1
|
Wódz K, Chodkowska KA, Iwiński H, Różański H, Wojciechowski J. In Vitro Evaluation of Phytobiotic Mixture Antibacterial Potential against Enterococcus spp. Strains Isolated from Broiler Chicken. Int J Mol Sci 2024; 25:4797. [PMID: 38732016 PMCID: PMC11084370 DOI: 10.3390/ijms25094797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens.
Collapse
Affiliation(s)
- Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland;
| | | | - Hubert Iwiński
- AdiFeed Sp. z o.o., Chrzanowska 15, 05-825 Grodzisk Mazowiecki, Poland; (H.I.); (H.R.)
| | - Henryk Różański
- AdiFeed Sp. z o.o., Chrzanowska 15, 05-825 Grodzisk Mazowiecki, Poland; (H.I.); (H.R.)
- Laboratory of Industrial and Experimental Biology, Institute for Health and Economics, Carpathian State College in Krosno, Rynek 1, 38-400 Krosno, Poland
| | - Jakub Wojciechowski
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland;
| |
Collapse
|
2
|
Dikbaş N, Orman YC, Alım Ş, Uçar S, Tülek A. Evaluating Enterococcus faecium9 N-2 as a probiotic candidate from traditional village white cheese. Food Sci Nutr 2024; 12:1847-1856. [PMID: 38455208 PMCID: PMC10916548 DOI: 10.1002/fsn3.3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
In this study, various functional and probiotic attributes of the Enterococcus faecium 9 N-2 strain isolated from village-style white cheese were characterized, while also assessing its safety. To achieve this, we conducted an in vitro analysis of several key probiotic properties exhibited by the 9 N-2 strain. Notably, this strain demonstrated robust resilience to low pH, high bile salt concentrations, lysozyme, pepsin, pancreatin, and phenol. Furthermore, this strain displayed exceptional auto-aggregation capabilities and moderate co-aggregation tendencies when interacting with Escherichia coli. The cell-free supernatant derived from strain 9 N-2 exhibited significant antimicrobial activity against the tested pathogens. The strain exhibited resistance to gentamicin, meropenem, and bacitracin, while remaining susceptible to vancomycin and various other antibiotics. Furthermore, it was found that E. faecium 9 N-2 possessed the capacity to produce the phytase enzyme. When all the results of this study are evaluated, it is thought that 9 N-2 strain has superior probiotic properties, and therefore it can be used as probiotic in food, medicine, and animal feed in the future. In addition, further in vivo tests should be performed to fully understand its effects and mechanisms of action and to confirm its safety and probiotic effects. Further research and clinical trials are also needed to identify new strains with potential probiotic properties.
Collapse
Affiliation(s)
- Neslihan Dikbaş
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Yusuf Can Orman
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Şeyma Alım
- Department of Agricultural Biotechnology, Agricultural FacultyAtaturk UniversityErzurumTurkey
| | - Sevda Uçar
- Department of Herbal Production and Technologies, Faculty of Agricultural Sciences and TechnologySivas Science and Technology UniversitySivasTurkey
| | - Ahmet Tülek
- Department of Bioengineering and SciencesIğdır UniversityIğdırTurkey
| |
Collapse
|
3
|
Daca A, Jarzembowski T. From the Friend to the Foe- Enterococcus faecalis Diverse Impact on the Human Immune System. Int J Mol Sci 2024; 25:2422. [PMID: 38397099 PMCID: PMC10888668 DOI: 10.3390/ijms25042422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Enterococcus faecalis is a bacterium which accompanies us from the first days of our life. As a commensal it produces vitamins, metabolizes nutrients, and maintains intestinal pH. All of that happens in exchange for a niche to inhabit. It is not surprising then, that the bacterium was and is used as an element of many probiotics and its positive impact on the human immune system and the body in general is hard to ignore. This bacterium has also a dark side though. The plasticity and relative ease with which one acquires virulence traits, and the ability to hide from or even deceive and use the immune system to spread throughout the body make E. faecalis a more and more dangerous opponent. The statistics clearly show its increasing role, especially in the case of nosocomial infections. Here we present the summarization of current knowledge about E. faecalis, especially in the context of its relations with the human immune system.
Collapse
Affiliation(s)
- Agnieszka Daca
- Department of Physiopathology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Tomasz Jarzembowski
- Department of Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
4
|
Toquet M, Bataller E, Toledo-Perona R, Gomis J, Contreras A, Sánchez A, Jiménez-Trigos E, Gómez-Martín Á. In Vitro Interaction between Mycoplasma agalactiae and Small Ruminants' Endogenous Bacterial Strains of Enterococcus spp. and Coagulase-Negative Staphylococcus. Microorganisms 2024; 12:406. [PMID: 38399811 PMCID: PMC10891560 DOI: 10.3390/microorganisms12020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Recently, an antimicrobial effect on Mycoplasma agalactiae (Ma), the main etiological agent of contagious agalactia (CA), was reported in vitro with strains of Enterococcus spp. from ovine and caprine milk. The aim of this work was to evaluate the interaction of Ma with the same Enterococcus spp. isolated from other anatomical locations (vagina) and other bacterial populations present in milk, such as coagulase-negative staphylococci (CNS). The vaginal Enterococcus strains and the raw milk CNS were isolated from sheep and goats. Experimental in vitro conditions were prepared to assess the growth of Ma with and without the presence of these strains. The selected vaginal strains were identified as Enterococcus (E.) hirae and E. mundtii, and the strains of CNS were identified as Staphylococcus petrasii. Different interactions of Ma with ovine and caprine wild vaginal strains of Enterococcus and dairy strains of CNS are described for the first time: Ma can grow exponentially during 15 h with the selected strains, although with certain strains, its optimal growth can be negatively affected (p < 0.05). The colonization and/or excretion of Ma could, therefore, be influenced by certain endogenous bacterial strains. Our results increase the knowledge about possible bacterial ecology dynamics surrounding CA.
Collapse
Affiliation(s)
- Marion Toquet
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Esther Bataller
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Raquel Toledo-Perona
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Jesús Gomis
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Antonio Contreras
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Antonio Sánchez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Estrella Jiménez-Trigos
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| | - Ángel Gómez-Martín
- Microbiological Agents Associated with Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Carrer Tirant lo Blanc, 7, 46115 Valencia, Spain
| |
Collapse
|
5
|
Houicher A, Kuley E, Bensid A, Yazgan H, Özogul F. In vitro study of biogenic amine production and gastrointestinal stress tolerance by some enterococci strains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:500-507. [PMID: 37647551 DOI: 10.1002/jsfa.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Owing to the toxic effects of enterococci, their biogenic amine production is a negative aspect of safe strain selection and unfavourable activity in food. Additionally, the ability to tolerate acid and bile are two important traits for the selection of probiotic strains since they show the probiotic bacteria's capacity to survive throughout gastrointestinal transit. In the present work, six enterococci strains belonging to Enterococcus gallinarum and Enterococcus hirae were subjected to in vitro evaluation of their ability to produce biogenic amines and to tolerate gastrointestinal stress in order to investigate their possibility for future intended use as probiotics. RESULTS All enterococci isolates possessed good viability at low pH (pH 4) and in the presence of bile salts (0.3%), indicating their ability to survive passage through the gastrointestinal tract. In addition, selected strains had a high ability to produce tyramine in tyrosine decarboxylase broth, while medium levels of histamine were detected (below 74 mg L-1 ) in experimental media in vitro. Other biogenic amines were also formed at various levels by most of the enterococci strains. CONCLUSION All enterococci strains, with the exception of E. gallinarum DM 29, are powerful tyramine producers, and their capacity to create histamine is inferior to that of tyramine. However, more investigations are needed before considering their use as bio-preservatives or starter cultures in foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abderrahmane Houicher
- Department of Agricultural Sciences, Faculty of Science, Amar Telidji University, Laghouat, Algeria
| | - Esmeray Kuley
- Department of Fishing and Fish Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Abdelkader Bensid
- Department of Agronomy, Faculty of Natural Sciences and Life, Ziane Achour University, Djelfa, Algeria
| | - Hatice Yazgan
- Department of Food Hygiene and Technology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Fishing and Fish Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkey
| |
Collapse
|
6
|
Zheng J, Ahmad AA, Yang Y, Liang Z, Shen W, Feng M, Shen J, Lan X, Ding X. Lactobacillus rhamnosus CY12 Enhances Intestinal Barrier Function by Regulating Tight Junction Protein Expression, Oxidative Stress, and Inflammation Response in Lipopolysaccharide-Induced Caco-2 Cells. Int J Mol Sci 2022; 23:ijms231911162. [PMID: 36232464 PMCID: PMC9569798 DOI: 10.3390/ijms231911162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The intestinal barrier is vital for preventing inflammatory bowel disease (IBD). The objectives of this study were to assess whether the Lactobacillus rhamnosus CY12 could alleviate oxidative stress, inflammation, and the disruption of tight junction (TJ) barrier functions induced by lipopolysaccharide (LPS), and therefore to explore the potential underlying molecular mechanisms. Our results showed that LPS-induced Cancer coli-2 (Caco-2) cells significantly increased the levels of reactive oxygen species (ROS), lactate dehydrogenase, inflammatory cytokines interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α (IL-1β, IL-6, IL-8, and TNF-α), and the cell apoptosis rate while decreasing the levels of TJ proteins occludin, zonula occludens-1 (ZO-1), and claudin and antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase(CAT, SOD, and GSH-Px) (p < 0.05). However, Lactobacillus rhamnosus CY12 could relieve cytotoxicity, apoptosis, oxidative stress, and pro-inflammatory cytokine expressions, and also inhibit the Toll-like receptor 4/nuclear factor kappa-B(TLR4/NF-κB) signaling pathway. Furthermore, the gene expression of antioxidant enzymes, as well as the mRNA and protein expressions of TJ proteins, was improved. Particularly, the concentration of 108 cfu/mL significantly prevented the inflammatory injury induced by LPS in Caco-2 cells (p < 0.05). These findings support a potential application of Lactobacillus rhamnosus CY12 as a probiotic to prevent LPS-induced intestinal injury and treat intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou 730050, China
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou 730050, China
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730050, China
| | - Yayuan Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Feng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jiahao Shen
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xianyong Lan
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (X.L.); (X.D.); Tel.: +86-931-211-5255 (X.D.)
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Correspondence: (X.L.); (X.D.); Tel.: +86-931-211-5255 (X.D.)
| |
Collapse
|
7
|
Toc DA, Pandrea SL, Botan A, Mihaila RM, Costache CA, Colosi IA, Junie LM. Enterococcus raffinosus, Enterococcus durans and Enterococcus avium Isolated from a Tertiary Care Hospital in Romania-Retrospective Study and Brief Review. BIOLOGY 2022; 11:598. [PMID: 35453797 PMCID: PMC9030019 DOI: 10.3390/biology11040598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022]
Abstract
(1) Background: This paper aims to provide a description of non-faecalis non-faecium enterococci isolated from a tertiary care hospital in Romania and to briefly review the existing literature regarding the involvement of Enterococcus raffinosus, Enterococcus durans and Enterococcus avium in human infections and their antimicrobial resistance patterns; (2) Methods: We retrospectively analyzed all Enteroccocus species isolated from the “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology from Cluj-Napoca during one year focusing on non-faecalis non-faecium Enterococci. A brief review of the literature was performed using case reports involving Enterococcus raffinosus, Enterococcus durans and Enterococcus avium; (3) Results: Only 58 out of 658 Enteroccocus isolates were non-faecalis non-faecium and met the inclusion criteria. These species were isolated more often (p < 0.05) from the surgical ward from mixed etiology infections with E. coli. In our review, we included 39 case reports involving E. raffinosus, E. durans and E. avium; (4) Conclusions: Isolation of non-faecalis non-faecium enterococci displays an emerging trend with crucial healthcare consequences. Based on the analysis of the case reports, E. avium seems to be involved more often in neurological infections, E. durans in endocarditis, while E. raffinosus displays a more heterogenous distribution.
Collapse
Affiliation(s)
- Dan Alexandru Toc
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.L.P.); (C.A.C.); (I.A.C.); (L.M.J.)
| | - Stanca Lucia Pandrea
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.L.P.); (C.A.C.); (I.A.C.); (L.M.J.)
- Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Alexandru Botan
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.L.P.); (C.A.C.); (I.A.C.); (L.M.J.)
| | | | - Carmen Anca Costache
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.L.P.); (C.A.C.); (I.A.C.); (L.M.J.)
- Cluj County Emergency Hospital, 400000 Cluj-Napoca, Romania;
| | - Ioana Alina Colosi
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.L.P.); (C.A.C.); (I.A.C.); (L.M.J.)
| | - Lia Monica Junie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.L.P.); (C.A.C.); (I.A.C.); (L.M.J.)
| |
Collapse
|
8
|
Tarek N, El-Gendy AO, Khairalla AS, Abdel-Fattah M, Tawfik E, Azmy AF. Genomic analysis of Enterococcus durans NT21, a putative bacteriocin-producing isolate. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:143-153. [PMID: 36718242 PMCID: PMC9661671 DOI: 10.22099/mbrc.2022.44088.1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Enterococcus species are a long-standing and non-pathogenic commensal bacterium, representing an important part of the normal. Enterococcus durans is a rarely isolated species from animals and humans, and it was a tiny constituent of human oral cavity and animal intestinal flora, as well as animal-derived foods, particularly dairy products. This study evaluated the security of our strain E. durans NT21 by using whole-genome sequencing (WGS), physicochemical features, and antimicrobial activity. The complete genomic of our strain Enterococcus durans NT21was sequenced and analyzed by using several bioinformatics tools to identify bacteriocin genes, virulence genes, antibiotic resistance genes, Crispr-Cas and pathogenicity islands. The results showed that our strain NT21 lacks the presence of virulence genes, pathogenicity islands, plasmids and has only two antibiotic resistance genes. On the other hand, it produces three bacteriocin-like inhibitory substances (Enterolysin A, P and L50a). It has six gene-encoded Crisper-Cas and one cluster Crispr-Cas gene. According to our findings, E. durans NT21 is a possible probiotic strain that is safe for both human and animal use.
Collapse
Affiliation(s)
- Nashwa Tarek
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Egypt,Basic Science Department, Faculty of Oral and Dental medicine, Nahda University Beni-Suef (NUB), Beni
| | - Ahmed O. El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University
| | - Ahmed S. Khairalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University ,Department of Biology, University of Regina, Saskatchewan, Canada
| | - Medhat Abdel-Fattah
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Egypt
| | - Eman Tawfik
- Department of Botany and Microbiology,Faculty of Science, Helwan University, Egypt, Eman Tawfik and Ahmed F. Azmy contributed equally to the project.,Corresponding Author: Lecturer of Genetics and Genetic Engineering, Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt, Tel: +2 01119383526; Fax: +2 0225552468; E. mail:
| | - Ahmed F. Azmy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University , Eman Tawfik and Ahmed F. Azmy contributed equally to the project.,Corresponding Author: Lecturer of Genetics and Genetic Engineering, Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt, Tel: +2 01119383526; Fax: +2 0225552468; E. mail:
| |
Collapse
|