1
|
Marquiegui – Alvaro A, Kottara A, Chacón M, Cliffe L, Brockhurst M, Dixon N. Genetic Bioaugmentation-Mediated Bioremediation of Terephthalate in Soil Microcosms Using an Engineered Environmental Plasmid. Microb Biotechnol 2025; 18:e70071. [PMID: 39801293 PMCID: PMC11725763 DOI: 10.1111/1751-7915.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown. Our engineered plasmid caused a low fitness cost and was stably maintained in terephthalate-contaminated soil by the bacterium P. putida. Plasmid carriers efficiently bioremediated contaminated soil in model soil microcosms, achieving complete breakdown of 3.2 mg/g of terephthalate within 8 days. The engineered plasmid horizontally transferred the synthetic operon to P. fluorescens in situ, and the resulting transconjugants degraded 10 mM terephthalate during a 180-h incubation. Our findings show that environmental plasmids carrying synthetic catabolic operons can be useful tools for in situ engineering of microbial communities to perform clean-up even of complex environments like soil.
Collapse
Affiliation(s)
| | - Anastasia Kottara
- School of Biological SciencesThe University of ManchesterManchesterUK
| | - Micaela Chacón
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | - Lisa Cliffe
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | | | - Neil Dixon
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| |
Collapse
|
2
|
Sugitha S, Vishnu Priya P, Kavya Kanishka T, Duraimurugan A, Suganthi M, Ashok Kumar K, Jayanthi M, Durgadevi R, Ramprasath C, Abirami G. Mycoremediation of heavy metals by Curvularia lunata from Buckingham Canal, Neelankarai, Chennai. World J Microbiol Biotechnol 2024; 41:1. [PMID: 39690253 DOI: 10.1007/s11274-024-04218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
The spread and mobilization of toxic heavy metals in the environment have increased to a harmful level in recent years as a result of the fast industrialization occurring all over the world to meet the demands of a rising population. This research aims to analyze and evaluate the mycoremediation abilities of fungal strains that exhibit tolerance to heavy metals, gathered from water samples at Buckingham Canal, Neelankarai, Chennai. Water samples were examined for heavy metal analysis, and the highest toxic heavy metals, Zn, Pb, Mn, Cu, and Cr, were recorded. Three fungal strains were isolated and named EBPL1000, EBPL1001, and EBPL1002 were selected by primary screening (100 ppm) for further studies. Out of three fungal isolates, EBPL1000 grew in all five heavy metal concentrations and showed 2100 ppm as the highest Maximum Tolerance Concentration toward Lead, 2000 ppm tolerance in Zinc and Manganese, 1700 ppm in Chromium, and 1500 ppm in copper, respectively. The fungal isolate EBPL1000 was identified as Curvularia lunata with 100% percentage identity and query coverage. The Biosorption result reveals that lead is the highest biosorbed heavy metal with 79.99% at 100 ppm concentration while copper is the lowest biosorbed with 24.11% heavy metal at 500 ppm concentration. The uptake of Manganese by Curvularia lunata biomass was the highest (5.64 mg/g) of all heavy metal's uptake at 100 ppm concentration. The lowest uptake of heavy metals was copper (0.43 mg/g) at 500 ppm concentration, and the growth profile study under heavy metals stress conditions shows the order of Pb > Mn > Zn > Cr > Cu at 60 h of time intervals at 100 ppm concentration. In addition to the research, FTIR analysis and Molecular Docking studies provide credence to the idea that Curvularia lunata has high biosorption potential and uptake or removal of toxic heavy metals at low cost and in an eco-friendly way from the contaminated environment.
Collapse
Affiliation(s)
- S Sugitha
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - P Vishnu Priya
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - Tadela Kavya Kanishka
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - A Duraimurugan
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - M Suganthi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - K Ashok Kumar
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - M Jayanthi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - R Durgadevi
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India
| | - C Ramprasath
- Eukpro Biotech Private Limited, Chrompet, Chennai, Tamil Nadu, India
| | - G Abirami
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Shehzad K, Tu S, Majeed MZ, Lei B, Zhang J. Arthropods in soil reclamation and bioremediation: Functional roles, mechanisms and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122820. [PMID: 39393333 DOI: 10.1016/j.jenvman.2024.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Soil arthropods are a diverse group of invertebrates that play pivotal roles in nutrient cycling, decomposition, soil structure formation, and regulation of soil biodiversity. Understanding the ecological significance of soil arthropods and their interactions with other soil organisms is crucial. This review paper examines the potential of arthropods in improving soil health and quality, with a specific focus on their relevance in acidic, saline/alkaline, and contaminated soils. The paper investigates the interactions between arthropods and their associated microbiomes, their contributions to soil physical and chemical properties, their influence on nutrient cycling and organic matter mineralization, as well as their role as indicators of soil health due to their sensitivity to environmental changes. Furthermore, the review explores how arthropods enhance the activities of microorganisms, such as bacteria, fungi, and yeast, which employ molecular mechanisms to remediate heavy metal contamination in soils. Lastly, the paper addresses key challenges and future directions for utilizing soil arthropods in the restoration of environmentally friendly soils.
Collapse
Affiliation(s)
- Khurram Shehzad
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuxin Tu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Muhammad Zeeshan Majeed
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bo Lei
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
5
|
Lu Z, Wang H, Wang Z, Liu J, Li Y, Xia L, Song S. Critical steps in the restoration of coal mine soils: Microbial-accelerated soil reconstruction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122200. [PMID: 39182379 DOI: 10.1016/j.jenvman.2024.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Soil reconstruction is a critical step in the restoration of environments affected by mining activities. This paper provides a comprehensive review of the significant role that microbial processes play in expediting soil structure formation, particularly within the context of mining environment restoration. Coal gangue and flotation tailings, despite their low carbon content and large production volumes, present potential substrates for soil reclamation. These coal-based solid waste materials can be utilized as substrates to produce high-quality soil and serve as an essential carbon source to enhance poor soil conditions. However, extracting active organic carbon components from coal-based solid waste presents a significant challenge due to its complex mineral composition. This article offers a thorough review of the soilization process of coal-based solid waste under the influence of microorganisms. It begins by briefly introducing the primary role of in situ microbial remediation technology in the soilization process. It then elaborates on various improvements to soil structure under the influence of microorganisms, including the enhancement of soil aggregate structure and soil nutrients. The article concludes with future recommendations aimed at improving the efficiency of soil reconstruction and restoration, reducing environmental risks, and promoting its application in complex environments. This will provide both theoretical and practical support for more effective environmental restoration strategies.
Collapse
Affiliation(s)
- Zijing Lu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Hengshuang Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Zhixiang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Jiazhi Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| | - Yinta Li
- Department of Food Engineering, Weihai Ocean Vocational College, Haiwan South Road 1000, Weihai, 264300, Shandong, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China.
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430072, Hubei, China
| |
Collapse
|
6
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Sijtsma L, Suarez JE, Sundh I, Botteon A, Fulvio B, Correia S, Herman L. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 20: Suitability of taxonomic units notified to EFSA until March 2024. EFSA J 2024; 22:e8882. [PMID: 39040570 PMCID: PMC11261301 DOI: 10.2903/j.efsa.2024.8882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. The TUs in the QPS list were updated based on a verification, against their respective authoritative databases, of the correctness of the names and completeness of synonyms. A new procedure has been established to ensure the TUs are kept up to date in relation to recent taxonomical insights. Of 83 microorganisms notified to EFSA between October 2023 and March 2024 (47 as feed additives, 25 as food enzymes or additives, 11 as novel foods), 75 were not evaluated because: 15 were filamentous fungi, 1 was Enterococcus faecium, 10 were Escherichia coli, 1 was a Streptomyces (all excluded from the QPS evaluation) and 48 were TUs that already have a QPS status. Two of the other eight notifications were already evaluated for a possible QPS status in the previous Panel Statement: Heyndrickxia faecalis (previously Weizmannia faecalis) and Serratia marcescens. One was notified at genus level so could not be assessed for QPS status. The other five notifications belonging to five TUs were assessed for possible QPS status. Akkermansia muciniphila and Actinomadura roseirufa were still not recommended for QPS status due to safety concerns. Rhizobium radiobacter can be recommended for QPS status with the qualification for production purposes. Microbacterium arborescens and Burkholderia stagnalis cannot be included in the QPS list due to a lack of body of knowledge for its use in the food and feed chain and for B. stagnalis also due to safety concerns. A. roseirufa and B. stagnalis have been excluded from further QPS assessment.
Collapse
|
7
|
Monaco P, Baldoni A, Naclerio G, Scippa GS, Bucci A. Impact of Plant-Microbe Interactions with a Focus on Poorly Investigated Urban Ecosystems-A Review. Microorganisms 2024; 12:1276. [PMID: 39065045 PMCID: PMC11279295 DOI: 10.3390/microorganisms12071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The urbanization process, which began with the Industrial Revolution, has undergone a considerable increase over the past few decades. Urbanization strongly affects ecological processes, often deleteriously, because it is associated with a decrease in green spaces (areas of land covered by vegetation), loss of natural habitats, increased rates of species extinction, a greater prevalence of invasive and exotic species, and anthropogenic pollutant accumulation. In urban environments, green spaces play a key role by providing many ecological benefits and contributing to human psychophysical well-being. It is known that interactions between plants and microorganisms that occur in the rhizosphere are of paramount importance for plant health, soil fertility, and the correct functioning of plant ecosystems. The growing diffusion of DNA sequencing technologies and "omics" analyses has provided increasing information about the composition, structure, and function of the rhizomicrobiota. However, despite the considerable amount of data on rhizosphere communities and their interactions with plants in natural/rural contexts, current knowledge on microbial communities associated with plant roots in urban soils is still very scarce. The present review discusses both plant-microbe dynamics and factors that drive the composition of the rhizomicrobiota in poorly investigated urban settings and the potential use of beneficial microbes as an innovative biological tool to face the challenges that anthropized environments and climate change impose. Unravelling urban biodiversity will contribute to green space management, preservation, and development and, ultimately, to public health and safety.
Collapse
Affiliation(s)
- Pamela Monaco
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| | | | | | | | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| |
Collapse
|
8
|
Chia XK, Hadibarata T, Kristanti RA, Jusoh MNH, Tan IS, Foo HCY. The function of microbial enzymes in breaking down soil contaminated with pesticides: a review. Bioprocess Biosyst Eng 2024; 47:597-620. [PMID: 38456898 PMCID: PMC11093808 DOI: 10.1007/s00449-024-02978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
The use of pesticides and the subsequent accumulation of residues in the soil has become a worldwide problem. Organochlorine (OC) pesticides have spread widely in the environment and caused contamination from past agricultural activities. This article reviews the bioremediation of pesticide compounds in soil using microbial enzymes, including the enzymatic degradation pathway and the recent development of enzyme-mediated bioremediation. Enzyme-mediated bioremediation is divided into phase I and phase II, where the former increases the solubility of pesticide compounds through oxidation-reduction and hydrolysis reactions, while the latter transforms toxic pollutants into less toxic or nontoxic products through conjugation reactions. The identified enzymes that can degrade OC insecticides include dehalogenases, phenol hydroxylase, and laccases. Recent developments to improve enzyme-mediated bioremediation include immobilization, encapsulation, and protein engineering, which ensure its stability, recyclability, handling and storage, and better control of the reaction.
Collapse
Affiliation(s)
- Xing Kai Chia
- Environmental Engineering Program, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Tony Hadibarata
- Environmental Engineering Program, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih I, Jakarta, 14430, Indonesia
| | | | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| |
Collapse
|
9
|
Saravanan A, Thamarai P, Deivayanai VC, Karishma S, Shaji A, Yaashikaa PR. Current strategies on bioremediation of personal care products and detergents: Sustainability and life cycle assessment. CHEMOSPHERE 2024; 354:141698. [PMID: 38490608 DOI: 10.1016/j.chemosphere.2024.141698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The increased use of personal care products and detergents in modern society has raised concerns about their potential adverse effects on the environment. These products contain various chemical compounds that can persist in water bodies, leading to water pollution and ecological disturbances. Bioremediation has emerged as a promising approach to address these challenges, utilizing the natural capabilities of microorganisms to degrade or remove these contaminants. This review examines the current strategies employed in the bioremediation of personal care products and detergents, with a specific focus on their sustainability and environmental impact. This bioremediation is essential for environmental rejuvenation, as it uses living organisms to detergents and other daily used products. Its distinctiveness stems from sustainable, nature-centric ways that provide eco-friendly solutions for pollution eradication and nurturing a healthy planet, all while avoiding copying. Explores the use of microbial consortia, enzyme-based treatments, and novel biotechnological approaches in the context of environmental remediation. Additionally, the ecological implications and long-term sustainability of these strategies are assessed. Understanding the strengths and limitations of these bioremediation techniques is essential for developing effective and environmentally friendly solutions to mitigate the impact of personal care products and detergents on ecosystems.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
10
|
Sorlin P, Brivet E, Jean-Pierre V, Aujoulat F, Besse A, Dupont C, Chiron R, Jumas-Bilak E, Menetrey Q, Marchandin H. Prevalence and variability of siderophore production in the Achromobacter genus. Microbiol Spectr 2024; 12:e0295323. [PMID: 38315029 PMCID: PMC10913535 DOI: 10.1128/spectrum.02953-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024] Open
Abstract
Achromobacter spp. are opportunistic pathogens of environmental origin increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). Despite recent advances, their virulence factors remain incompletely studied, and siderophore production has not yet been investigated in this genus. The aim of this study was to evaluate the production of siderophores in a large collection of Achromobacter spp. and evaluate the variability according to the origin of the strain and species. A total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) and 35 strains of environmental origin. Siderophores were quantified by the liquid chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most represented (51.5% of strains). Siderophore production was observed in 72.4% of the strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly higher prevalence of siderophore-producing strains and greater production of siderophores were observed for clinical strains compared with strains of environmental origin. Highly variable observations were made according to species: A. xylosoxidans presented unique characteristics (one of the highest prevalence of producing strains and highest amounts produced, particularly by CF strains). Siderophores are important factors for bacterial growth commonly produced by members of the Achromobacter genus. The significance of the observations made during this study must be further investigated. Indeed, the differences observed according to species and the origin of strains suggest that siderophores may represent important determinants of the pathophysiology of Achromobacter spp. infections and also contribute to the particular epidemiological success of A. xylosoxidans in human infections. IMPORTANCE Achromobacter spp. are recognized as emerging opportunistic pathogens in humans with various underlying diseases, including cystic fibrosis (CF). Although their pathophysiological traits are increasingly studied, their virulence factors remain incompletely described. Particularly, siderophores that represent important factors of bacterial growth have not yet been studied in this genus. A population-based study was performed to explore the ability of members of the Achromobacter genus to produce siderophores, both overall and in relevant subgroups (Achromobacter species; strain origin, either clinical-from CF or non-CF patients-or environmental). This study provides original data showing that siderophore production is a common trait of Achromobacter strains, particularly observed among clinical strains. The major species, Achromobacter xylosoxidans, encompassed both one of the highest prevalence of siderophore-producing strains and strains producing the largest amounts of siderophores, particularly observed for CF strains. These observations may represent additional advantages accounting for the epidemiological success of this species.
Collapse
Affiliation(s)
- P. Sorlin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - E. Brivet
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - V. Jean-Pierre
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| | - F. Aujoulat
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - A. Besse
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - C. Dupont
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire de Bactériologie, CHU de Montpellier, Montpellier, France
| | - R. Chiron
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, Montpellier, France
| | - E. Jumas-Bilak
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire d’Écologie Microbienne Hospitalière, CHU de Montpellier, Montpellier, France
| | - Q. Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, Lille, France
| | - H. Marchandin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| |
Collapse
|
11
|
Firincă C, Zamfir LG, Constantin M, Răut I, Capră L, Popa D, Jinga ML, Baroi AM, Fierăscu RC, Corneli NO, Postolache C, Doni M, Gurban AM, Jecu L, Șesan TE. Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. J Xenobiot 2023; 14:51-78. [PMID: 38249101 PMCID: PMC10801475 DOI: 10.3390/jox14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Contamination of soil with heavy metals has become a matter of global importance due to its impact on agriculture, environmental integrity, and therefore human health and safety. Several microbial strains isolated from soil contaminated by long-term chemical and petrochemical activities were found to manifest various levels of tolerance to Cr, Pb, and Zn, out of which Bacillus marisflavi and Trichoderma longibrachiatum exhibited above-moderate tolerance. The concentrations of target heavy metals before and after bioremediation were determined using electrochemical screen-printed electrodes (SPE) modified with different nanomaterials. The morpho-structural SEM/EDX analyses confirmed the presence of metal ions on the surface of the cell, with metal uptake being mediated by biosorption with hydroxyl, carboxyl, and amino groups as per FTIR observations. T. longibrachiatum was observed to pose a higher bioremediation potential compared to B. marisflavi, removing 87% of Cr and 67% of Zn, respectively. Conversely, B. marisflavi removed 86% of Pb from the solution, compared to 48% by T. longibrachiatum. Therefore, the fungal strain T. longibrachiatum could represent a viable option for Cr and Zn bioremediation strategies, whereas the bacterial strain B. marisflavi may be used in Pb bioremediation applications.
Collapse
Affiliation(s)
- Cristina Firincă
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Lucian-Gabriel Zamfir
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Mariana Constantin
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
- Department of Pharmacy, Faculty of Pharmacy, University Titu Maiorescu of Bucharest, 040441 Bucharest, Romania
| | - Iuliana Răut
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Luiza Capră
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Diana Popa
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Maria-Lorena Jinga
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Anda Maria Baroi
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Radu Claudiu Fierăscu
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Nicoleta Olguța Corneli
- National Institute of Research and Development for Microbiology and Immunology—Cantacuzino, 103 Spl. Independenței, 050096 Bucharest, Romania
| | - Carmen Postolache
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Mihaela Doni
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Ana-Maria Gurban
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Luiza Jecu
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Tatiana Eugenia Șesan
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
- Field Crop Section, Academy of Agricultural and Forestry Sciences, Bd Mărăști 61, 011464 Bucharest, Romania
| |
Collapse
|
12
|
Yang Q, Jie S, Lei P, Gan M, He P, Zhu J, Zhou Q. Effect of Anthropogenic Disturbances on the Microbial Relationship during Bioremediation of Heavy Metal-Contaminated Sediment. Microorganisms 2023; 11:1185. [PMID: 37317159 DOI: 10.3390/microorganisms11051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Soil, sediment, and waters contaminated with heavy metals pose a serious threat to ecosystem function and human health, and microorganisms are an effective way to address this problem. In this work, sediments containing heavy metals (Cu, Pb, Zn, Mn, Cd, As) were treated differently (sterilized and unsterilized) and bio-enhanced leaching experiments were carried out with the addition of exogenous iron-oxidizing bacteria A. ferrooxidans and sulfur-oxidizing bacteria A. thiooxidans. The leaching of As, Cd, Cu, and Zn was higher in the unsterilized sediment at the beginning 10 days, while heavy metals leached more optimally in the later sterilized sediment. The leaching of Cd from sterilized sediments was favored by A. ferrooxidans compared to A. thiooxidans. Meanwhile, the microbial community structure was analyzed using 16S rRNA gene sequencing, which revealed that 53.4% of the bacteria were Proteobacteria, 26.22% were Bacteroidetes, 5.04% were Firmicutes, 4.67% were Chlamydomonas, and 4.08% were Acidobacteria. DCA analysis indicated that microorganisms abundance (diversity and Chao values) increased with time. Furthermore, network analysis showed that complex networks of interactions existed in the sediments. After adapting to the acidic environmental conditions, the growth of some locally dominant bacteria increased the microbial interactions, allowing more bacteria to participate in the network, making their connections stronger. This evidence points to a disruption in the microbial community structure and its diversity following artificial disturbance, which then develops again over time. These results could contribute to the understanding of the evolution of microbial communities in the ecosystem during the remediation of anthropogenically disturbed heavy metals.
Collapse
Affiliation(s)
- Quanliu Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shiqi Jie
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Pan Lei
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Qingming Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|