1
|
Mateos G, Martínez-Bonilla A, Martínez JM, Amils R. Vitamin B 12 Auxotrophy in Isolates from the Deep Subsurface of the Iberian Pyrite Belt. Genes (Basel) 2023; 14:1339. [PMID: 37510244 PMCID: PMC10378866 DOI: 10.3390/genes14071339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Vitamin B12 is an enzymatic cofactor that is essential for both eukaryotes and prokaryotes. The development of life in extreme environments depends on cofactors such as vitamin B12 as well. The genomes of twelve microorganisms isolated from the deep subsurface of the Iberian Pyrite Belt have been analyzed in search of enzymatic activities that require vitamin B12 or are involved in its synthesis and import. Results have revealed that vitamin B12 is needed by these microorganisms for several essential enzymes such as ribonucleotide reductase, methionine synthase and epoxyqueosine reductase. Isolate Desulfosporosinus sp. DEEP is the only analyzed genome that holds a set core of proteins that could lead to the production of vitamin B12. The rest are dependent on obtaining it from the subsurface oligotrophic environment in which they grow. Sought proteins involved in the import of vitamin B12 are not widespread in the sample. The dependence found in the genomes of these microorganisms is supported by the production of vitamin B12 by microorganisms such as Desulfosporosinus sp. DEEP, showing that the operation of deep subsurface biogeochemical cycles is dependent on cofactors such as vitamin B12.
Collapse
Affiliation(s)
- Guillermo Mateos
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Adrián Martínez-Bonilla
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - José M Martínez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Astrobiología (CAB-INTA), 28850 Torrejón de Ardoz, Spain
| |
Collapse
|
2
|
Hallsworth JE, Udaondo Z, Pedrós‐Alió C, Höfer J, Benison KC, Lloyd KG, Cordero RJB, de Campos CBL, Yakimov MM, Amils R. Scientific novelty beyond the experiment. Microb Biotechnol 2023; 16:1131-1173. [PMID: 36786388 PMCID: PMC10221578 DOI: 10.1111/1751-7915.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Zulema Udaondo
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Carlos Pedrós‐Alió
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Höfer
- Escuela de Ciencias del MarPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Kathleen C. Benison
- Department of Geology and GeographyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Karen G. Lloyd
- Microbiology DepartmentUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Radamés J. B. Cordero
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Claudia B. L. de Campos
- Institute of Science and TechnologyUniversidade Federal de Sao Paulo (UNIFESP)São José dos CamposSPBrazil
| | | | - Ricardo Amils
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Nicolás Cabrera n° 1, Universidad Autónoma de MadridMadridSpain
- Department of Planetology and HabitabilityCentro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| |
Collapse
|
3
|
Amils R, Escudero C, Oggerin M, Puente Sánchez F, Arce Rodríguez A, Fernández Remolar D, Rodríguez N, García Villadangos M, Sanz JL, Briones C, Sánchez-Román M, Gómez F, Leandro T, Moreno-Paz M, Prieto-Ballesteros O, Molina A, Tornos F, Sánchez-Andrea I, Timmis K, Pieper DH, Parro V. Coupled C, H, N, S and Fe biogeochemical cycles operating in the continental deep subsurface of the Iberian Pyrite Belt. Environ Microbiol 2023; 25:428-453. [PMID: 36453153 PMCID: PMC10107794 DOI: 10.1111/1462-2920.16291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Microbial activity is a major contributor to the biogeochemical cycles that make up the life support system of planet Earth. A 613 m deep geomicrobiological perforation and a systematic multi-analytical characterization revealed an unexpected diversity associated with the rock matrix microbiome that operates in the subsurface of the Iberian Pyrite Belt (IPB). Members of 1 class and 16 genera were deemed the most representative microorganisms of the IPB deep subsurface and selected for a deeper analysis. The use of fluorescence in situ hybridization allowed not only the identification of microorganisms but also the detection of novel activities in the subsurface such as anaerobic ammonium oxidation (ANAMMOX) and anaerobic methane oxidation, the co-occurrence of microorganisms able to maintain complementary metabolic activities and the existence of biofilms. The use of enrichment cultures sensed the presence of five different complementary metabolic activities along the length of the borehole and isolated 29 bacterial species. Genomic analysis of nine isolates identified the genes involved in the complete operation of the light-independent coupled C, H, N, S and Fe biogeochemical cycles. This study revealed the importance of nitrate reduction microorganisms in the oxidation of iron in the anoxic conditions existing in the subsurface of the IPB.
Collapse
Affiliation(s)
- Ricardo Amils
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Escudero
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Monike Oggerin
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Alejandro Arce Rodríguez
- Institute of Microbiology, Technical University Braunschweig, Germany
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nuria Rodríguez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - José Luis Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Briones
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Felipe Gómez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Tania Leandro
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Antonio Molina
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Fernando Tornos
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Kenneth Timmis
- Institute of Microbiology, Technical University Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
4
|
Escudero C, Amils R. Dark biosphere: Just at the very tip of the iceberg. Environ Microbiol 2023; 25:147-149. [PMID: 36307896 PMCID: PMC10100182 DOI: 10.1111/1462-2920.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Cristina Escudero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Spain
| |
Collapse
|