1
|
Yu L, Wang H, Zhang X, Xue T. Oxidative stress response in avian pathogenic Escherichia coli. Res Vet Sci 2024; 180:105426. [PMID: 39342922 DOI: 10.1016/j.rvsc.2024.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Avian pathogenic Escherichia coli (APEC) leads to significant economic losses in the poultry industry worldwide and restricts the development of the poultry industry. Oxidative stress, through the production of reactive oxygen species (ROS), damage iron‑sulfur (FeS) clusters, cysteine and methionine protein residues, and DNA, and then result in bacterial cells death. APEC has evolved a series of regulation systems to sense and quickly and appropriately respond to oxidative stress. Quorum sensing (QS), second messenger (SM), transcription factors (TFs), small regulatory RNAs (sRNAs), and two-component system (TCS) are important regulation systems ubiquitous in bacteria. It is of great significance to control APEC infection through investigating the molecular regulation mechanism on APEC adapting to oxidative stress. However, how the cross-talk among these regulation systems co-regulates transcription of oxidative stress-response genes in APEC has not been reported. This review suggests exploring connector proteins that co-regulate these regulation systems that co-activate transcription of oxidative stress-response genes to disrupt bacterial antioxidative defense mechanism in APEC, and then using these connector proteins as drug targets to control APEC infection. This review might contribute to illustrating the functional mechanism of APEC adapting to oxidative stress and exploring potential drug targets for the prevention and treatment of APEC infection.
Collapse
Affiliation(s)
- Lumin Yu
- Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276005, China.
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinglin Zhang
- Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276005, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Bi J, Yao Q, Zhang G, Hou H. The Phase-Dependent Regulation of Lux-Type Genes on the Spoilage Characteristics of Hafnia alvei. Foods 2024; 13:688. [PMID: 38472800 DOI: 10.3390/foods13050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Hafnia alvei, a specific spoilage microorganism, has a strong capacity to destroy food protein and lead to spoilage. The aim of this study was to evaluate the phase-dependent regulation of lux-type genes on the spoilage characteristics of H. alvei H4. The auto-inducer synthase gene luxI and a regulatory gene luxR of the quorum sensing systems in H. alvei H4 were knocked out to construct the mutant phenotypes. On this basis, the research found that the luxI and luxR genes had a strong positive influence on not only flagella-dependent swimming ability and biofilm formation but also the production of putrescine and cadaverine. The luxR gene could downregulate putrescine production. The maximum accumulation of putrescine in wild type, ΔluxI, ΔluxR and ΔluxIR were detected at 24 h, reaching up to 695.23 mg/L, 683.02 mg/L, 776.30 mg/L and 724.12 mg/L, respectively. However, the luxI and luxR genes have a potential positive impact on the production of cadaverine. The maximum concentration of cadaverine produced by wild type, ΔluxI, ΔluxR and ΔluxIR were 252.7 mg/L, 194.5 mg/L, 175.1 mg/L and 154.2 mg/L at 72 h. Moreover, the self-organizing map analysis revealed the phase-dependent effects of two genes on spoilage properties. The luxI gene played a major role in the lag phase, while the luxR gene mainly acted in the exponential and stationary phases. Therefore, the paper provides valuable insights into the spoilage mechanisms of H. alvei H4.
Collapse
Affiliation(s)
- Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Qiaoli Yao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, China
| |
Collapse
|
3
|
Leesombun A, Sungpradit S, Sariya L, Taowan J, Boonmasawai S. Transcriptional Profiling of the Effect of Coleus amboinicus L. Essential Oil against Salmonella Typhimurium Biofilm Formation. Antibiotics (Basel) 2023; 12:1598. [PMID: 37998800 PMCID: PMC10668763 DOI: 10.3390/antibiotics12111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella enterica serovar Typhimurium cause infections primarily through foodborne transmission and remains a significant public health concern. The biofilm formation of this bacteria also contributes to their multidrug-resistant nature. Essential oils from medicinal plants are considered potential alternatives to conventional antibiotics. Therefore, this study assessed the antimicrobial and antibiofilm activities of Coleus amboinicus essential oil (EO-CA) against S. Typhimurium ATCC 14028. Seventeen chemical compounds of EO-CA were identified, and carvacrol (38.26%) was found to be the main constituent. The minimum inhibitory concentration (MIC) of EO-CA for S. Typhimurium planktonic growth was 1024 µg/mL while the minimum bactericidal concentration was 1024 µg/mL. EO-CA at sub-MIC (≥1/16× MIC) exhibited antibiofilm activity against the prebiofilm formation of S. Typhimurium at 24 h. Furthermore, EO-CA (≥1/4× MIC) inhibited postbiofilm formation at 24 and 48 h (p < 0.05). Transcriptional profiling revealed that the EO-CA-treated group at 1/2× MIC had 375 differentially expressed genes (DEGs), 106 of which were upregulated and 269 were downregulated. Five significantly downregulated virulent DEGs responsible for motility (flhD, fljB, and fimD), curli fimbriae (csgD), and invasion (hilA) were screened via quantitative reverse transcription PCR (qRT-PCR). This study suggests the potential of EO-CA as an effective antimicrobial agent for combating planktonic and biofilm formation of Salmonella.
Collapse
Affiliation(s)
- Arpron Leesombun
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (A.L.); (S.S.)
| | - Sivapong Sungpradit
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (A.L.); (S.S.)
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (L.S.); (J.T.)
| | - Jarupha Taowan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (L.S.); (J.T.)
| | - Sookruetai Boonmasawai
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (A.L.); (S.S.)
| |
Collapse
|
4
|
Lou F, Wang K, Hou Y, Shang X, Tang F. Inhibitory effect of resveratrol on swimming motility and adhesion ability against Salmonella enterica serovar Typhimurium infection. Microb Pathog 2023; 184:106323. [PMID: 37633505 DOI: 10.1016/j.micpath.2023.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) is a common Gram-negative foodborne pathogen that threatens public health and hinders the development of livestock industry. Resveratrol, an important component in grape fruits and seeds, has been shown to possess multiple biological activities, but its potential effects on S. typhimurium-mediated virulence have been rarely reported. In this study, we investigated the effect of resveratrol on S. typhimurium flagella -mediated virulence. The results showed that resveratrol significantly reduced the transcription of flagella genes and swimming motility of S. typhimurium, and also inhibited the transcription of T3SS-related virulence genes with varying degrees inhibiting bacterial growth. Simultaneously, resveratrol significantly reduced the adhesion of S. typhimurium to HeLa cells. Unfortunately, resveratrol does not improve the survival rate of S. typhimurium-infected mice, but it reduces the bacterial load in the liver and spleen of infected mice, and it also has a certain degree of anti-inflammatory activity. In summary, these results indicated that resveratrol has the potential to be developed as an alternative drug or antibacterial agent to prevent Salmonella infection.
Collapse
Affiliation(s)
- Fei Lou
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Kunli Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yunfeng Hou
- Shandong Jinzhuji Pharmaceuticals Co. Ltd., Jinan, 271100, Shandong, China
| | - Xiaolei Shang
- Shandong Jinzhuji Pharmaceuticals Co. Ltd., Jinan, 271100, Shandong, China
| | - Fayin Tang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Pakbin B, Brück WM, Brück TB. Molecular Mechanisms of Shigella Pathogenesis; Recent Advances. Int J Mol Sci 2023; 24:2448. [PMID: 36768771 PMCID: PMC9917014 DOI: 10.3390/ijms24032448] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Shigella species are the main cause of bacillary diarrhoea or shigellosis in humans. These organisms are the inhabitants of the human intestinal tract; however, they are one of the main concerns in public health in both developed and developing countries. In this study, we reviewed and summarised the previous studies and recent advances in molecular mechanisms of pathogenesis of Shigella Dysenteriae and non-Dysenteriae species. Regarding the molecular mechanisms of pathogenesis and the presence of virulence factor encoding genes in Shigella strains, species of this bacteria are categorised into Dysenteriae and non-Dysenteriae clinical groups. Shigella species uses attachment, invasion, intracellular motility, toxin secretion and host cell interruption mechanisms, causing mild diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome diseases in humans through the expression of effector delivery systems, protein effectors, toxins, host cell immune system evasion and iron uptake genes. The investigation of these genes and molecular mechanisms can help us to develop and design new methods to detect and differentiate these organisms in food and clinical samples and determine appropriate strategies to prevent and treat the intestinal and extraintestinal infections caused by these enteric pathogens.
Collapse
Affiliation(s)
- Babak Pakbin
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Thomas B. Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
| |
Collapse
|