1
|
Abdel-Fatah SS, Mohammad NH, Elshimy R, Mosallam FM. Impeding microbial biofilm formation and Pseudomonas aeruginosa virulence genes using biologically synthesized silver Carthamus nanoparticles. Microb Cell Fact 2024; 23:240. [PMID: 39238019 PMCID: PMC11378559 DOI: 10.1186/s12934-024-02508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Long-term antibiotic treatment results in the increasing resistance of bacteria to antimicrobials drugs, so it is necessary to search for effective alternatives to prevent and treat pathogens that cause diseases. This study is aimed for biological synthesis of silver Carthamus nanoparticles (Ag-Carth-NPs) to combat microbial biofilm formation and Pseudomonas aeruginosa virulence genes. Ag-Carth-NPs are synthesized using Carthamus tenuis aqueous extract as environmentally friendly method has no harmful effect on environment. General factorial design is used to optimize Ag-Carth-NPs synthesis using three variables in three levels are Carthamus extract concentration, silver nitrate concentration and gamma radiation doses. Analysis of response data indicates gamma radiation has a significant effect on Ag-Carth-NPs production. Ag-Carth-NPs have sharp peak at λ max 425 nm, small and spherical particles with size 20.0 ± 1.22 nm, high stability up to 240 day with zeta potential around - 43 ± 0.12 mV, face centered cubic crystalline structure and FT-IR spectroscopy shows peak around 620 cm-1 that corresponding to AgNPs that stabilized by C. tenuis extract functional moiety. The antibacterial activity of Ag-Carth-NPs against pathogenic bacteria and fungi was determined using well diffusion method. The MIC values of Ag-Carth-NPs were (6.25, 6.25, 3.126, 25, 12.5, 12.5, 25 and 12.5 µg/ml), MBC values were (12.5, 12.5, 6.25, 50, 25, 25, 50 and 25 µg/ml) and biofilm inhibition% were (62.12, 68.25, 90.12, 69.51, 70.61, 71.12, 75.51 and 77.71%) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Candida tropicalis and Candida albicans respectively. Ag-Carth-NPs has bactericidal efficacy and significantly reduced the swarming, swimming motility, pyocyanin and protease production of P. aeruginosa. Furthermore, P. aeruginosa ToxA gene expression was significantly down regulated by 81.5%, while exoU reduced by 78.1%, where lasR gene expression reduction was 68%, while the reduction in exoU was 66% and 60.1% decrease in lasB gene expression after treatment with Ag-Carth-NPs. This activity is attributed to effect of Ag-Carth-NPs on cell membrane integrity, down regulation of virulence gene expression, and induction of general and oxidative stress in P. aeruginosa. Ag-Carth-NPs have no significant cytotoxic effects on normal human cell (Hfb4) but have IC50 at 5.6µg/mL against of HepG-2 cells. Limitations of the study include studies with low risks of silver nanoparticles for in vitro antimicrobial effects and its toxicity.
Collapse
Affiliation(s)
- Sobhy S Abdel-Fatah
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nasser H Mohammad
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rana Elshimy
- Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
- Microbiology and immunology, Faculty of Pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
2
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Honselmann Genannt Humme J, Dubrowska K, Grygorcewicz B, Gliźniewicz M, Paszkiewicz O, Głowacka A, Musik D, Story G, Rakoczy R, Augustyniak A. Optimised stress - intensification of pyocyanin production with zinc oxide nanoparticles. Microb Cell Fact 2024; 23:215. [PMID: 39061071 PMCID: PMC11282796 DOI: 10.1186/s12934-024-02486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Pyocyanin is a blue pigment produced by Pseudomonas aeruginosa. Due to its unique redox properties over the last decade, it has gained more and more interest as a utile chemical. Nevertheless, it remains a rather costly reagent. It was previously shown that the production of pyocyanin can be enhanced by employing various methods. Among them are using statistical methods for planning the experiments or exposing bacterial cultures to stressors such as nanoparticles dosed in sublethal concentrations, e.g. zinc oxide nanoparticles. RESULTS The Design of Experiment (DoE) methodology allowed for calculating the optimal process temperature and nanoparticle concentration to intensify pyocyanin production. Low concentrations of the nanoparticles (6.06 µg/mL) and a temperature of 32℃ enhanced pyocyanin production, whereas higher concentrations of nanoparticles (275.75 µg/mL) and higher temperature stimulated biomass production and caused the abolishment of pyocyanin production. Elevated pigment production in zinc oxide nanoparticles-supplemented media was sustained in the scaled-up culture. Conducted analyses confirmed that observed stimulation of pyocyanin production is followed by higher membrane potential, altered gene expression, generation of reactive oxygen species, and accumulation of zinc in the cell's biomass. CONCLUSIONS Pyocyanin production can be steered using ZnO nanoparticles. Elevated production of pyocyanin due to exposure to nanoparticles is followed by the number of changes in physiology of bacteria and is a result of the cellular stress. We showed that the stress response of bacteria can be optimised using statistical methods and result in producing the desired metabolite more effectively.
Collapse
Affiliation(s)
- Joanna Honselmann Genannt Humme
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland.
| | - Kamila Dubrowska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
| | - Bartłomiej Grygorcewicz
- Department of Forensic Genetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland
| | - Marta Gliźniewicz
- Department of Forensic Genetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, Szczecin, 70-111, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 50a, Szczecin, 70-311, Poland
| | - Anna Głowacka
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 50a, Szczecin, 70-311, Poland
| | - Daniel Musik
- ESC Global, Sp. z o.o., Słoneczny Sad 4F, 72-002, Dołuje, Poland
| | - Grzegorz Story
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), Piastow Avenue 42, Szczecin, 71-065, Poland
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, Szczecin, 71-065, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), Piastow Avenue 42, Szczecin, 71-065, Poland
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav- Meyer-Allee 25, 13355, Berlin, Germany
| |
Collapse
|
5
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
6
|
Cruz JN, Muzammil S, Ashraf A, Ijaz MU, Siddique MH, Abbas R, Sadia M, Saba, Hayat S, Lima RR. A review on mycogenic metallic nanoparticles and their potential role as antioxidant, antibiofilm and quorum quenching agents. Heliyon 2024; 10:e29500. [PMID: 38660254 PMCID: PMC11040063 DOI: 10.1016/j.heliyon.2024.e29500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The emergence of antimicrobial resistance among biofilm forming pathogens aimed to search for the efficient and novel alternative strategies. Metallic nanoparticles have drawn a considerable attention because of their significant applications in various fields. Numerous methods are developed for the generation of these nanoparticles however, mycogenic (fungal-mediated) synthesis is attractive due to high yields, easier handling, eco-friendly and being energy efficient when compared with conventional physico-chemical methods. Moreover, mycogenic synthesis provides fungal derived biomolecules that coat the nanoparticles thus improving their stability. The process of mycogenic synthesis can be extracellular or intracellular depending on the fungal genera used and various factors such as temperature, pH, biomass concentration and cultivation time may influence the synthesis process. This review focuses on the synthesis of metallic nanoparticles by using fungal mycelium, mechanism of synthesis, factors affecting the mycosynthesis and also describes their potential applications as antioxidants and antibiofilm agents. Moreover, the utilization of mycogenic nanoparticles as quorum quenching agent in hampering the bacterial cell-cell communication (quorum sensing) has also been discussed.
Collapse
Affiliation(s)
- Jorddy N. Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, PA, Brazil Brazil
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | | | - Rasti Abbas
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Maimona Sadia
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saba
- Department of Microbiology and Molecular Genetics, The Women University Multan, Mattital Campus, Multan, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, 66075-110, PA, Brazil Brazil
| |
Collapse
|
7
|
Hu C, He G, Yang Y, Wang N, Zhang Y, Su Y, Zhao F, Wu J, Wang L, Lin Y, Shao L. Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306070. [PMID: 38350718 PMCID: PMC11022734 DOI: 10.1002/advs.202306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Anti-virulence therapy that interferes with bacterial communication, known as "quorum sensing (QS)", is a promising strategy for circumventing bacterial resistance. Using nanomaterials to regulate bacterial QS in anti-virulence therapy has attracted much attention, which is mainly attributed to unique physicochemical properties and excellent designability of nanomaterials. However, bacterial QS is a dynamic and multistep process, and there are significant differences in the specific regulatory mechanisms and related influencing factors of nanomaterials in different steps of the QS process. An in-depth understanding of the specific regulatory mechanisms and related influencing factors of nanomaterials in each step can significantly optimize QS regulatory activity and enhance the development of novel nanomaterials with better comprehensive performance. Therefore, this review focuses on the mechanisms by which nanomaterials regulate bacterial QS in the signal supply (including signal synthesis, secretion, and accumulation) and signal transduction cascade (including signal perception and response) processes. Moreover, based on the two key influencing factors (i.e., the nanomaterial itself and the environment), optimization strategies to enhance the QS regulatory activity are comprehensively summarized. Collectively, applying nanomaterials to regulate bacterial QS is a promising strategy for anti-virulence therapy. This review provides reference and inspiration for further research on the anti-virulence application of nanomaterials.
Collapse
Affiliation(s)
- Chen Hu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Guixin He
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yujun Yang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Ning Wang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yanli Zhang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yuan Su
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
- Stomatology CenterShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)Foshan528399China
| | - Fujian Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Junrong Wu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Linlin Wang
- Hainan General Hospital·Hainan Affiliated Hospital of Hainan medical UniversityHaikou570311China
| | - Yuqing Lin
- Shenzhen Luohu People's HospitalShenzhen518000China
| | - Longquan Shao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
8
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
9
|
Maha Swetha BR, Saravanan M, Piruthivraj P. Emerging trends in the inhibition of bacterial molecular communication: An overview. Microb Pathog 2024; 186:106495. [PMID: 38070626 DOI: 10.1016/j.micpath.2023.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/02/2024]
Abstract
Quorum sensing (QS) is a molecular cell-cell communication utilized by several bacteria and some fungi. It involves cell density dependent gene expression that includes extra polymeric substance production, sporulation, antibiotic production, motility, competence, symbiosis and conjugation. These expressions were carried out by different signaling molecules like acyl homo-serine lactone (AHL) and auto-inducing peptides (AIPs) which was effluxed by gram negative and gram positive bacteria. Pathogenic bacteria and biofilms often exhibit high resistance to antibiotics, attributed to the presence of antibiotic efflux pumps, reduced membrane permeability, and enzymes that deactivate quorum sensing (QS) inhibitors. To counteract virulence and multi-drug resistance (MDR), novel strategies such as employing quorum sensing (QS) inhibitors and quorum quenchers are employed. It targets signaling molecules with synthesis and prevents the signal from binding to receptors. In this present review, the mechanisms of QS along with inhibitors from different sources are described. These strategies potentially interfere with QS and it can be applied in different fields, mainly in hospitals and marine environments where the pathogenic infections and biofilm formation are highly involved.
Collapse
Affiliation(s)
- B R Maha Swetha
- Department of Biotechnoloy, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - M Saravanan
- Department of Physics, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirapalli, 620 024, Tamil Nadu, India
| | - Prakash Piruthivraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha Univerisy, Chennai, 600 077, Tamil Nadu, India; Department of Biotechnoloy, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
10
|
Messaoudi O, Benamar I, Azizi A, Albukhaty S, Khane Y, Sulaiman GM, Salem-Bekhit MM, Hamdi K, Ghoummid S, Zoukel A, Messahli I, Kerchich Y, Benaceur F, Salem MM, Bendahou M. Characterization of Silver Carbonate Nanoparticles Biosynthesized Using Marine Actinobacteria and Exploring of Their Antimicrobial and Antibiofilm Activity. Mar Drugs 2023; 21:536. [PMID: 37888471 PMCID: PMC10608482 DOI: 10.3390/md21100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.
Collapse
Affiliation(s)
- Omar Messaoudi
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| | - Ibrahim Benamar
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| | - Ahmed Azizi
- Department of The Common Trunk Sciences and Technology, Faculty of Technology, University of Amar Telidji, Highway Ghardaia, P.O. Box G37 (M’kam), Laghouat 03000, Algeria;
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Yasmina Khane
- Faculty of Science and Technology, University of Ghardaia, BP455, Ghardaia 47000, Algeria;
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq;
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Kaouthar Hamdi
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Sirine Ghoummid
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Abdelhalim Zoukel
- Laboratory Physico-Chemistry of Materials, Laghouat University, Laghouat 03000, Algeria;
- Center for Scientific and Technical Research in Physicochemical Analysis (PTAPC-Laghouat-CRAPC), Laghouat 03000, Algeria
| | - Ilhem Messahli
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Yacine Kerchich
- École Nationale Polytechnique (ENP), Laboratory of Environmental Science and Technology, El Harrach 16200, Algeria;
| | - Farouk Benaceur
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Research Unit of Medicinal Plant (RUMP) Attached to Center of Biotechnology (CRBt, 3000, Constantine), Laghouat 03000, Algeria
| | - Mohamed M. Salem
- College of Medicine, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Mourad Bendahou
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| |
Collapse
|
11
|
Al-Otibi FO, Yassin MT, Al-Askar AA, Maniah K. Green Biofabrication of Silver Nanoparticles of Potential Synergistic Activity with Antibacterial and Antifungal Agents against Some Nosocomial Pathogens. Microorganisms 2023; 11:microorganisms11040945. [PMID: 37110368 PMCID: PMC10144991 DOI: 10.3390/microorganisms11040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Nosocomial bacterial and fungal infections are one of the main causes of high morbidity and mortality worldwide, owing to the high prevalence of multidrug-resistant microbial strains. Hence, the study aims to synthesize, characterize, and investigate the antifungal and antibacterial activity of silver nanoparticles (AgNPs) fabricated using Camellia sinensis leaves against nosocomial pathogens. The biogenic AgNPs revealed a small particle diameter of 35.761 ± 3.18 nm based on transmission electron microscope (TEM) graphs and a negative surface charge of −14.1 mV, revealing the repulsive forces between nanoparticles, which in turn indicated their colloidal stability. The disk diffusion assay confirmed that Escherichia coli was the most susceptible bacterial strain to the biogenic AgNPs (200 g/disk), while the lowest sensitive strain was found to be the Acinetobacter baumannii strain with relative inhibition zones of 36.14 ± 0.67 and 21.04 ± 0.19 mm, respectively. On the other hand, the biogenic AgNPs (200 µg/disk) exposed antifungal efficacy against Candida albicans strain with a relative inhibition zone of 18.16 ± 0.14 mm in diameter. The biogenic AgNPs exposed synergistic activity with both tigecycline and clotrimazole against A. baumannii and C. albicans, respectively. In conclusion, the biogenic AgNPs demonstrated distinct physicochemical properties and potential synergistic bioactivity with tigecycline, linezolid, and clotrimazole against gram-negative, gram-positive, and fungal strains, respectively. This is paving the way for the development of effective antimicrobial combinations for the effective management of nosocomial pathogens in intensive care units (ICUs) and health care settings.
Collapse
Affiliation(s)
- Fatimah O. Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Maniah
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Synergistic Antibacterial Proficiency of Green Bioformulated Zinc Oxide Nanoparticles with Potential Fosfomycin Synergism against Nosocomial Bacterial Pathogens. Microorganisms 2023; 11:microorganisms11030645. [PMID: 36985218 PMCID: PMC10053094 DOI: 10.3390/microorganisms11030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The drug resistance of bacterial pathogens causes considerable morbidity and death globally, hence there is a crucial necessity for the development of effective antibacterial medicines to address the antibacterial resistance issue. The bioprepared zinc oxide nanoparticles (ZnO-NPs) were prepared utilizing the flower extract of Hibiscus sabdariffa and then characterized using different physicochemical techniques. The antibacterial effectiveness of the bioprepared ZnO-NPs and their synergism with fosfomycin were evaluated using disk diffusion assay against the concerned pathogens. Transmission electron microscopy (TEM) investigation of the bioprepared ZnO-NPs showed that their average particle size was 18.93 ± 2.65 nm. Escherichia coli expressed the highest sensitivity to the bioinspired ZnO-NPs with a suppressive zone of 22.54 ± 1.26 nm at a concentration of 50 µg/disk, whereas the maximum synergistic effect of the bioinspired ZnO-NPs with fosfomycin was noticed against Klebsiella pneumoniae strain with synergism ratio of 100.29%. In conclusion, the bioinspired ZnO-NPs demonstrated significant antibacterial and synergistic efficacy with fosfomycin against the concerned nosocomial bacterial pathogens, highlighting the potential of using the ZnO NPs-fosfomycin combination for effective control of nosocomial infections in intensive care units (ICUs) and health care settings. Furthermore, the biogenic ZnO-NPs’ potential antibacterial action against food pathogens such as Salmonella typhimurium and E. coli indicates their potential usage in food packaging applications.
Collapse
|
13
|
The two faces of pyocyanin - why and how to steer its production? World J Microbiol Biotechnol 2023; 39:103. [PMID: 36864230 PMCID: PMC9981528 DOI: 10.1007/s11274-023-03548-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
The ambiguous nature of pyocyanin was noted quite early after its discovery. This substance is a recognized Pseudomonas aeruginosa virulence factor that causes problems in cystic fibrosis, wound healing, and microbiologically induced corrosion. However, it can also be a potent chemical with potential use in a wide variety of technologies and applications, e.g. green energy production in microbial fuel cells, biocontrol in agriculture, therapy in medicine, or environmental protection. In this mini-review, we shortly describe the properties of pyocyanin, its role in the physiology of Pseudomonas and show the ever-growing interest in it. We also summarize the possible ways of modulating pyocyanin production. We underline different approaches of the researchers that aim either at lowering or increasing pyocyanin production by using different culturing methods, chemical additives, physical factors (e.g. electromagnetic field), or genetic engineering techniques. The review aims to present the ambiguous character of pyocyanin, underline its potential, and signalize the possible further research directions.
Collapse
|