1
|
Pasupalak JK, Rajput P, Gupta GL. Gut microbiota and Alzheimer's disease: Exploring natural product intervention and the Gut-Brain axis for therapeutic strategies. Eur J Pharmacol 2024; 984:177022. [PMID: 39362390 DOI: 10.1016/j.ejphar.2024.177022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Numerous studies conducted over the last ten years have shown a strong correlation between the gut microbiota and the onset and progression of Alzheimer's disease (AD). However, the exact underlying mechanism is still unknown. An ongoing communication mechanism linking the gut and the brain is highlighted by the term "microbiota-gut-brain axis," which was originally coined the "gut-brain axis." Key metabolic, endocrine, neurological, and immunological mechanisms are involved in the microbiota‒gut‒brain axis and are essential for preserving brain homeostasis. Thus, the main emphasis of this review is how the gut microbiota contributes to the development of AD and how various natural products intervene in this disease. The first part of the review provides an outline of various pathways and relationships between the brain and gut microbiota, and the second part provides various mechanisms involved in the gut microbiota and AD. Finally, this review provides knowledge about natural products and their effectiveness in treating gut microbiota-induced AD. AD may be treated in the future by altering the gut microbiota with a customized diet, probiotics/prebiotics, plant products, and natural products. This entails altering the microbiological partners and products (such as amyloid protein) that these partners generate.
Collapse
Affiliation(s)
- Jajati K Pasupalak
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Prabha Rajput
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
2
|
Akl EM, Mohamed RS, Abdelgayed SS, Fouda K, Abdel-Wahhab MA. Characterization and antioxidant activity of flaxseed mucilage and evaluation of its dietary supplementation in improving calcium absorption in vivo. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2024; 32:100444. [DOI: 10.1016/j.bcdf.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
3
|
Wang L, Meng Q, Su CH. From Food Supplements to Functional Foods: Emerging Perspectives on Post-Exercise Recovery Nutrition. Nutrients 2024; 16:4081. [PMID: 39683475 DOI: 10.3390/nu16234081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Effective post-exercise recovery is vital for optimizing athletic performance, focusing on muscle repair, glycogen replenishment, rehydration, and inflammation management. This review explores the evolving trend from traditional supplements, such as protein, carbohydrates, creatine, and branched-chain amino acids (BCAAs), toward functional foods rich in bioactive compounds. Evidence highlights the benefits of functional foods like tart cherry juice (anthocyanins), turmeric-seasoned foods, and sources of omega-3 fatty acids, including fish, flaxseeds, chia seeds, and walnuts, for mitigating oxidative stress and inflammation. Additionally, probiotics and prebiotics support gut health and immune function, which are integral to effective recovery. Personalized nutrition, informed by genetic and metabolic profiling, is examined as a promising approach to tailor recovery strategies. A systematic search across PubMed, Web of Science, and Google Scholar (2000-2024) identified studies with high empirical rigor and relevance to recovery outcomes. Findings underscore the need for further research into nutrient interactions, dosage optimization, and long-term effects on athletic performance. Integrating functional foods with personalized nutrition presents a comprehensive framework for enhanced recovery, greater resilience to physical stress, and sustained performance in athletes.
Collapse
Affiliation(s)
- Lifeng Wang
- Public Sports Department, Xuhai College, China University of Mining and Technology, Xuzhou 221008, China
| | - Qing Meng
- School of Physical Education, Huaqiao University, Xiamen 361021, China
- Sport and Health Research Center, Huaqiao University, Xiamen 361021, China
| | - Chun-Hsien Su
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 111396, Taiwan
| |
Collapse
|
4
|
Tiwari R, Sethi P, Rudrangi SRS, Padarthi PK, Kumar V, Rudrangi S, Vaghela K. Inulin: a multifaceted ingredient in pharmaceutical sciences. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2570-2595. [PMID: 39074033 DOI: 10.1080/09205063.2024.2384276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Inulin, a naturally occurring polysaccharide derived from plants such as chicory root, has emerged as a significant ingredient in pharmaceutical sciences due to its diverse therapeutic and functional properties. This review explores the multifaceted applications of inulin, focusing on its chemical structure, sources, and mechanisms of action. Inulin's role as a prebiotic is highlighted, with particular emphasis on its ability to modulate gut microbiota, enhance gut health, and improve metabolic processes. The review also delves into the therapeutic applications of inulin, including its potential in managing metabolic health issues such as diabetes and lipid metabolism, as well as its immune-modulating properties and benefits in gastrointestinal health. Furthermore, the article examines the incorporation of inulin in drug formulation and delivery systems, discussing its use as a stabilizing agent and its impact on enhancing drug bioavailability. Innovative inulin-based delivery systems, such as nanoparticles and hydrogels, are explored for their potential in controlled release formulations. The efficacy of inulin is supported by a review of clinical studies, underscoring its benefits in managing conditions like diabetes, cardiovascular health, and gastrointestinal disorders. Safety profiles, regulatory aspects, and potential side effects are also addressed. This comprehensive review concludes with insights into future research directions and the challenges associated with the application of inulin in pharmaceutical sciences.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Psit-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, India
| | | | | | - Vinod Kumar
- G D Goenka University, Gurugram, Sohna, Haryana, India
| | | | - Krishna Vaghela
- Department of Pharmacy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
6
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
7
|
Pyo Y, Kwon KH, Jung YJ. Probiotic Functions in Fermented Foods: Anti-Viral, Immunomodulatory, and Anti-Cancer Benefits. Foods 2024; 13:2386. [PMID: 39123577 PMCID: PMC11311591 DOI: 10.3390/foods13152386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented foods can provide many benefits to our health. These foods are created by the action of microorganisms and help support our digestive health and immune system. Fermented foods include yogurt, kimchi, pickles, kefir, beer, wine, and more. Fermented foods contain probiotics, lactic acid bacteria (LAB), yeast, organic acids, ethanol, or antimicrobial compounds, which help balance the gut microbiome and improve digestive health. Fermented foods can also benefit your overall health by increasing the diversity of your gut microbiome and reducing inflammation. By routinely consuming fermented foods with these benefits, we can continue to improve our health. Probiotics from fermented foods are beneficial strains of bacteria that are safe for human health and constitute an important component of human health, even for children and the elderly. Probiotics can have a positive impact on your health, especially by helping to balance your gut microbiome and improve digestive health. Probiotics can also boost your immune system and reduce inflammation, which can benefit your overall health. Probiotics, which can be consumed in the diet or in supplement form, are found in many different types of foods and beverages. Research is continuing to investigate the health effects of probiotics and how they can be utilized. The potential mechanisms of probiotics include anti-cancer activity, preventing and treating immune system-related diseases, and slowing the development of Alzheimer's disease and Huntington's disease. This is due to the gut-brain axis of probiotics, which provides a range of health benefits beyond the digestive and gastrointestinal systems. Probiotics reduce tumor necrosis factor-α and interleukins through the nuclear factor-kappa B and mitogen-activated protein kinase pathways. They have been shown to protect against colon cancer and colitis by interfering with the adhesion of harmful bacteria in the gut. This article is based on clinical and review studies identified in the electronic databases PubMed, Web of Science, Embase, and Google Scholar, and a systematic review of clinical studies was performed.
Collapse
Affiliation(s)
- Yeonhee Pyo
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Ki Han Kwon
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea;
| | - Yeon Ja Jung
- Department of Beauty Cosmetics, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
8
|
Raj ST, Bruce AW, Anbalagan M, Srinivasan H, Chinnappan S, Rajagopal M, Khanna K, Chandramoorthy HC, Mani RR. COVID-19 influenced gut dysbiosis, post-acute sequelae, immune regulation, and therapeutic regimens. Front Cell Infect Microbiol 2024; 14:1384939. [PMID: 38863829 PMCID: PMC11165100 DOI: 10.3389/fcimb.2024.1384939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has garnered unprecedented global attention. It caused over 2.47 million deaths through various syndromes such as acute respiratory distress, hypercoagulability, and multiple organ failure. The viral invasion proceeds through the ACE2 receptor, expressed in multiple cell types, and in some patients caused serious damage to tissues, organs, immune cells, and the microbes that colonize the gastrointestinal tract (GIT). Some patients who survived the SARS-CoV-2 infection have developed months of persistent long-COVID-19 symptoms or post-acute sequelae of COVID-19 (PASC). Diagnosis of these patients has revealed multiple biological effects, none of which are mutually exclusive. However, the severity of COVID-19 also depends on numerous comorbidities such as obesity, age, diabetes, and hypertension and care must be taken with respect to other multiple morbidities, such as host immunity. Gut microbiota in relation to SARS-CoV-2 immunopathology is considered to evolve COVID-19 progression via mechanisms of biochemical metabolism, exacerbation of inflammation, intestinal mucosal secretion, cytokine storm, and immunity regulation. Therefore, modulation of gut microbiome equilibrium through food supplements and probiotics remains a hot topic of current research and debate. In this review, we discuss the biological complications of the physio-pathological effects of COVID-19 infection, GIT immune response, and therapeutic pharmacological strategies. We also summarize the therapeutic targets of probiotics, their limitations, and the efficacy of preclinical and clinical drugs to effectively inhibit the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Sterlin T. Raj
- Department of Molecular Biology, Ekka Diagnostics, Chennai, Tamil Nadu, India
| | - Alexander W. Bruce
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Muralidharan Anbalagan
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hemalatha Srinivasan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Sasikala Chinnappan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| | - Kushagra Khanna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Harish C. Chandramoorthy
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, University College of Sedaya International UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
10
|
Torbica A, Vujasinović V, Radosavljević M, Radivojević G, Milovanović I. FODMAPs-Unknowns for Consumers: First Survey in Serbia. Nutrients 2023; 15:4693. [PMID: 37960346 PMCID: PMC10648408 DOI: 10.3390/nu15214693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
According to unofficial data, every fifth person in Serbia suffers from some form of irritable bowel syndrome (IBS). Compounds classified as FODMAPs (Fermentable Oligo-, Di-, and Monosaccharides and Polyols) are newly found potential triggers of IBS and a number of associated gastrointestinal disorders. Cereals, predominantly in their wholegrain form, represent the key contributors to the high contents of FODMAPs in wholegrain (high-fiber) bakery products. The current work was structured in a way to systematically evaluate the consumer's knowledge and preferences toward wholegrain and low-FODMAP bakery products. The questionnaire was filled out by 725 respondents, aged from 18 to 86 years. They were informed about the aim of the research and management of anonymous data. The present study is the first detailed survey in this region of Europe, aiming to improve the familiarity with and attitude toward FODMAPs and a low-FODMAP diet by analyzing the different dietary habits regarding wholegrain-cereal-based products among consumers of various ages, genders, places of residence, and education. The results suggest that the respondents are, to some degree, aware of the health benefits of consuming foods with high fiber content while indicating a low level of knowledge about FODMAP compounds and connected topics. Education about contemporary scientific findings and the potentially harmful effects of consuming FODMAP compounds for a population with gastrointestinal disorders and diseases will be imperative in the future.
Collapse
Affiliation(s)
- Aleksandra Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia
| | - Vesna Vujasinović
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Miloš Radosavljević
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21102 Novi Sad, Serbia;
| | - Goran Radivojević
- Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (V.V.); (G.R.)
| | - Ilija Milovanović
- Faculty of Philosophy, University of Novi Sad, Dr Zorana Đinđića 2, 21102 Novi Sad, Serbia;
| |
Collapse
|
11
|
Törős G, El-Ramady H, Prokisch J, Velasco F, Llanaj X, Nguyen DHH, Peles F. Modulation of the Gut Microbiota with Prebiotics and Antimicrobial Agents from Pleurotus ostreatus Mushroom. Foods 2023; 12:foods12102010. [PMID: 37238827 DOI: 10.3390/foods12102010] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm mushroom contains bioactive compounds with both antimicrobial and prebiotic properties, which are distributed in the mushroom mycelium, fruiting body, and spent substrate. The mushroom is rich in nondigestible carbohydrates like chitin and glucan, which act as prebiotics and support the growth and activity of beneficial gut bacteria, thereby maintaining a healthy balance of gut microbiota and reducing the risk of antibiotic resistance. The bioactive compounds in P. ostreatus mushrooms, including polysaccharides (glucans, chitin) and secondary metabolites (phenolic compounds, terpenoids, and lectins), exhibit antibacterial, antiviral, and antifungal activities. When mushrooms are consumed, these compounds can help preventing the growth and spread of harmful bacteria in the gut, reducing the risk of infections and the development of antibiotic resistance. Nonetheless, further research is necessary to determine the efficacy of P. ostreatus against different pathogens and to fully comprehend its prebiotic and antimicrobial properties. Overall, consuming a diet rich in mushroom-based foods can have a positive impact on human digestion health. A mushroom-based diet can support a healthy gut microbiome and reduce the need for antibiotics.
Collapse
Affiliation(s)
- Gréta Törős
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Husbandry, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Fernando Velasco
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Xhensila Llanaj
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Food Science, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Duyen H H Nguyen
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Food Science, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Dalat 70072, Vietnam
| | - Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| |
Collapse
|