanisms of many common ocular diseases remain poorly understood. Therefore, there is an unmet need to delve into the pathogenesis, diagnosis, and treatment of eye diseases to preserve ocular health and reduce the incidence of visual impairment or blindness. Proteomics analysis stands as a valuable tool for deciphering protein profiles related to specific ocular conditions. In turn, such profiles can lead to real breakthroughs in the fields of ocular science and ophthalmology. Among proteomics techniques, protein microarray technology stands out by providing expanded information using very small volumes of samples. In this review, we present a brief summary of the main types of protein microarrays and their application for the identification of protein changes in chronic ocular diseases such as dry eye, glaucoma, age-related macular degeneration, or diabetic retinopathy. The validation of these specific protein alterations could provide new biomarkers, disclose eye diseases pathways, and help in the diagnosis and development of novel therapies for eye pathologies.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain
| | - Ana Montero-Calle
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Guillermo Solís-Fernández
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rodrigo Barderas
- Functional Proteomics Unit, Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain
| |
Collapse
|
5
|
De Meutter J, Vandenameele J, Matagne A, Goormaghtigh E. Infrared imaging of high density protein arrays. Analyst 2017; 142:1371-1380. [DOI: 10.1039/c6an02048h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose in this paper that protein microarrays could be analysed by infrared imaging in place of enzymatic or fluorescence labelling.
Collapse
Affiliation(s)
- Joëlle De Meutter
- Center for Structural Biology and Bioinformatics
- Laboratory for the Structure and Function of Biological Membranes
- Campus Plaine CP206/02
- Université Libre de Bruxelles CP206/2
- B1050 Brussels
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding
- Centre for Protein Engineering
- University of Liège
- 4000 Liège
- Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding
- Centre for Protein Engineering
- University of Liège
- 4000 Liège
- Belgium
| | - Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics
- Laboratory for the Structure and Function of Biological Membranes
- Campus Plaine CP206/02
- Université Libre de Bruxelles CP206/2
- B1050 Brussels
| |
Collapse
|
6
|
Jeong Y, Lee KH, Park H, Choi J. Enhanced detection of single-cell-secreted proteins using a fluorescent immunoassay on the protein-G-terminated glass substrate. Int J Nanomedicine 2015; 10:7197-205. [PMID: 26648723 PMCID: PMC4664541 DOI: 10.2147/ijn.s92596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present an evaluation of protein-G-terminated glass slides that may contain a suitable substrate for aligning the orientation of antibodies to obtain better binding moiety to the target antigen. The results of the protein-G-terminated slides were compared with those obtained with epoxy-based slides to evaluate signal enhancement for human immunoglobulin G (IgG) targets, and an increase in the average fluorescence intensity was observed for the lowest measurable amount of IgG target in the assay using protein-G-terminated slides. Applying this strategy for signal amplification to single-cell assays improves the limits of detection for human IgG protein and cytokines (interleukin-2 and interferon-γ) captured from hybridomas. Our data indicate that protein-G-terminated slides have a higher binding capacity for antigens and have better spot-to-spot consistency than that of traditional epoxy-based slides. These properties would be beneficial in the detection of fine amounts of single-cell-secreted proteins, which may provide key insights into cell–cell communication and immune responses.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bionano Technology, Graduate School, Hanyang University, Seoul, South Korea ; Department of Bionano Engineering, Hanyang University ERICA, Ansan, South Korea
| | - Kwan Hong Lee
- Department of Bionano Technology, Graduate School, Hanyang University, Seoul, South Korea ; Department of Bionano Engineering, Hanyang University ERICA, Ansan, South Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Jonghoon Choi
- Department of Bionano Technology, Graduate School, Hanyang University, Seoul, South Korea ; Department of Bionano Engineering, Hanyang University ERICA, Ansan, South Korea
| |
Collapse
|