1
|
Maladan Y, Retnaningrum E, Daryono BS, Salsabila K, Sarassari R, Khoeri MM, Sari RF, Balqis SA, Wahid GA, Safari D. Pneumococcal transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of serotype 19F in Indonesia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105672. [PMID: 39313084 DOI: 10.1016/j.meegid.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Genetic evolution of resistance due to mutations and transposon insertions is the primary cause of antimicrobial resistance in Streptococcus pneumoniae. Resistance to macrolide, tetracycline, and chloramphenicol is caused by the insertion of specific genes that carried by transposon (Tn). This study aims to analyze transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of S. pneumoniae serotype 19F in Indonesia. S. pneumoniae serotype 19F isolates were collected from nasopharyngeal swab specimens from different regions in Indonesia. Genomic DNA was extracted from sixteen isolates and whole genome sequencing was performed on Illumina platform. Raw sequence data were analyzed using de novo assembly by ASA3P and Microscope server. The presence of transposons was identified with detection of int and xis genes and visualized by pyGenomeViz. The genome size of S. pneumoniae ranges from 2,040,117 bp to 2,437,939 bp, with a GC content of around 39 %. ST1464 (4/16) and ST271 (3/16) were found as the predominant sequence type among isolates. Tn2010 was the most common transposon among S. pneumoniae serotype 19F isolates (7/16) followed by Tn2009 (4/16), and Tn5253 (3/16). We identified two deletion sites within the tetM gene (2 bp and 58 bp) that confer tetracycline susceptibility from one isolate. This study suggests that genomic analysis can be employed for the detection and surveillance of antimicrobial resistance genes among S. pneumoniae strains isolated from various regions in Indonesia.
Collapse
Affiliation(s)
- Yustinus Maladan
- Biology Doctoral Students, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia; Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Endah Retnaningrum
- Microbiology Laboratory, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Budi Setiadi Daryono
- Genetics Laboratory, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Korrie Salsabila
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Rosantia Sarassari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Miftahuddin Majid Khoeri
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia; Doctoral program in Biomedical, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Ratna Fathma Sari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Sarah Azhari Balqis
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Ghina Athyah Wahid
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Dodi Safari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia.
| |
Collapse
|
2
|
Tirziu M, Colombini L, Stincarelli MA, Cuppone AM, Lazzeri E, Santoro F, Pozzi G, Iannelli F. A nisin-inducible chromosomal gene expression system based on ICE Tn5253 of Streptococcus pneumoniae, transferable among streptococci and enterococci. World J Microbiol Biotechnol 2024; 40:319. [PMID: 39261358 PMCID: PMC11390789 DOI: 10.1007/s11274-024-04124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The present work reports the development and validation of a chromosomal expression system in Streptococcus pneumoniae which permits gene expression under the control of Lactococcus lactis lantibiotic nisin. The system is based on the integrative and conjugative element (ICE) Tn5253 of S. pneumoniae capable of site-specific chromosomal integration and conjugal transfer to a variety of bacterial species. We constructed an insertion vector that integrates in Tn5251, an ICE contained in Tn5253, which carries the tetracycline resistance tet(M) gene. The vector contains the nisRK regulatory system operon, the L. lactis nisin inducible promoter PnisA upstream of a multiple cloning site for target DNA insertion, and is flanked by two DNA regions of Tn5251 which drive homologous recombination in ICE Tn5253. For system evaluation, the emm6.1::ha1 fusion gene was cloned and integrated into the chromosome of the Tn5253-carrying pneumococcal strain FR24 by transformation. This gene encodes a fusion protein containing the signal peptide, the 122 N-terminal and the 140 C-terminal aa of the Streptococcus pyogenes M6 surface protein joined to the HA1 subunit of the influenza virus A hemagglutinin. Quantitative RT-PCR analysis carried out on total RNA purified from nisin treated and untreated cultures showed an increase in emm6.1::ha1 transcript copy number with growing nisin concentration. The expression of M6-HA1 protein was detected by Western blot and quantified by Dot blot, while Flow cytometry analysis confirmed the presence on the pneumococcal surface. Recombinant ICE Tn5253::[nisRK]-[emm6.1::ha1] containing the nisin-inducible expression system was successfully transferred by conjugation in different streptococcal species including Streptococcus gordonii, S. pyogenes, Streptococcus agalactiae and Enterococcus faecalis. As for S. pneumoniae, the emm6.1::ha1 transcript copy number and the amount of M6-HA1 protein produced correlated with the nisin concentration used for induction in all investigated bacterial hosts. We demonstrated that this host-vector expression system is stably integrated as a single copy within the bacterial chromosome, is transferable to both transformable and non transformable bacterial species, and allows fine tuning of protein expression modulated by nisin concentration. These characteristics make our system suitable for a wide range of applications including complementation assays, physiological studies, host-pathogen interaction studies.
Collapse
Affiliation(s)
- Mariana Tirziu
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Maria Alfreda Stincarelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Anna Maria Cuppone
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy.
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of SienaViale Bracci, Policlinico Le Scotte, V Lotto I Piano, 53100, Siena, Italy.
| |
Collapse
|
3
|
Bivona D, Bonomo C, Colombini L, Bonacci PG, Privitera GF, Caruso G, Caraci F, Santoro F, Musso N, Bongiorno D, Iannelli F, Stefani S. Generation and Characterization of Stable Small Colony Variants of USA300 Staphylococcus aureus in RAW 264.7 Murine Macrophages. Antibiotics (Basel) 2024; 13:264. [PMID: 38534699 DOI: 10.3390/antibiotics13030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Intracellular survival and immune evasion are typical features of staphylococcal infections. USA300 is a major clone of methicillin-resistant S. aureus (MRSA), a community- and hospital-acquired pathogen capable of disseminating throughout the body and evading the immune system. Carnosine is an endogenous dipeptide characterized by antioxidant and anti-inflammatory properties acting on the peripheral (macrophages) and tissue-resident (microglia) immune system. In this work, RAW 264.7 murine macrophages were infected with the USA300 ATCC BAA-1556 S. aureus strain and treated with 20 mM carnosine and/or 32 mg/L erythromycin. Stable small colony variant (SCV) formation on blood agar medium was obtained after 48 h of combined treatment. Whole genome sequencing of the BAA-1556 strain and its stable derivative SCVs when combining Illumina and nanopore technologies revealed three single nucleotide differences, including a nonsense mutation in the shikimate kinase gene aroK. Gene expression analysis showed a significant up-regulation of the uhpt and sdrE genes in the stable SCVs compared with the wild-type, likely involved in adaptation to the intracellular milieu.
Collapse
Affiliation(s)
- Dalida Bivona
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Carmelo Bonomo
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Paolo G Bonacci
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Grete F Privitera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Nicolò Musso
- Biochemical Section, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Dafne Bongiorno
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Stefania Stefani
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy
| |
Collapse
|
4
|
Colombini L, Santoro F, Tirziu M, Lazzeri E, Morelli L, Pozzi G, Iannelli F. The mobilome of Lactobacillus crispatus M247 includes two novel genetic elements: Tn 7088 coding for a putative bacteriocin and the siphovirus prophage ΦM247. Microb Genom 2023; 9:001150. [PMID: 38085804 PMCID: PMC10763512 DOI: 10.1099/mgen.0.001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Lactobacillus crispatus is a member of the vaginal and gastrointestinal human microbiota. Here we determined the complete genome sequence of the probiotic strain M247 combining Nanopore and Illumina technologies. The M247 genome is organized in one circular chromosome of 2 336 109 bp, with a GC content of 37.04 % and 2303 ORFs, of which 1962 could be annotated. Analysis of the M247 mobilome, which accounts for 14 % of the whole genome, revealed the presence of: (i) Tn7088, a novel 14 105 bp long integrative and mobilizable element (IME) containing 16 ORFs; (ii) ΦM247, a novel 42 510 bp long siphovirus prophage containing 52 ORFs; (iii) three clustered regularly interspaced short palindromic repeats (CRISPRs); and (iv) 226 insertion sequences (ISs) belonging to 14 different families. Tn7088 has a modular organization including a mobilization module encoding FtsK homologous proteins and a relaxase, an integration/excision module coding for an integrase and an excisionase, and an adaptation module coding for a class I bacteriocin and homologous to the listeriolysin S (lls) locus of Listeria monocytogenes. Genome-wide homology search analysis showed the presence of Tn7088-like elements in 12 out of 23 L. crispatus complete public genomes. Mobilization and integration/excision modules are essentially conserved, while the adaptation module is variable since it is the target site for the integration of different ISs. Prophage ΦM247 contains genes for phage structural proteins, DNA replication and packaging, lysogenic and lytic cycles. ΦM247-like prophages are present in seven L. crispatus complete genomes, with sequence variability mainly due to the integration of ISs. PCR and sequencing showed that the Tn7088 IME excises from the M247 chromosome producing a circular form at a concentration of 4.32×10-5 copies per chromosome, and reconstitution of the Tn7088 chromosomal target site occurred at 6.65×10-4 copies per chromosome. The ΦM247 prophage produces an excised form and a reconstituted target site at a level of 3.90×10-5 and 2.48×10-5 copies per chromosome, respectively. This study identified two novel genetic elements in L. crispatus. Tn7088 represents the first example of an IME carrying a biosynthetic gene cluster for a class I bacteriocin in L. crispatus.
Collapse
Affiliation(s)
- Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mariana Tirziu
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Lorenzo Morelli
- Università Cattolica del Sacro Cuore, Department of Food Science and Technologies for a Sustainable Agri-food Supply Chain (DiSTAS), University of Piacenza, 53100 Piacenza, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
5
|
Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M. Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system. FEMS Microbiol Rev 2023; 47:fuad052. [PMID: 37715317 PMCID: PMC10532202 DOI: 10.1093/femsre/fuad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, C/Albert Einstein 22, PCTCAN, 39011 Santander, Spain
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine
, Universiti Sultan Zainal Abidin, Jalan Sultan Mahumd, 20400 Kuala Terengganu, Malaysia
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|