1
|
Yang L, Chen Y, Wang S, Lin S, Huang G, Wang Z, Yu Z, Zeng L. Arsenic-contaminated soil remediation with hyperthermophilic compost: Effects on arsenic bioavailability, soil fertility and bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122774. [PMID: 39388821 DOI: 10.1016/j.jenvman.2024.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Soil arsenic (As) contamination has posed a significant global environmental challenge seriously threatening human health. Compost has attracted broad interests as a kind of eco-friendly and versatile amendment. However, hyperthermophilic compost (HTC), which is newly-developed and more advantageous to environment, has not yet been widely utilized to remediate As-contaminated soil, and its effectiveness remains unclear. Herein, the effects of HTC amendment on soil fertility, As bioavailability, plant growth and soil bacterial community were investigated. After amended with HTC, soil nutrient content and enzyme activity were improved. Concurrently, the content of both total As and available As in soil was reduced, partially due to the formation of organo-As complex with the presence of humic acid and fulvic acid in HTC. Notably, Chinese white cabbage (Brassica campestris L. ssp. chinensis Makino) cultivated in HTC-treated soil exhibited better growth and less As uptake, but showed enhanced translocation of As from the below-ground part to the above-ground part. In particular, the lowest HTC addition ratio (HTC:Soil = 1:10, v:v) proved to be the most optimal, increasing the height, width and biomass of Chinese white cabbage from 9.92 ± 0.72 cm, 6.76 ± 0.31 cm and 4.43 ± 0.49 g, to 21.29 ± 0.48 cm, 19.3 ± 1.44 cm and 23.27 ± 2.45 g, respectively. The results of soil bacterial community analysis revealed that HTC amendment stimulated the growth and metabolism of soil microbes, augmenting the richness and diversity of bacteria related to the methylation and volatilization of As and plant growth. This work suggests that HTC can serve as an effective amendment for As-contaminated soil remediation, and a superior alternative to compound fertilizer for plant cultivation, displaying promising potential for agricultural applications.
Collapse
Affiliation(s)
- Liu Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Yingle Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Song Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Shu Lin
- Guangzhou Rongxin Technology Development Co., Ltd., Guangzhou, 510507, China
| | - Guowen Huang
- Foshan Shunzhinong Machinery Equipment Co., Ltd., Foshan, 528399, China
| | - Zhihong Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lei Zeng
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
2
|
Wu M, Feng S, Liu Z, Tang S. Bioremediation of petroleum-contaminated soil based on both toxicity risk control and hydrocarbon removal-progress and prospect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59795-59818. [PMID: 39388086 DOI: 10.1007/s11356-024-34614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Abstract
Petroleum contamination remains a worldwide issue requiring cost-effective bioremediation techniques. However, establishing a universal bioremediation strategy for all types of oil-polluted sites is challenging. This difficulty arises from the heterogeneity of soil textures, the complexity of oil products, and the variations in local climate and environment across different oil-contaminated regions. Several factors can impede bioremediation efficacy: (i) differences in bioavailability and biodegradability between aliphatic and aromatic fractions of crude oil; (ii) inconsistencies between hydrocarbon removal efficiency and toxicity attenuation during remediation; (iii) varying adverse effect of aliphatic and aromatic fractions on soil microorganisms. This review examines the ecotoxicity risk of petroleum contamination to soil fauna and flora. It also discusses three primary bioremediation strategies: biostimulation with nutrients, bioaugmentation with petroleum degraders, and phytoremediation with plants. Based on current research and state-of-the-art challenges, we highlighted future research scopes should focus on (i) exploring the ecotoxicity differentiation of aliphatic and aromatic fractions of crude oil, (ii) establishing unified risk factors and indicators for evaluating oil pollution toxicity, (iii) determining the fate and transformation of aliphatic and aromatic fractions of crude oil using advanced analytical techniques, and (iv) developing combined bioremediation techniques that improve petroleum removal and ecotoxicity attenuation.
Collapse
Affiliation(s)
- Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Shuang Feng
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Zeliang Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Shiwei Tang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| |
Collapse
|
3
|
Xing K, Lu W, Huang Q, Wu J, Shang H, Wang Q, Guo F, Du Q, Yin Z, Zhang Y, Li F. Soil eDNA biomonitoring reveals changes in multitrophic biodiversity and ecological health of agroecosystems. ENVIRONMENTAL RESEARCH 2024; 262:119931. [PMID: 39260717 DOI: 10.1016/j.envres.2024.119931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Soil health is integral to sustainable agroecosystem management. Current monitoring and assessment practices primarily focus on soil physicochemical properties, yet the perspective of multitrophic biodiversity remains underexplored. Here we used environmental DNA (eDNA) technology to monitor multitrophic biodiversity in four typical agroecosystems, and analyzed the species composition and diversity changes in fungi, bacteria and metazoan, and combined with the traditional physicochemical variables to establish a soil health assessment framework centered on biodiversity data. First, eDNA technology detected rich multitrophic biodiversity in four agroecosystems, including 100 phyla, 273 classes, 611 orders, 1026 families, 1668 genera and 1146 species with annotated classification, and the relative sequence abundance of dominant taxa fluctuates tens of times across agroecosystems. Second, significant differences in soil physicochemical variables such as organic matter (OM), total nitrogen (TN) and available phosphorus (AP) were observed among different agroecosystems, nutrients were higher in cropland and rice paddies, while heavy metals were higher in fish ponds and lotus ponds. Third, biodiversity metrics, including α and β diversity, also showed significant changes across agroecosystems, the soil biota was generally more sensitive to nutrients (e.g., OM, TN or AP), while the fungal communities were mainly affected by heavy metals in October (e.g., Cu and Cr). Finally, we screened 48 sensitive organismal indicators and found significant positive consistency between the developed eDNA indices and the traditional soil quality index (SQI, reaching up to R2 = 0.58). In general, this study demonstrated the potential of eDNA technology in soil health assessment and underscored the importance of a multitrophic perspective for efficient monitoring and managing agroecosystems.
Collapse
Affiliation(s)
- Kaihang Xing
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weijun Lu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qiqi Huang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingze Wu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Heping Shang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Qian Wang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingping Du
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhonglong Yin
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Mahongnao S, Sharma P, Nanda S. Characterization of fungal microbiome structure in leaf litter compost through metagenomic profiling for harnessing the bio-organic fertilizer potential. 3 Biotech 2024; 14:191. [PMID: 39113676 PMCID: PMC11300423 DOI: 10.1007/s13205-024-04028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/14/2024] [Indexed: 08/10/2024] Open
Abstract
Sustainable waste management through composting has gain renewed attention since it could upcycle organic waste into valuable bio-organic fertiliser. This study explored the composition of fungal communities in leaf litter and organic waste composts ecosystems by employing advanced internal transcribed spacer (ITS) metagenomic profiling. This approach provides insights into the diversity, composition, and potential functions of these fungi, offering practical implications for optimising composting processes and enhancing sustainable waste management practices. Various organic composts were collected, including leaf litter composts, from different sources in Delhi-National Capital Region, India, and fungal microbiome composition were characterised through ITS profiling. Results revealed that leaf litter composts and cow dung manure had the highest fungal read counts, while kitchen waste compost had the lowest. Alpha diversity indices, including Chao1 and Shannon, exhibited differences in species richness and diversity among composts, though statistical significance was limited. The leaf composts had relatively higher alpha diversity than the other organic waste composts analysed. The study also identified dominant fungal genera specifically, Wallemia, Geotrichum, Pichia, Mycothermus, Mortierella, Aspergillus, Fusarium, and Basidiobolus, across the compost samples. The presence of beneficial fungal genera like Pichia, Geotrichum, Trichoderma, Mortierella, Basidiobolus, Aspergillus, and others were detected in leaf waste compost and the other organic waste composts. There was also presence of some pathogenic genera viz. Alternaria, Fusarium, and Acremonium, in these composts which underscored the need for proper composting practices and source selection to optimise soil fertility and minimise disease risks in agriculture. Remarkably, leaf compost has highest proportion of beneficial genera with least observed abundance of pathogens. On the other hand, the municipal organic waste compost has least proportion of beneficial genera with higher abundance of pathogens. Overall, these findings contributed to characterisation of composting processes, advancing waste management practices, and enhancing the use of leaf compost as a bio-organic fertiliser. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04028-0.
Collapse
Affiliation(s)
- Sophayo Mahongnao
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4 Patel Marg, Maurice Nagar, Delhi, 110007 India
| | - Pooja Sharma
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4 Patel Marg, Maurice Nagar, Delhi, 110007 India
| | - Sarita Nanda
- Department of Biochemistry, Daulat Ram College, University of Delhi, 4 Patel Marg, Maurice Nagar, Delhi, 110007 India
| |
Collapse
|
5
|
Liu Y, Liang D, Xing J, Xue Z, Zhang Z. Interactions between Sugarcane Leaf Return and Fertilizer Reduction in Soil Bacterial Network in Southern China Red Soil. Microorganisms 2024; 12:1788. [PMID: 39338463 PMCID: PMC11434266 DOI: 10.3390/microorganisms12091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Microbes may play an important role in the sugarcane leaf degradation and nutrient conversion process. Soil bacterial communities are more or less involved in material transformation and nutrient turnover. In order to make better use of the vast sugarcane leaf straw resources and reduce the overuse of chemical fertilizers in the subtropical red soil region of Guangxi, a pot experiment, with three sugarcane leaf return (SLR) amounts [full SLR (FS), 120 g/pot; half SLR (HS), 60 g/pot; and no SLR (NS)] and three fertilizer reduction (FR) levels [full fertilizer (FF), 4.50 g N/pot, 3.00 g P2O5/pot, and 4.50 g K2O/pot; half fertilizer (HF), 2.25 g N/pot, 1.50 g P2O5/pot, and 2.25 g K2O/pot; and no fertilizer (NF)], was conducted to assess the interactions of different SLR amounts and chemical FR levels in the soil bacterial network and the relationship between the soil properties and bacterial network by using Illumina Miseq high-throughput sequencing technology. According to the results of the soil bacterial community compositions and diversity, the soil bacterial network was changed during maize growth. SLR exerted a stronger effect on soil bacterial function than FR. Returning the sugarcane leaf to the field increased the diversity of the soil bacteria network. The bacterial communities were consistently dominated by Acidobacteria, Actinobacteria, and Bacteroidetes across all treatments, among which Actinobacteria was the most abundant bacteria type by almost 50% at the phylum level. The analysis results of the experimental factor on maize growth showed that the effect of SLR was lower than that of FR; however, this was opposite in the soil bacterial community structure and diversity. The soil bacterial network was significantly correlated with the soil total K, available N and organic matter contents, and EC. The soil bacteria community showed different responses to SLR and FR, and the FF in combination with FS partly increased the complexity of the soil bacteria network, which can further benefit crop production and soil health in the red soil region.
Collapse
Affiliation(s)
- Yufeng Liu
- Institute of Agricultural Resources and Environment, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China;
| | - Dan Liang
- Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China
| | - Jincheng Xing
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
| | - Ziyan Xue
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
| | - Zhenhua Zhang
- Institute of Jiangsu Coastal Agricultural Sciences, Yancheng 224002, China
- The School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
6
|
Wei L, Zhu J, Zhao D, Pei Y, Guo L, Guo J, Guo Z, Cui H, Li Y, Gao J. Microbial fungicides can positively affect aubergine photosynthetic properties, soil enzyme activity and microbial community structure. PeerJ 2024; 12:e17620. [PMID: 38952982 PMCID: PMC11216198 DOI: 10.7717/peerj.17620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background This study examined the effects of microbial agents on the enzyme activity, microbial community construction and potential functions of inter-root soil of aubergine (Fragaria × ananassa Duch.). This study also sought to clarify the adaptability of inter-root microorganisms to environmental factors to provide a theoretical basis for the stability of the microbiology of inter-root soil of aubergine and for the ecological preservation of farmland soil. Methods Eggplant inter-root soils treated with Bacillus subtilis (QZ_T1), Bacillus subtilis (QZ_T2), Bacillus amyloliquefaciens (QZ_T3), Verticillium thuringiensis (QZ_T4) and Verticillium purpureum (QZ_T5) were used to analyse the effects of different microbial agents on the inter-root soils of aubergine compared to the untreated control group (QZ_CK). The effects of different microbial agents on the characteristics and functions of inter-root soil microbial communities were analysed using 16S rRNA and ITS (internal transcribed spacer region) high-throughput sequencing techniques. Results The bacterial diversity index and fungal diversity index of the aubergine inter-root soil increased significantly with the application of microbial fungicides; gas exchange parameters and soil enzyme activities also increased. The structural and functional composition of the bacterial and fungal communities in the aubergine inter-root soil changed after fungicide treatment compared to the control, with a decrease in the abundance of phytopathogenic fungi and an increase in the abundance of beneficial fungi in the soil. Enhancement of key community functions, reduction of pathogenic fungi, modulation of environmental factors and improved functional stability of microbial communities were important factors contributing to the microbial stability of fungicide-treated aubergine inter-root soils.
Collapse
Affiliation(s)
- Longxue Wei
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Jinying Zhu
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Dongbo Zhao
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Yanting Pei
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Lianghai Guo
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Jianjun Guo
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Zhihui Guo
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Huini Cui
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Yongjun Li
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| | - Jiansheng Gao
- Dezhou Institute of Agricultural Science, Dezhou, Shandong, China
| |
Collapse
|
7
|
Kruger BR, Sackett JD. Abiotic and biotic factors influencing small-scale corn production along a shade spectrum in arid urban agriculture settings. PLoS One 2024; 19:e0301633. [PMID: 38625854 PMCID: PMC11020971 DOI: 10.1371/journal.pone.0301633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/19/2024] [Indexed: 04/18/2024] Open
Abstract
Urban agriculture may be an avenue to help alleviate strain on the global production of staple crops like corn (Zea mays), but significant knowledge gaps exist regarding the optimization of staple crop production in urban settings, and especially in arid urban settings where different challenges exist for crop success. We sought to assess abiotic and biotic factors that impact sweet corn production in six arid urban agricultural plots with varying levels of shade stress, a known inhibitor of corn production. Corn successfully reached maturity in 50% of the studied plots (n = 18). Microbial richness and diversity were uniformly high in all plot soils and not indicated as a hinderance to corn production nor correlated with corn success. Multiple corn success metrics were positively correlated with average daytime light intensity (r = 0.74 to 0.84) and soil organic matter (r = 0.77 to 0.89), suggesting that these factors are critical aspects of successful corn production. In plots that did not receive optimal light exposure, exceptional soil health and morning vs afternoon sun exposure offset at least some degree of shade stress in these arid urban environments. Corn success metrics were negatively correlated with soil calcium, magnesium, sodium and sulfate (r = -0.71 to -0.90), suggesting that minimizing or mitigating the buildup of salt constituents in soils is critical for successful corn production. Optimizing staple crop production in arid urban agricultural settings supports food chain stability and social and economic security of local communities. This work suggests abiotic and biotic drivers of corn success which can be utilized for crop optimization in these environments.
Collapse
Affiliation(s)
- Brittany R. Kruger
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America
| | - Joshua D. Sackett
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
8
|
Batool M, Carvalhais LC, Fu B, Schenk PM. Customized plant microbiome engineering for food security. TRENDS IN PLANT SCIENCE 2024; 29:482-494. [PMID: 37977879 DOI: 10.1016/j.tplants.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Plant microbiomes play a vital role in promoting plant growth and resilience to cope with environmental stresses. Plant microbiome engineering holds significant promise to increase crop yields, but there is uncertainty about how this can best be achieved. We propose a step-by-step approach involving customized direct and indirect methods to condition soils and to match plants and microbiomes. Although three approaches, namely the development of (i) 'plant- and microbe-friendly' soils, (ii) 'microbe-friendly' plants, and (iii) 'plant-friendly' microbiomes, have been successfully tested in isolation, we propose that the combination of all three may lead to a step-change towards higher and more stable crop yields. This review aims to provide knowledge, future directions, and practical guidance to achieve this goal via customized plant microbiome engineering.
Collapse
Affiliation(s)
- Maria Batool
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brendan Fu
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia; Sustainable Solutions Hub, Global Sustainable Solutions Pty Ltd, Brisbane, QLD 4105, Australia.
| |
Collapse
|
9
|
Shrivas VL, Choudhary AK, Shidture S, Rambia A, Hariprasad P, Sharma A, Sharma S. Organic amendments modulate the crop yield and rhizospheric bacterial community diversity: a 3-year field study with Cajanus cajan. Int Microbiol 2024; 27:477-490. [PMID: 37500936 DOI: 10.1007/s10123-023-00396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.
Collapse
Affiliation(s)
- Vijay Laxmi Shrivas
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Anil K Choudhary
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Shubham Shidture
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India
| | - Aayushi Rambia
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India.
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
10
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
11
|
Bai X, Zhang E, Wu J, Ma D, Zhang C, Zhang B, Liu Y, Zhang Z, Tian F, Zhao H, Wang B. Soil fungal community is more sensitive than bacterial community to modified materials application in saline-alkali land of Hetao Plain. Front Microbiol 2024; 15:1255536. [PMID: 38374915 PMCID: PMC10875129 DOI: 10.3389/fmicb.2024.1255536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024] Open
Abstract
Soil salinization has become a major challenge that severely threatens crop growth and influences the productivity of agriculture. It is urgent to develop effective management measures to improve saline-alkali soil. Thus, in this study, soil properties, microbial communities, and function under desulfurization gypsum (DE), soil amendment (SA), farm manure (FA), and co-application of desulfurization gypsum, soil amendment, and farm manure (TA) in a field experiment were examined by high-throughput sequencing. The results showed that the application of modified materials is an effective approach in improving saline-alkali soil, especially TA treatment significantly increased the content of available phosphorus (AP), available potassium (AK), soil organic matter (SOM), and alkaline hydrolysis nitrogen (AHN) and decreased pH, bulk density (BD), and electrical conductivity (EC). The application of modified materials resulted in notable enhancement in fungal diversity and altered the composition and structure of the fungal community. Conversely, the effect on the bacterial community was comparatively minor, with changes limited to the structure of the community. Regarding the fungal community composition, Ascomycota, Mortierellomycota, and Basidiomycota emerged as the dominant phyla across all treatments. At each taxonomic level, the community composition exhibited significant variations in response to different modified materials, resulting in divergent soil quality. The TA treatment led to a decrease in Mortierellomycota and an increase in Ascomycota, potentially enhancing the ability to decompose organic matter and facilitate soil nutrient cycling. Additionally, the sensitivity of fungal biomarkers to modified materials surpassed that of the bacterial community. The impact of modified materials on soil microbial communities primarily stemmed from alterations in soil EC, AP, AK, and SOM. FUNGuild analysis indicated that the saprotroph trophic mode group was the dominant component, and the application of modified materials notably increased the symbiotroph group. PICRUSt analysis revealed that metabolism was the most prevalent functional module observed at pathway level 1. Overall, the application of modified materials led to a decrease in soil EC and an increase in nutrient levels, resulting in more significant alterations in the soil fungal community, but it did not dramatically change the soil bacterial community. Our study provides new insights into the application of modified materials in increasing soil nutrients and altering soil microbial communities and functions and provides a better approach for improving saline-alkali soil of Hetao Plain.
Collapse
Affiliation(s)
- Xiaolong Bai
- College of Agriculture, Ningxia University, Yinchuan, China
| | - En Zhang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Jinmin Wu
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Donghai Ma
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Chaohui Zhang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Bangyan Zhang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Yunpeng Liu
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Zhi Zhang
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Feng Tian
- Tumote Right Banner Agricultural Technology Extension Center, Baotou, China
| | - Hui Zhao
- Tumote Right Banner Agricultural Technology Extension Center, Baotou, China
| | - Bin Wang
- College of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
12
|
Liu H, Shi B, Liu W, Wang L, Zhu L, Wang J, Kim YM, Wang J. Effects of magnesium-modified biochar on antibiotic resistance genes and microbial communities in chicken manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108553-108564. [PMID: 37752398 DOI: 10.1007/s11356-023-29804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Abatement of antibiotic resistance genes (ARGs) in livestock manure by composting has attracted attention. This study investigated the effect of adding magnesium-modified biochar (MBC) on ARGs and microbial communities in chicken manure composting. Twelve genes for tetracyclines, sulfonamides, and macrolides, and mobile genetic elements were measured in the compost pile. The results showed that after 45 days of the composting, the treatment groups of MBC had longer high temperature periods, significantly higher germination indices (GI) and lower phytotoxicity. There were four major dominant phyla (Firmicutes, Actinobacteriota, Proteobacteria, and Bacteroidota) in the compost. The abundance of Firmicutes decreased significantly during the compost cooling period; tetracycline resistance genes demonstrated an extremely significant positive correlation with Firmicutes, showing a trend of the same increase and decrease with composting time; tetT, tetO, tetM, tetW, ermB, and intI2 were reduced in the MBC group; the total abundance of resistance genes in the 2% MBC addition group was 0.67 times that of the control; Proteobacteria and Chloroflexi were also significantly lower than the other treatment groups. Most ARGs were significantly associated with mobile genetic elements (MGEs); MBC can reduce the spread and diffusion of ARGs by reducing the abundance of MGEs and inhibiting horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Hunan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Baihui Shi
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Wenwen Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
13
|
Peng Q, Zhang L, Huang X, Wu J, Cheng Y, Xie G, Feng X, Chen X. Environmental Factors Affecting the Diversity and Composition of Environmental Microorganisms in the Shaoxing Rice Wine Producing Area. Foods 2023; 12:3564. [PMID: 37835217 PMCID: PMC10572700 DOI: 10.3390/foods12193564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Shaoxing rice wine is a notable exemplar of Chinese rice wine. Its superior quality is strongly correlated with the indigenous natural environment. The results indicated that Firmicutes (75%), Actinobacteria (15%), Proteobacteria (5%), and Bacteroidetes (3%) comprised the prevailing bacterial groups. Among the main bacterial genera, Lactobacillus was the most abundant, accounting for 49.4%, followed by Lactococcus (11.9%), Saccharopolyspora (13.1%), Leuconostoc (4.1%), and Thermoactinomyces (1.1%). The dominant fungal phyla were Ascomycota and Zygomycota. Among the dominant genera, Saccharomyces (59.3%) prevailed as the most abundant, followed by Saccharomycopsis (10.7%), Aspergillus (7.1%), Thermomyces (6.2%), Rhizopus (4.9%), Rhizomucor (2.2%), and Mucor (1.3%). The findings demonstrate that the structure of the bacterial and fungal communities remains stable in the environment, with their diversity strongly influenced by climatic conditions. The continuous fluctuations in environmental factors, such as temperature, air pressure, humidity, rainfall, and light, significantly impact the composition and diversity of microbial populations, particularly the dominant bacterial community.
Collapse
Affiliation(s)
- Qi Peng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China; (Q.P.); (L.Z.); (X.F.); (X.C.)
| | - Lili Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China; (Q.P.); (L.Z.); (X.F.); (X.C.)
| | - Xiaoli Huang
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing 312000, China; (X.H.); (J.W.); (Y.C.)
| | - Jianjiang Wu
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing 312000, China; (X.H.); (J.W.); (Y.C.)
| | - Yujun Cheng
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing 312000, China; (X.H.); (J.W.); (Y.C.)
| | - Guangfa Xie
- Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xinxin Feng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China; (Q.P.); (L.Z.); (X.F.); (X.C.)
| | - Xueping Chen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China; (Q.P.); (L.Z.); (X.F.); (X.C.)
| |
Collapse
|
14
|
Ding J, Wang N, Liu P, Liu B, Zhu Y, Mao J, Wang Y, Ding X, Yang H, Wei Y, Li J, Ding GC. Bacterial wilt suppressive composts: Significance of rhizosphere microbiome. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:179-185. [PMID: 37453305 DOI: 10.1016/j.wasman.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Composts are often suppressive to several plant diseases, including the devastating bacterial wilt caused by Ralstonia solanacearum. However, the underlying mechanisms are still unclear. Herein, we carried out an experiment with 38 composts collected from different factories in China to study the interlinking among bacterial wilt suppression, the physicochemical properties and bacterial community of the compost, and bacterial community in the rhizosphere of tomato fertilized by compost. Totally 26 composts were suppressive to bacterial wilt, while six composts stimulated the disease. The control efficiency was neither correlated with physicochemical properties (TC, TN, P and K, pH or GI) nor bacterial community of compost, but with rhizosphere bacterial community (r = 0.17, p = 0.016). The control efficiency was also positive correlated with taxa (Rhizobium, Aeromicrobium) known suppressive to R. solanacearum. The mushroom spent or cow manure, from which the two composts were 100% and 77% in control efficiencies against bacterial wilt respectively were subject to a pilot-scale composting reaction. The reproduced composts from mushroom spent or cow manure were only 57% and 23% effective on the control of bacterial wilt, respectively. The analysis of bacterial communities revealed that the relative abundances of R. solanacearum were 28.4% for the control, but only 7.8%-7.9% for compost fertilized tomatoes. The compost from mushroom spent also exerted a strong effect on rhizosphere bacterial community. Taken together, most composts were suppressive to bacterial wilt possibly also by modifying rhizosphere bacterial community towards inhibiting the colonization of R. solanacearum and selecting for beneficial genera of Proteobacteria, Bacteroidetes and Actinobacteria.
Collapse
Affiliation(s)
- Jia Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Ning Wang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Pingping Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Baoju Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Yuelin Zhu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jing Mao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Hefa Yang
- Quzhou Experimental Station, China Agricultural University, 057250 Hebei Province, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China
| | - Guo-Chun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China.
| |
Collapse
|
15
|
Ghouili E, Abid G, Hogue R, Jeanne T, D'Astous-Pagé J, Sassi K, Hidri Y, M'Hamed HC, Somenahally A, Xue Q, Jebara M, Nefissi Ouertani R, Riahi J, de Oliveira AC, Muhovski Y. Date Palm Waste Compost Application Increases Soil Microbial Community Diversity in a Cropping Barley ( Hordeum vulgare L.) Field. BIOLOGY 2023; 12:biology12040546. [PMID: 37106747 PMCID: PMC10135526 DOI: 10.3390/biology12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Application of date palm waste compost is quite beneficial in improving soil properties and crop growth. However, the effect of its application on soil microbial communities is less understood. High-throughput sequencing and quantitative real-time PCR (qPCR) were used to evaluate the effect of compost application on the soil microbial composition in a barley field during the tillering, booting and ripening stages. The results showed that compost treatment had the highest bacterial and fungal abundance, and its application significantly altered the richness (Chao1 index) and α-diversity (Shannon index) of fungal and bacterial communities. The dominant bacterial phyla found in the samples were Proteobacteria and Actinobacteria while the dominant fungal orders were Ascomycota and Mortierellomycota. Interestingly, compost enriched the relative abundance of beneficial microorganisms such as Chaetomium, Actinobacteriota, Talaromyces and Mortierella and reduced those of harmful microorganisms such as Alternaria, Aspergillus and Neocosmospora. Functional prediction based on Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that amplicon sequence variant (ASV) sequences related to energy metabolism, amino acid metabolism and carbohydrate metabolism were associated with compost-treated soil. Based on Fungi Functional Guild (FUNGuild), identified fungi community metabolic functions such as wood saprotroph, pathotroph, symbiotroph and endophyte were associated with compost-treated soil. Overall, compost addition could be considered as a sustainable practice for establishing a healthy soil microbiome and subsequently improving the soil quality and barley crop production.
Collapse
Affiliation(s)
- Emna Ghouili
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), Hammam-Lif 2050, PB 901, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), Hammam-Lif 2050, PB 901, Tunisia
| | - Richard Hogue
- Microbial Ecology Laboratory, Research and Development Institute for the Agri-Environment (IRDA), Einstein Street 2700, Québec City, QC G1P 3W8, Canada
| | - Thomas Jeanne
- Microbial Ecology Laboratory, Research and Development Institute for the Agri-Environment (IRDA), Einstein Street 2700, Québec City, QC G1P 3W8, Canada
| | - Joël D'Astous-Pagé
- Microbial Ecology Laboratory, Research and Development Institute for the Agri-Environment (IRDA), Einstein Street 2700, Québec City, QC G1P 3W8, Canada
| | - Khaled Sassi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Avenue Charles Nicolle, Tunis-Mahrajène 1082, BP 43, Tunisia
| | - Yassine Hidri
- Olive Tree Institute, Laboratory of Integrated Olive Production in the Humid, Sub-humid and Semi-arid Region (LR16IO3), Cité Mahragène 1082, BP 208, Tunisia
| | - Hatem Cheikh M'Hamed
- Agronomy Laboratory, National Institute of Agronomic Research of Tunis (INRAT), University of Carthage, Hedi Karray Street, Ariana 2049, Tunisia
| | - Anil Somenahally
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843-2474, USA
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX 79106, USA
| | - Moez Jebara
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), Hammam-Lif 2050, PB 901, Tunisia
| | - Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Hammam-Lif 2050, BP 901, Tunisia
| | - Jouhaina Riahi
- Technical Center for Organic Agriculture, Chott Mariem, Sousse 4042, BP 54, Tunisia
| | - Ana Caroline de Oliveira
- Biological Engineering Unit, Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, 5030 Gembloux, 234 BP, Belgium
| | - Yordan Muhovski
- Biological Engineering Unit, Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, 5030 Gembloux, 234 BP, Belgium
| |
Collapse
|
16
|
Kaur M, Li J, Zhang P, Yang HF, Wang L, Xu M. Agricultural soil physico-chemical parameters and microbial abundance and diversity under long-run farming practices: A greenhouse study. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1026771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growth of agriculture led to indiscriminate use of synthetic pesticides or fertilizers and unsustainable crop management farming practices which can aggravate harmful impacts on the microbial population and physical and chemical characteristics of soil ecosystem. Based on this fact, the present study was planned to evaluate the effect of long run farming practices on different soil physico-chemical parameters and soil microbial abundance and diversity within different soil depth (0–20 cm and 20–40 cm) at Quzhou Experimental Station of China Agricultural University, Hebei, China during October and December, 2016. The effect of farming practices on soil microbial abundance and diversity was studied by phospho-lipid fatty acid (PLFA) and DNA high-throughput sequencing methods. The findings revealed that soil is neutral to slightly alkaline in nature with highest water content under organic farming (ORF) at 0–20 cm and least under conventional farming at 20–40 cm depth. It was found that the ORF significantly increased the contents of total organic carbon (TOC), total carbon (TC), ammonium nitrogen, available nitrogen (AN), total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) followed by low input and conventional farming modes in both October and December soil samples. The correlation analysis showed significantly (at p ≤ 0.05 and 0.01) strong positive relationship within different physical and chemical properties of the soil under study. ANOVA and MANOVA analysis indicated significant effect of interaction between soil depth and farming modes on soil parameters. PCA analysis showed the most significant correlation between most of the bacterial types (G + bacteria, G− bacteria, actinomycetes) and soil AP, total available nitrogen, TOC and soil WC. Pearson correlation analysis revealed a significant correlation between microbial phylum groups (Proteobacteria, Bacteroidetes, and Latescibacteria) and microbial class group (Alphaproteobacteria, Sphingobacteriia, Flavobacteriia) with most of the soil physicochemical properties.
Collapse
|
17
|
The Application of Mixed Organic and Inorganic Fertilizers Drives Soil Nutrient and Bacterial Community Changes in Teak Plantations. Microorganisms 2022; 10:microorganisms10050958. [PMID: 35630402 PMCID: PMC9145699 DOI: 10.3390/microorganisms10050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Appropriate fertilization can enhance forest productivity by maintaining soil fertility and improving the structure of the bacterial community. However, there is still uncertainty surrounding the effects of combined application of organic and inorganic fertilizers on soil nutrient status and bacterial community structure. A fertilization experiment was set up in an eight-year-old teak plantation with five treatments involved: mixed organic and NPK compound fertilizers (OCF), mixed organic and phosphorus fertilizers (OPF), mixed organic, NPK and phosphorus fertilizers (OCPF), mixed NPK and phosphorus fertilizers (CPF) and no fertilization (CK). Soil chemical properties and bacterial communities were investigated, and the co-occurrence pattern of the bacterial community under different fertilization treatments was compared. The results showed that the contents of soil organic matter and nitrate nitrogen, and the soil pH values were the highest after OCPF treatment, which were 20.39%, 90.91% and 8.16% higher than CK, respectively. The richness and diversity of bacteria underwent no obvious changes, but the structure of the soil’s bacterial community was significantly altered by fertilization. Of the dominant bacteria taxa, the relative abundance increased for Gemmatimonadetes, Myxococcota, ADurb.Bin063-13 and Candidatus_Koribacter, and decreased for Chloroflexi, Proteobacteria, JG30-KF-AS9 and Acidothermus under OCPF treatment in comparison to CK. The number of nodes and edges, the average degree and the network density of bacterial community co-occurrence networks were the greatest in OCPF treatment, indicating that application of OCPF could make the network structure of soil bacteria more stable and complex. Moreover, soil pH and organic matter were significantly correlated with bacterial community structure and were considered the main influencing factors. These findings highlight that the combined application of organic, NPK and phosphorus fertilizers is highly beneficial for improving soil quality and optimizing bacterial community structure in teak plantations.
Collapse
|