1
|
Wang Z, Guo L, Dong P, Zhu X, Li J, Cui L, Dong J, Liu K, Meng X, Wang H. Dimethyl fumarate alleviates Staphylococcus pseudintermedius-induced cell damage by inhibiting pyroptosis and bacterial virulence. Exp Eye Res 2024; 251:110210. [PMID: 39681234 DOI: 10.1016/j.exer.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
The resistance of pathogenic bacteria to various clinical antibiotics is the major problem in treating bacterial keratitis. Dimethyl fumarate (DMF) has good anti-fungal and anti-inflammatory effects in fungal keratitis, but its effect on bacterial keratitis is unclear. This study aims to investigate DMF's anti-inflammatory and antibacterial effects. The pyroptosis model was constructed by intracellular infection of canine corneal epithelial cells (CCECs) with Staphylococcus pseudintermedius (S. pseudintermedius), and 200 μM DMF was added to explore its function. Western blot, ELISA, immunostaining, flow cytometry, qRT-PCR, and bacterial counts were used to examine the expression of the NLRP3-GSDMD signaling pathway, virulence genes, and oxidant mediators. 111 clinical keratitis isolates or S. pseudintermedius were treated with different concentrations of DMF to detect bacterial growth and biofilm formation. Adding DMF resulted in the inhibition of the NLRP3-GSDMD pathway while activating the NRF2 pathway. This led to a decrease in pyroptosis rate, intracellular bacteria count, and ROS content. Additionally, DMF blocked the mRNA expression of virulence genes ebpS, hlgB, siet, lukS-I, PVL, icaA, icaD, spsD, and spsL associated with S. pseudintermedius infection. Furthermore, DMF demonstrated concentration-dependent inhibition of the growth of clinical isolates and the formation of S. pseudintermedius biofilm. In conclusion, our results indicate that DMF can inhibit pyroptosis and the growth of various clinical isolates, making it a novel ophthalmic drug with anti-inflammatory and antibacterial properties.
Collapse
Affiliation(s)
- Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Pengfei Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Xinyi Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Lavric A, Beguni C, Zadobrischi E, Căilean AM, Avătămăniței SA. A Comprehensive Survey on Emerging Assistive Technologies for Visually Impaired Persons: Lighting the Path with Visible Light Communications and Artificial Intelligence Innovations. SENSORS (BASEL, SWITZERLAND) 2024; 24:4834. [PMID: 39123881 PMCID: PMC11314945 DOI: 10.3390/s24154834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
In the context in which severe visual impairment significantly affects human life, this article emphasizes the potential of Artificial Intelligence (AI) and Visible Light Communications (VLC) in developing future assistive technologies. Toward this path, the article summarizes the features of some commercial assistance solutions, and debates the characteristics of VLC and AI, emphasizing their compatibility with blind individuals' needs. Additionally, this work highlights the AI potential in the efficient early detection of eye diseases. This article also reviews the existing work oriented toward VLC integration in blind persons' assistive applications, showing the existing progress and emphasizing the high potential associated with VLC use. In the end, this work provides a roadmap toward the development of an integrated AI-based VLC assistance solution for visually impaired people, pointing out the high potential and some of the steps to follow. As far as we know, this is the first comprehensive work which focuses on the integration of AI and VLC technologies in visually impaired persons' assistance domain.
Collapse
Affiliation(s)
- Alexandru Lavric
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.L.); (C.B.); (E.Z.)
| | - Cătălin Beguni
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.L.); (C.B.); (E.Z.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Eduard Zadobrischi
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.L.); (C.B.); (E.Z.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Alin-Mihai Căilean
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.L.); (C.B.); (E.Z.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Sebastian-Andrei Avătămăniței
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- East European Border Scientific and Technological Park, 725500 Siret, Romania
| |
Collapse
|
3
|
Mitra S, Tati V, Das P, Joseph J, Bagga B, Shukla S. Mesenchymal stem cell-based adjunctive therapy for Pseudomonas aeruginosa-induced keratitis: A proof-of-concept in-vitro study. Exp Eye Res 2024; 242:109863. [PMID: 38494102 DOI: 10.1016/j.exer.2024.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE Pseudomonas aeruginosa-induced keratitis is one of the most severe and challenging forms of corneal infection, owing to its associated intense inflammatory reactions leading to corneal necrosis and dense corneal scar with loss of vision. Since mesenchymal stem cells (MSCs) are reported to possess antimicrobial and immunomodulatory properties, they can be tested as an adjuvant treatment along with the antibiotics which are the current standard of care. This study aims to investigate the anti-bacterial and immunomodulatory roles of human bone marrow MSC-derived conditioned medium (MSC-CM) in P. aeruginosa-infected human corneal epithelial cells (HCECs) in vitro. METHODS The effect of MSC-CM on the growth of clinical isolates of P. aeruginosa was evaluated by colony-forming unit assay. The expression of inflammatory cytokines (IL-6 and TNF-α) and an antimicrobial peptide (Lipocalin 2) in lipopolysaccharide-treated MSCs and HCECs was analyzed through ELISA. Corneal epithelial repair following infection with P. aeruginosa was studied through scratch assay. RESULTS Compared to control (P. aeruginosa (5*105) incubated in DMEM (1 ml) at 37 °C for 16 h), MSC-CM significantly: i) inhibits the growth of P. aeruginosa (159*109 vs. 104*109 CFU/ml), ii) accelerates corneal epithelial repair following infection with P. aeruginosa (9% vs. 24% closure of the wounded area after 12 h of infection), and iii) downregulates the lipopolysaccharide-induced expression of IL-6, TNF-α and Lipocalin 2 in HCECs. A combination of MSC-CM with an antibiotic, Ciprofloxacin moderately regulated the expression of IL-6, TNF-α, and Lipocalin 2. CONCLUSION MSC-CM holds promise as an adjunctive therapeutic approach for P. aeruginosa-induced corneal epithelial damage.
Collapse
Affiliation(s)
- Sreya Mitra
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, 500034, India; Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, India
| | - Vasudeva Tati
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, 500034, India; Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, India
| | - Prabhudatta Das
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, 500034, India; Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, India
| | - Joveeta Joseph
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, 500034, India; Jhaveri Microbiology Centre, L V Prasad Eye Institute, Hyderabad, 500034, India.
| | - Bhupesh Bagga
- The Ramoji Foundation Centre for Ocular Infections, L V Prasad Eye Institute, Hyderabad, 500034, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, 500034, India.
| | - Sachin Shukla
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, 500034, India; Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, India.
| |
Collapse
|
4
|
Mazzantini D, Massimino M, Calvigioni M, Rossi V, Celandroni F, Lupetti A, Batoni G, Ghelardi E. Anti-Staphylococcal Biofilm Effects of a Liposome-Based Formulation Containing Citrus Polyphenols. Antibiotics (Basel) 2024; 13:318. [PMID: 38666994 PMCID: PMC11047357 DOI: 10.3390/antibiotics13040318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Biofilms are surface-associated microbial communities embedded in a matrix that is almost impenetrable to antibiotics, thus constituting a critical health threat. Biofilm formation on the cornea or ocular devices can lead to serious and difficult-to-treat infections. Nowadays, natural molecules with antimicrobial activity and liposome-based delivery systems are proposed as anti-biofilm candidates. In this study, the anti-biofilm activity of a formulation containing citrus polyphenols encapsulated in liposomes was evaluated against Staphylococcus aureus and Staphylococcus epidermidis, the most common agents in ocular infections. The formulation activity against planktonic staphylococci was tested by broth microdilution and sub-inhibitory concentrations were used to evaluate the effect on biofilm formation using the crystal violet (CV) assay. The eradicating effect of the preparation on mature biofilms was investigated by the CV assay, plate count, and confocal laser scanning microscopy. The product was bactericidal against staphylococci at a dilution of 1:2 or 1:4 and able to reduce biofilm formation even if diluted at 1:64. The formulation also had the ability to reduce the biomass of mature biofilms without affecting the number of cells, suggesting activity on the extracellular matrix. Overall, our results support the application of the used liposome-encapsulated polyphenols as an anti-biofilm strategy to counter biofilm-associated ocular infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy; (D.M.); (M.M.); (M.C.); (V.R.); (F.C.); (A.L.); (G.B.)
| |
Collapse
|
5
|
Durán-Manuel EM, Bello-López JM, Salinas-Bobadilla AD, Vargas-De-León C, Nieto-Velázquez NG, Moreno-Eutimio MA, Pastelin-Palacios R, Calzada-Mendoza CC, Blanco-Hernández DMR. Molecular Characterization of Bacterial Agents Causing External Ocular Infections Isolates of Patients in a Third Level Hospital. Pathogens 2023; 12:1294. [PMID: 38003759 PMCID: PMC10675722 DOI: 10.3390/pathogens12111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Empirical use of antibiotics in the treatment of eye infections leads to bacterial pathogens becoming resistant to antibiotics; consequently, treatment failure and eye health complications occur. The aim of this study was to describe the phenotype and genotype of the resistance and adherence of bacterial agents causing eye infections in patients at Hospital Juárez de México. An observational, prospective, cross-sectional, and descriptive study was carried out in patients with signs and symptoms of ocular infection. Bacterial agents were isolated and identified by classical microbiology and mass spectrometry. Antibiotic resistance and adherence profiles were determined. Finally, resistance (mecA/SCCmec) and virulence (icaA and icaD) genes were detected in the Gram-positive population. The results showed that blepharitis was the most prevalent condition in the study population. A MALDI-TOF analysis revealed that Staphylococcus and Pseudomonas genus were the most prevalent as causal agents of infection. Resistances to β-lactams were detected of 44 to 100%, followed by clindamycins, aminoglycosides, folate inhibitors, and nitrofurans. A multiple correspondence analysis showed a relationship between mecA genotype and β-lactams resistance. The identification of SCCmecIII and SCCmecIV elements suggested community and hospital sources of infection. Finally, the coexistence of icaA+/icaD+/mecA(SCCmecIII) and icaA+/icaD+/mecA(SCCmecIV) genotypes was detected in S. aureus. The identification of resistant and virulent isolates highlights the importance of developing protocols that address the timely diagnosis of ocular infections. Herein, implications for the failure of antimicrobial therapy in the treatment of ocular infections in susceptible patients are analysed and discussed.
Collapse
Affiliation(s)
- Emilio Mariano Durán-Manuel
- Hospital Juárez de México, Mexico City 07760, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Cruz Vargas-De-León
- Hospital Juárez de México, Mexico City 07760, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | - Mario Adán Moreno-Eutimio
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rodolfo Pastelin-Palacios
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Claudia Camelia Calzada-Mendoza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | |
Collapse
|