1
|
Adedara IA, Mohammed KA, Canzian J, Ajayi BO, Farombi EO, Emanuelli T, Rosemberg DB, Aschner M. Utility of zebrafish-based models in understanding molecular mechanisms of neurotoxicity mediated by the gut-brain axis. ADVANCES IN NEUROTOXICOLOGY 2024; 11:177-208. [PMID: 38741945 PMCID: PMC11090488 DOI: 10.1016/bs.ant.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The gut microbes perform several beneficial functions which impact the periphery and central nervous systems of the host. Gut microbiota dysbiosis is acknowledged as a major contributor to the development of several neuropsychiatric and neurological disorders including bipolar disorder, depression, anxiety, Parkinson's disease, Alzheimer's disease, attention deficit hyperactivity disorder, and autism spectrum disorder. Thus, elucidation of how the gut microbiota-brain axis plays a role in health and disease conditions is a potential novel approach to prevent and treat brain disorders. The zebrafish (Danio rerio) is an invaluable vertebrate model that possesses conserved brain and intestinal features with those of humans, thus making zebrafish a valued model to investigate the interplay between the gut microbiota and host health. This chapter describes current findings on the utility of zebrafish in understanding molecular mechanisms of neurotoxicity mediated via the gut microbiota-brain axis. Specifically, it highlights the utility of zebrafish as a model organism for understanding how anthropogenic chemicals, pharmaceuticals and bacteria exposure affect animals and human health via the gut-brain axis.
Collapse
Affiliation(s)
- Isaac A. Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Khadija A. Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Babajide O. Ajayi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
2
|
Louis M, Tahrioui A, Tremlett CJ, Clamens T, Leprince J, Lefranc B, Kipnis E, Grandjean T, Bouffartigues E, Barreau M, Defontaine F, Cornelis P, Feuilloley MG, Harmer NJ, Chevalier S, Lesouhaitier O. The natriuretic peptide receptor agonist osteocrin disperses Pseudomonas aeruginosa biofilm. Biofilm 2023; 5:100131. [PMID: 37252226 PMCID: PMC10220261 DOI: 10.1016/j.bioflm.2023.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Melissande Louis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Courtney J. Tremlett
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Thomas Clamens
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Jérôme Leprince
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Eric Kipnis
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Teddy Grandjean
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Magalie Barreau
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Florian Defontaine
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Marc G.J. Feuilloley
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Nicholas J. Harmer
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Sylvie Chevalier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| |
Collapse
|
3
|
Li J, Chen X, Xie Z, Liang L, Li A, Zhao C, Wen Y, Lou Z. Screening and Metabolomic Analysis of Lactic Acid Bacteria-Antagonizing Pseudomonas aeruginosa. Foods 2023; 12:2799. [PMID: 37509891 PMCID: PMC10379379 DOI: 10.3390/foods12142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudomonas aeruginosa is a conditional Gram-negative pathogen that produces extracellular virulence factors that can lead to bloodstream invasion, severely harm tissues, and disseminate bacteria, ultimately leading to various diseases. In this study, lactic acid bacteria (LAB) with strong antagonistic ability against P. aeruginosa were screened, and the regulatory mechanism of LAB against P. aeruginosa was evaluated. The results showed that the three selected LAB strains had strong inhibition ability on the growth, biofilm formation, and pyocyanin expression of P. aeruginosa and a promoting effect on the expression of autoinducer-2. Among them, Lactipantibacillus plantarum (Lp. plantarum) LPyang is capable of affecting the metabolic processes of P. aeruginosa by influencing metabolic substances, such as LysoPC, oxidized glutathione, betaine, etc. These results indicate that LPyang reduces the infectivity of P. aeruginosa through inhibition of its growth, biofilm formation, pyocyanin expression, and regulation of its metabolome. This study provides new insights into the antagonistic activity of Lp. plantarum LPyang against P. aeruginosa.
Collapse
Affiliation(s)
- Jianzhou Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421008, China
| | - Xiaohua Chen
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421008, China
- Department of Life Sciences, Nanyue College of Hengyang Normal University, Hengyang 421008, China
| | - Ziyan Xie
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421008, China
| | - Lin Liang
- Department of Life Sciences, Nanyue College of Hengyang Normal University, Hengyang 421008, China
| | - Anping Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Zaixiang Lou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Miri S, Yeo J, Abubaker S, Hammami R. Neuromicrobiology, an emerging neurometabolic facet of the gut microbiome? Front Microbiol 2023; 14:1098412. [PMID: 36733917 PMCID: PMC9886687 DOI: 10.3389/fmicb.2023.1098412] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The concept of the gut microbiome is emerging as a metabolic interactome influenced by diet, xenobiotics, genetics, and other environmental factors that affect the host's absorption of nutrients, metabolism, and immune system. Beyond nutrient digestion and production, the gut microbiome also functions as personalized polypharmacy, where bioactive metabolites that our microbes excrete or conjugate may reach systemic circulation and impact all organs, including the brain. Appreciable evidence shows that gut microbiota produce diverse neuroactive metabolites, particularly neurotransmitters (and their precursors), stimulating the local nervous system (i.e., enteric and vagus nerves) and affecting brain function and cognition. Several studies have demonstrated correlations between the gut microbiome and the central nervous system sparking an exciting new research field, neuromicrobiology. Microbiome-targeted interventions are seen as promising adjunctive treatments (pre-, pro-, post-, and synbiotics), but the mechanisms underlying host-microbiome interactions have yet to be established, thus preventing informed evidence-based therapeutic applications. In this paper, we review the current state of knowledge for each of the major classes of microbial neuroactive metabolites, emphasizing their biological effects on the microbiome, gut environment, and brain. Also, we discuss the biosynthesis, absorption, and transport of gut microbiota-derived neuroactive metabolites to the brain and their implication in mental disorders.
Collapse
Affiliation(s)
- Saba Miri
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - JuDong Yeo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sarah Abubaker
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Gannesen AV, Ziganshin RH, Zdorovenko EL, Klimko AI, Ianutsevich EA, Danilova OA, Tereshina VM, Gorbachevskii MV, Ovcharova MA, Nevolina ED, Martyanov SV, Shashkov AS, Dmitrenok AS, Novikov AA, Zhurina MV, Botchkova EA, Toukach PV, Plakunov VK. Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin. Front Microbiol 2022; 13:1003942. [PMID: 36204611 PMCID: PMC9530943 DOI: 10.3389/fmicb.2022.1003942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10-9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.
Collapse
Affiliation(s)
- Andrei V. Gannesen
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evelina L. Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alena I. Klimko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Ianutsevich
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Olga A. Danilova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | | | - Maria A. Ovcharova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina D. Nevolina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Sergey V. Martyanov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei A. Novikov
- Faculty of Chemical and Environmental Engineering, Gubkin University, Moscow, Russia
| | - Marina V. Zhurina
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Botchkova
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
- Faculty of Chemical and Environmental Engineering, Gubkin University, Moscow, Russia
| | - Philipp V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir K. Plakunov
- Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Jang HM, Kim JK, Joo MK, Shin YJ, Lee KE, Lee CK, Kim HJ, Kim DH. Enterococcus faecium and Pediococcus acidilactici deteriorate Enterobacteriaceae-induced depression and colitis in mice. Sci Rep 2022; 12:9389. [PMID: 35672451 PMCID: PMC9174183 DOI: 10.1038/s41598-022-13629-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2022] [Indexed: 01/14/2023] Open
Abstract
Gut dysbiosis is closely associated with the outbreak of inflammatory bowel disease (IBD) and psychiatric disorder. The Enterobacteriaceae population was higher in the feces of patients with inflammatory bowel disease (IBD-F) than in those of healthy control volunteers (HC-F). The Enterococcaceae and Lactobacillaceae populations were higher in the feces of IBD patients with depression (IBD/D+-F) vs. the feces of IBD patients without depression (IBD/D--F). Therefore, we examined the effects of Klebsiella oxytoca, Escherichia coli, Cronobacter sakazakii, Enterococcus faecium, and Pediococcus acidolactici overpopulated in IBD/D+-F and their byproducts LPS and exopolysaccharide (EPS) on the occurrence of depression and colitis in mice. Oral gavages of Klebsiella oxytoca, Escherichia coli, and Cronobacter sakazakii belonging to Enterobacteriaceae, singly or together, caused dose-dependently colitis and depression-like behaviors in germ-free and specific-pathogen-free mice. Although Enterococcus faecium and Pediococcus acidolactici did not significantly cause colitis and depression-like behaviors, they significantly deteriorated Klebsiella oxytoca- or Escherichia coli-induced colitis, neuroinflammation, and anxiety/depression-like behaviors and increased blood LPS, corticosterone, and IL-6 levels. The EPSs from Enterococcus faecium and Pediococcus acidolactici also worsened Klebsiella oxytoca LPS-induced colitis, neuroinflammation, and depression-like behaviors in mice and increased the translocation of fluorescein isothiocyanate-conjugated LPS into the hippocampus. However, Bifidobacterium longum, which was lower in IBD/D+-F vs. IBD/D--F, or its EPS suppressed them. In conclusion, Enterococcus faecium and Pediococcus acidolactici, known as a probiotic strain, and their EPSs may be a risk factor for the outbreak of depression and IBD.
Collapse
Affiliation(s)
- Hyo-Min Jang
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
- College of Pharmacy, Jeonbuk National University, 26, Jeonju, 54896, Korea
| | - Min-Kyung Joo
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Kyung-Eon Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Chang Kyun Lee
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Hyo-Jong Kim
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| |
Collapse
|
7
|
Special Issue “Enterococci for Probiotic Use: Safety and Risk”: Editorial. Microorganisms 2022; 10:microorganisms10030604. [PMID: 35336179 PMCID: PMC8951759 DOI: 10.3390/microorganisms10030604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms, their activity, and metabolites are now considered as intrinsic elements of the human body and this awareness gave was leading to the concept of holobiont [...]
Collapse
|