1
|
Ma X, Mo J, Shi L, Cheng Y, Feng J, Qin J, Su W, Lv J, Li S, Li Q, Tan H, Han B. Isolation and characterization of Bifidobacterium spp. from breast milk with different human milk oligosaccharides utilization and anti-inflammatory capacity. Food Res Int 2024; 196:115092. [PMID: 39614508 DOI: 10.1016/j.foodres.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Breast milk is the best source of nutrition for infants. Human milk oligosaccharides (HMOs) and the corresponding HMOs-consuming Bifidobacterium positively influence infant health. This study aims to isolate and characterize Bifidobacterium from breast milk of healthy Chinese mothers, identifying the most efficacious strains for inclusion in simulated maternal milk formulas. Nine Bifidobacterium strains (two of B. breve and seven of B. infantis) were isolated, exhibiting a broad spectrum of probiotic potential. This included tolerance to simulated infant gastrointestinal conditions, notable adhesion, antibacterial, antioxidant activities, and HMOs utilization ability. Lacto-N-Tetraose (LNT) is preferred in early growth among Bifidobacterium isolates. B. breve showed a preference for LNT, whereas B. infantis showed a preference for fucosylated HMOs, and displayed reduced utilization of sialylated HMOs. They also exhibited robust safety profiles, including no hemolytic activity, an appropriate D/L lactate-producing ratio, and non-toxicity in an acute oral toxicity assay on mice. It is noteworthy that B. breve N-90, O-147, B. infantis O-161 and R-1 exhibited anti-inflammatory effects in LPS-induced RAW 264.7 cells. Specifically, a notable reduction in TNF-α levels was observed in pre-treatment, while a decrease in IL-1β and IL-6 levels in co-treatment. B. breve N-90 and B. infantis R-1 were identified finally as promising probiotic candidates. Their whole-genome sequencing analysis confirmed presence of functional genes associated with gastrointestinal colonization, antioxidation, and glycoside hydrolase activity on HMOs. The annotation for antibiotic resistance and virulence genes concurred with phenotypes, further validating the safety. Breast milk is a good source for Bifidobacteria isolation, while Bifidobacteria utilize HMOs in a strain-dependent manner. The two selected strains, B. breve N-90 and B. infantis R-1, are potential candidates for inclusion in simulated maternal milk formulas and deserved further in vivo investigation for their health-promoting effects.
Collapse
Affiliation(s)
- Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jianhui Mo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiayu Feng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiale Qin
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanghong Su
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Qiang Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Hui Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
De Bruyn F, James K, Cottenet G, Dominick M, Katja J. Combining Bifidobacterium longum subsp. infantis and human milk oligosaccharides synergistically increases short chain fatty acid production ex vivo. Commun Biol 2024; 7:943. [PMID: 39098939 PMCID: PMC11298527 DOI: 10.1038/s42003-024-06628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
To enhance health benefits, a probiotic can be co-administered with a metabolizable prebiotic forming a synergistic synbiotic. We assessed the synergies resulting from combining Bifidobacterium longum subsp. infantis LMG 11588 and an age-adapted blend of six human milk oligosaccharides (HMOs) in ex vivo colonic incubation bioreactors seeded with fecal background microbiota from infant and toddler donors. When HMOs were combined with B. infantis LMG 11588, they were rapidly and completely consumed. This resulted in increased short chain fatty acid (SCFA) production compared to the summed SCFA production from individual ingredients (synergy). Remarkably, HMOs were partially consumed for specific infant donors in the absence of B. infantis LMG 11588, yet all donors showed increased SCFA production upon B. infantis LMG 11588 supplementation. We found specific bacterial taxa associated with the differential response pattern to HMOs. Our study shows the importance of carefully selecting pre- and probiotic into a synergistic synbiotic that could benefit infants.
Collapse
Affiliation(s)
- Florac De Bruyn
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland.
| | - Kieran James
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland
| | - Geoffrey Cottenet
- Nestlé Institute of Food Safety and Analytical Science, Nestlé Research, Route du Jorat 57, CH-1000, Lausanne, Switzerland
| | - Maes Dominick
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland
| | - Johnson Katja
- Nestlé Research and Development, Nestléstrasse 3, CH-3510, Konolfingen, Switzerland
| |
Collapse
|
3
|
Ennis D, Shmorak S, Jantscher-Krenn E, Yassour M. Longitudinal quantification of Bifidobacterium longum subsp. infantis reveals late colonization in the infant gut independent of maternal milk HMO composition. Nat Commun 2024; 15:894. [PMID: 38291346 PMCID: PMC10827747 DOI: 10.1038/s41467-024-45209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Breast milk contains human milk oligosaccharides (HMOs) that cannot be digested by infants, yet nourish their developing gut microbiome. While Bifidobacterium are the best-known utilizers of individual HMOs, a longitudinal study examining the evolving microbial community at high-resolution coupled with mothers' milk HMO composition is lacking. Here, we developed a high-throughput method to quantify Bifidobacterium longum subsp. infantis (BL. infantis), a proficient HMO-utilizer, and applied it to a longitudinal cohort consisting of 21 mother-infant dyads. We observed substantial changes in the infant gut microbiome over the course of several months, while the HMO composition in mothers' milk remained relatively stable. Although Bifidobacterium species significantly influenced sample variation, no specific HMOs correlated with Bifidobacterium species abundance. Surprisingly, we found that BL. infantis colonization began late in the breastfeeding period both in our cohort and in other geographic locations, highlighting the importance of focusing on BL. infantis dynamics in the infant gut.
Collapse
Affiliation(s)
- Dena Ennis
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimrit Shmorak
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Capeding MRZ, Phee LCM, Ming C, Noti M, Vidal K, Le Carrou G, Frézal A, Moll JM, Vogt JK, Myers PN, Nielsen BH, Boulangé CL, Samuel TM, Berger B, Cercamondi CI. Safety, efficacy, and impact on gut microbial ecology of a Bifidobacterium longum subspecies infantis LMG11588 supplementation in healthy term infants: a randomized, double-blind, controlled trial in the Philippines. Front Nutr 2023; 10:1319873. [PMID: 38162520 PMCID: PMC10755859 DOI: 10.3389/fnut.2023.1319873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Bifidobacterium longum subspecies infantis (B. infantis) may play a key role in infant gut development. This trial evaluated safety, tolerability, and efficacy of B. infantis LMG11588 supplementation. Methods This randomized, placebo-controlled, double-blind study conducted in the Philippines included healthy breastfed and/or formula-fed infants (14-21 days old) randomized for 8 weeks to a control group (CG; n = 77), or any of two B. infantis experimental groups (EGs): low (Lo-EG; 1*108 CFU/day; n = 75) or high dose (Hi-EG; 1.8*1010 CFU/day; n = 76). Primary endpoint was weight gain; secondary endpoints included stooling patterns, gastrointestinal symptoms, adverse events, fecal microbiome, biomarkers, pH, and organic acids. Results Non-inferiority in weight gain was demonstrated for Hi-EG and Lo-EG vs. CG. Overall, probiotic supplementation promoted mushy-soft stools, fewer regurgitation episodes, and increased fecal acetate production, which was more pronounced in the exclusively breastfed infants (EBF) and positively correlated with B. infantis abundance. In EBF, fecal pro-inflammatory cytokines (IL-1 beta, IL-8) were reduced. Strain-level metagenomic analysis allowed attributing the increased abundance of B. infantis in EGs versus CG, to LMG11588 probiotic colonization. Colonization by autochthonous B. infantis strains was similar between groups. Discussion B. infantis LMG11588 supplementation was associated with normal infant growth, was safe and well-tolerated and promoted a Bifidobacterium-rich microbiota driven by B. infantis LMG11588 colonization without disturbing the natural dispersal of autochthonous B. infantis strains. In EBF, supplementation stimulated microbial metabolic activity and beneficially modulated enteric inflammation.
Collapse
Affiliation(s)
| | | | - Chang Ming
- Biostatistics & Data, Nestlé Research, Lausanne, Switzerland
| | - Mario Noti
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Gilles Le Carrou
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - A. Frézal
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | | | | | | | - Claire L. Boulangé
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Tinu Mary Samuel
- Nestlé Product Technology Center – Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Colin Ivano Cercamondi
- Nestlé Product Technology Center – Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| |
Collapse
|
5
|
Modesto M, Ngom-Bru C, Scarafile D, Bruttin A, Pruvost S, Sarker SA, Ahmed T, Sakwinska O, Mattarelli P, Duboux S. Bifidobacterium longum subsp. iuvenis subsp. nov., a novel subspecies isolated from the faeces of weaning infants. Int J Syst Evol Microbiol 2023; 73. [PMID: 37851001 DOI: 10.1099/ijsem.0.006013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The species
Bifidobacterium longum
currently comprises four subspecies:
B. longum
subsp.
longum
,
B. longum
subsp.
infantis
,
B. longum
subsp.
suis
and
B. longum
subsp.
suillum
. Recently, several studies on
B. longum
suggested the presence of a separate clade containing four strains isolated from infants and one from rhesus macaque. These strains shared a phylogenetic similarity to
B. longum
subsp.
suis
DSM 20210T and
B. longum
subsp.
suillum
JCM1995T [average nucleotide identity (ANI) of 98.1 %) while showed an ANI of 96.5 % with both
B. longum
subsp.
infantis
and
B. longum
subsp.
longum
. The current work describes five novel additional
B. longum
strains isolated from Bangladeshi weaning infants and demonstrates their common phylogenetic origin with those of the previously proposed separated clade. Based on polyphasic taxonomic approach comprising loci multilocus sequence analysis and whole genome multilocus sequence typing, all ten examined strains have been confirmed as a distinct lineage within the species
B. longum
with
B. longum
subsp.
suis
and
B. longum
subsp.
suillum
as closest subspecies. Interestingly, these strains are present in weaning infants and primates as opposed to their closest relatives which have been typically isolated from pig and calves. These strains, similarly to
B. longum
subsp.
infantis
, show a common capacity to metabolize the human milk oligosaccharide 3-fucosyllactose. Moreover, they harbour a riboflavin synthesis operon, which differentiate them from their closest subspecies,
B. longum
subsp.
suis
and
B. longum
subsp.
suillum
. Based on the consistent results from genotypical, ecological and phenotypical analyses, a novel subspecies with the name
Bifidobacterium longum
subsp. iuvenis, with type strain NCC 5000T (=LMG 32752T=CCOS 2034T), is proposed.
Collapse
Affiliation(s)
- Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Catherine Ngom-Bru
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Anne Bruttin
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Solenn Pruvost
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Shafiqul Alam Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Olga Sakwinska
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Stéphane Duboux
- Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| |
Collapse
|
6
|
The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in Bifidobacterium longum NCC 2705. Microorganisms 2023; 11:microorganisms11030588. [PMID: 36985162 PMCID: PMC10059941 DOI: 10.3390/microorganisms11030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Bifidobacteria are saccharolytic bacteria that are able to metabolize a relatively large range of carbohydrates through their unique central carbon metabolism known as the “bifid-shunt”. Carbohydrates have been shown to modulate the growth rate of bifidobacteria, but unlike for other genera (e.g., E. coli or L. lactis), the impact it may have on the overall physiology of the bacteria has not been studied in detail to date. Using glucose and galactose as model substrates in Bifidobacterium longum NCC 2705, we established that the strain displayed fast and slow growth rates on those carbohydrates, respectively. We show that these differential growth conditions are accompanied by global transcriptional changes and adjustments of central carbon fluxes. In addition, when grown on galactose, NCC 2705 cells were significantly smaller, exhibited an expanded capacity to import and metabolized different sugars and displayed an increased acid-stress resistance, a phenotypic signature associated with generalized fitness. We predict that part of the observed adaptation is regulated by the previously described bifidobacterial global transcriptional regulator AraQ, which we propose to reflect a catabolite-repression-like response in B. longum. With this manuscript, we demonstrate that not only growth rate but also various physiological characteristics of B. longum NCC 2705 are responsive to the carbon source used for growth, which is relevant in the context of its lifestyle in the human infant gut where galactose-containing oligosaccharides are prominent.
Collapse
|
7
|
The Gut Microbiota in Infants: Focus on Bifidobacterium. Microorganisms 2023; 11:microorganisms11020537. [PMID: 36838502 PMCID: PMC9967640 DOI: 10.3390/microorganisms11020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
A long time has passed since the initial pioneering works were carried out on the composition of infant microbiota by Thedore Escherich (1857-1911) and Ernst Moro (1874-1951), and since the observations of Henry Tissier (1866-1916) which linked "Bacillus bifidus" to the health of babies [...].
Collapse
|