1
|
Yadav KK, Boley PA, Khatiwada S, Lee CM, Bhandari M, Wood R, Hanson J, Kenney SP. The zoonotic LCK-3110 strain of Rocahepevirus ratti leads to mild infection in chickens after experimental inoculation. Virus Res 2024; 350:199477. [PMID: 39406033 PMCID: PMC11525770 DOI: 10.1016/j.virusres.2024.199477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 11/03/2024]
Abstract
Rocahepevirus ratti [rat hepatitis E virus (HEV)] was originally isolated from rats and found to be non-infectious to nonhuman primates, suggesting humans were not a susceptible host. However, in 2018, rat HEV infections were identified in human patients. High seroprevalence for rat HEV in rats in many countries necessitates studying this emerging zoonotic outbreak. Lack of a human derived rat HEV infectious clone, cell culture systems, and animal models have hindered this effort. In response to the increase in human infection cases by rat HEV, we utilized an infectious clone of the zoonotic rat HEV LCK-3110 strain originally reported from human cases. Capped RNA transcripts of the rat HEV LCK-3110 strain were synthesized, and replication was assessed in both cell culture via transfection and chickens via intrahepatic inoculation. Naive chickens were cohoused together with inoculated chickens. Our results demonstrated that although chickens were susceptible, virus replication was inefficient with only a few of the chickens inoculated with rat HEV having low levels of viremia and fecal virus shedding. However, LCK-3110 HEV was able to transmit between chickens as several naive cohoused chickens became infected as evidenced by viremia, fecal shedding, and the presence of viral protein upon histopathology of the liver. Rat HEV is an emerging zoonotic virus with an ability to spillover across species. Chickens have potential to serve as intermediary hosts, possibly playing a role in rat HEV spread and exposure to humans.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Patricia A Boley
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - Saroj Khatiwada
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - Carolyn M Lee
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Menuka Bhandari
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - Ronna Wood
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - Juliette Hanson
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Gu T, Zheng CY, Deng YQ, Yang XF, Bao WM, Tang YM. Systematic Evaluation of Guidelines for the Diagnosis and Treatment of Hepatitis E Virus Infection. J Clin Transl Hepatol 2024; 12:739-749. [PMID: 39130619 PMCID: PMC11310757 DOI: 10.14218/jcth.2023.00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background and Aims The hepatitis E virus (HEV) is a zoonotic disease, and infection with HEV in humans primarily causes acute infections and can progress to chronic manifestation in immunocompromised individuals. Over the past decade, guidelines for diagnosing and treating HEV infection have been developed. This study aimed to systematically assess the quality of current guidelines for diagnosing and treating HEV infection, and we analyzed the differences in guideline quality and primary recommendations and explored possible reasons for these differences. Methods Guidelines published between 2013 and 2022 were searched, and studies were identified using selection criteria. The study assessed the quality of the included guidelines using the Appraisal of Guidelines for Research and Evaluation tool, extracted the primary recommendations in the guidelines, determined the highest level of evidence supporting the recommendations, and reclassified the evidence using the Oxford Centre for Evidence-Based Medicine grading system. Results Seven guidelines were included in the final analysis. The quality of the guidelines varied widely. The discrepancies may have been caused by the lack of external experts, the failure to consider influencing factors in guideline application, and the lack of consideration of the public's opinion. Analysis of the heterogeneity in primary recommendations revealed differences in algorithms for managing chronic HEV infection, the dosage of ribavirin, and a low level of evidence supporting the primary recommendations. Conclusions Guideline quality and primary recommendations vary considerably. Refinement by guideline developers and researchers would facilitate updating and applying guidelines for diagnosing and treating HEV infection.
Collapse
Affiliation(s)
- Ting Gu
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Cai-Ying Zheng
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan-Qin Deng
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Feng Yang
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei-Min Bao
- Department of Colorectal Surgery, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ying-Mei Tang
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Gherlan GS. Rocahepevirus ratti: An underrecognised cause of acute hepatitis. World J Hepatol 2024; 16:1084-1090. [PMID: 39221102 PMCID: PMC11362906 DOI: 10.4254/wjh.v16.i8.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Zoonoses are responsible for many of all emerging infectious diseases as well as for those already established. Rocahepevirus ratti is a rat-originated virus related to the hepatitis E virus (Paslahepevirus balayani) but highly divergent genetically from this, with a high cross-species infection potential and zoonotic transmission. It can infect humans, leading to acute hepatitis, and is primarily transmitted through the consumption of contaminated water. Rocahepevirus ratti was first discovered in Germany in 2010. The first human case was described in 2017 in Hong Kong in an immune-compromised patient. The first case of chronic infection with Rocahepevirus ratti was described in 2023. A meta-analysis based on 38 studies published between 2000 and 2023 identified 21 cases in humans described up to this date and 489 infections in different animals. Raising awareness regarding this virus is essential, as there are probably many cases that remain undiagnosed, and the virus even has the ability to produce chronic infections in selected patients.
Collapse
Affiliation(s)
- George S Gherlan
- Department of Infectious Diseases, "Carol Davila" University of Medicine and Pharmacy, Bucharest 050474, Romania.
| |
Collapse
|
4
|
Zhang JT, Hu ZY, Tang F, Liu YT, Tan WL, Ma XF, Zhang YF, Si GQ, Zhang L, Zhang MQ, Peng C, Fu BK, Fang LQ, Zhang XA, Liu W. Decoding the RNA viromes in shrew lungs along the eastern coast of China. NPJ Biofilms Microbiomes 2024; 10:68. [PMID: 39117662 PMCID: PMC11310413 DOI: 10.1038/s41522-024-00543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Shrews being insectivores, serve as natural reservoirs for a wide array of zoonotic viruses, including the recently discovered Langya henipavirus (LayV) in China in 2018. It is crucial to understand the shrew-associated virome, viral diversity, and new viruses. In the current study, we conducted high-throughput sequencing on lung samples obtained from 398 shrews captured along the eastern coast of China, and characterized the high-depth virome of 6 common shrew species (Anourosorex squamipes, Crocidura lasiura, Crocidura shantungensis, Crocidura tanakae, Sorex caecutiens, and Suncus murinus). Our analysis revealed numerous shrew-associated viruses comprising 54 known viruses and 72 new viruses that significantly enhance our understanding of mammalian viruses. Notably, 34 identified viruses possess spillover-risk potential and six were human pathogenic viruses: LayV, influenza A virus (H5N6), rotavirus A, rabies virus, avian paramyxovirus 1, and rat hepatitis E virus. Moreover, ten previously unreported viruses in China were discovered, six among them have spillover-risk potential. Additionally, all 54 known viruses and 12 new viruses had the ability to cross species boundaries. Our data underscore the diversity of shrew-associated viruses and provide a foundation for further studies into tracing and predicting emerging infectious diseases originated from shrews.
Collapse
Affiliation(s)
- Jing-Tao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhen-Yu Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Public Health, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Tang
- Institute of Medical Prevention and Control of Public Health Emergencies, Characteristic Medical Center of the Chinese People's Armed Police Force, Beijing, China
| | - Yan-Tao Liu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Wei-Long Tan
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Xiao-Fang Ma
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Yun-Fa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guang-Qian Si
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mei-Qi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cong Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo-Kang Fu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Public Health, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
- School of Public Health, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
- School of Public Health, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
De Sabato L, Monini M, Galuppi R, Dini FM, Ianiro G, Vaccari G, Ostanello F, Di Bartolo I. Investigating the Hepatitis E Virus (HEV) Diversity in Rat Reservoirs from Northern Italy. Pathogens 2024; 13:633. [PMID: 39204234 PMCID: PMC11357196 DOI: 10.3390/pathogens13080633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Hepatitis E virus belonging to the Rocahepevirus ratti species, genotype HEV-C1, has been extensively reported in rats in Europe, Asia and North America. Recently, human cases of hepatitis associated with HEV-C1 infection have been reported, but the zoonotic nature of rat-HEV remains controversial. The transmission route of rat-HEV is unidentified and requires further investigation. The HEV strains of the Paslahepevirus balayani species, belonging to the same Hepeviridae family, and including the zoonotic genotype HEV-3 usually found in pigs, have also sporadically been identified in rats. We sampled 115 rats (liver, lung, feces) between 2020 and 2023 in Northeast Italy and the HEV detection was carried out by using Reverse Transcription PCR. HEV RNA was detected in 3/115 (2.6%) rats who tested positive for HEV-C1 strains in paired lung, intestinal contents and liver samples. Overall, none tested positive for the Paslahepevirus balayani strains. In conclusion, our results confirm the presence of HEV-rat in Italy with a prevalence similar to previous studies but show that there is a wide heterogeneity of strains in circulation. The detection of HEV-C1 genotype of Rocahepevirus ratti species in some human cases of acute hepatitis suggests that HEV-C1 may be an underestimated source of human infections. This finding, with the geographically widespread detection of HEV-C1 in rats, raises questions about the role of rats as hosts for both HEV-C1 and HEV-3 and the possibility of zoonotic transmission.
Collapse
Affiliation(s)
- Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (R.G.); (F.M.D.); (F.O.)
| | - Filippo Maria Dini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (R.G.); (F.M.D.); (F.O.)
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (R.G.); (F.M.D.); (F.O.)
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (L.D.S.); (G.I.); (G.V.); (I.D.B.)
| |
Collapse
|
6
|
Molini U, Franzo G, de Villiers L, van Zyl L, de Villiers M, Khaiseb S, Busch F, Knauf S, Dietze K, Eiden M. Serological survey on Hepatitis E virus in Namibian dogs, cats, horses, and donkeys. Front Vet Sci 2024; 11:1422001. [PMID: 39091395 PMCID: PMC11292797 DOI: 10.3389/fvets.2024.1422001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
The present study investigated the seropositivity rate of Hepatitis E virus (HEV) in domestic and working animals in Namibia, which included dogs, cats, horses, and donkeys. HEV poses a growing threat as a significant cause of human hepatitis globally and has several genotypes of varying zoonotic potential. As epidemiological data on the seroprevalence of HEV in Namibia is scarce, a serosurvey was conducted on archived serum samples of 374 dogs, 238 cats, 98 horses, and 60 donkeys collected between 2018 and 2022 from different regions, to assess the potential of these animals as sources of HEV infection. The findings revealed that 10.43% (n = 39/374) canine and 5.88% (n = 14/238) feline samples tested positive for HEV antibodies, whereas no seropositivity was detected in horses and donkeys. The study further examined the risk factors associated with HEV seropositivity, including animal sex, age, and geographical region, and noted a higher prevalence in dogs living in areas with intensive pig farming. Although there is no direct evidence indicating that these animals served as major reservoirs for HEV transmission to humans, the study underscores the importance of preventive measures to minimize contact exposure with pets considering the potential zoonotic risk, especially for susceptible risk groups. Further research is needed to explore the zoonotic potential of domestic animals and the epidemiological links between animal and human HEV transmissions in Namibia.
Collapse
Affiliation(s)
- Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
- Central Veterinary Laboratory (CVL), Windhoek, Namibia
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Lourens de Villiers
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Leandra van Zyl
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Mari de Villiers
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | | | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
- One Health/International Animal Health, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Potemkin IA, Kyuregyan KK, Karlsen AA, Isaeva OV, Kichatova VS, Lopatukhina MA, Asadi Mobarkhan FA, Zlobina AG, Zheltobriukh AV, Bocharova KA, Belyakova VV, Rassolova SV, Ivanova NV, Solonin SA, Bazhenov AI, Godkov MA, Mikhailov MI. Hepatitis E Virus Infection in Voluntary Blood Donors in the Russian Federation. Viruses 2024; 16:526. [PMID: 38675869 PMCID: PMC11054373 DOI: 10.3390/v16040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Transfusion-transmitted hepatitis E virus (HEV) infection is an increasing concern in many countries. We investigated the detection rate of HEV viremia in blood donors in Russia. A total of 20,405 regular repetitive voluntary non-renumerated blood donors from two regions (Moscow and Belgorod) were screened for HEV RNA using the cobas® HEV test in mini-pools of six plasma samples. Samples from each reactive pool were tested individually. The average HEV RNA prevalence was 0.024% (95% CI: 0.01-0.05%), or 1 case per 4081 donations. No statistically significant differences in HEV RNA prevalence were observed between the two study regions. The PCR threshold cycle (Ct) values ranged from 25.0 to 40.5 in reactive pools, and from 20.9 to 41.4 in reactive plasma samples when tested individually. The HEV viremic donors had different antibody patterns. Two donor samples were reactive for both anti-HEV IgM and IgG antibodies, one sample was reactive for anti-HEV IgM and negative for anti-HEV IgG, and two samples were seronegative. At follow-up testing 6 months later, on average, four donors available for follow-up had become negative for HEV RNA and positive for anti-HEV IgG. The HEV ORF2 sequence belonging to HEV-3 sub-genotype 3a was obtained from one donor sample. The sequencing failed in the other four samples from viremic donors, presumably due to the low viral load. In conclusion, the HEV RNA detection rate in blood donors in Russia corresponds with data from other European countries, including those that implemented universal donor HEV screening. These data support the implementation of HEV RNA donor screening to reduce the risk of transfusion-transmitted HEV infection in Russia.
Collapse
Affiliation(s)
- Ilya A. Potemkin
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (I.A.P.); (A.A.K.); (O.V.I.); (V.S.K.); (M.A.L.); (F.A.A.M.); (M.I.M.)
- Laboratory of Molecular Epidemiology of Viral Hepatitis, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Karen K. Kyuregyan
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (I.A.P.); (A.A.K.); (O.V.I.); (V.S.K.); (M.A.L.); (F.A.A.M.); (M.I.M.)
- Laboratory of Molecular Epidemiology of Viral Hepatitis, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Anastasia A. Karlsen
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (I.A.P.); (A.A.K.); (O.V.I.); (V.S.K.); (M.A.L.); (F.A.A.M.); (M.I.M.)
- Laboratory of Molecular Epidemiology of Viral Hepatitis, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Olga V. Isaeva
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (I.A.P.); (A.A.K.); (O.V.I.); (V.S.K.); (M.A.L.); (F.A.A.M.); (M.I.M.)
- Laboratory of Molecular Epidemiology of Viral Hepatitis, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Vera S. Kichatova
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (I.A.P.); (A.A.K.); (O.V.I.); (V.S.K.); (M.A.L.); (F.A.A.M.); (M.I.M.)
- Laboratory of Molecular Epidemiology of Viral Hepatitis, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Maria A. Lopatukhina
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (I.A.P.); (A.A.K.); (O.V.I.); (V.S.K.); (M.A.L.); (F.A.A.M.); (M.I.M.)
- Laboratory of Molecular Epidemiology of Viral Hepatitis, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Fedor A. Asadi Mobarkhan
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (I.A.P.); (A.A.K.); (O.V.I.); (V.S.K.); (M.A.L.); (F.A.A.M.); (M.I.M.)
- Laboratory of Molecular Epidemiology of Viral Hepatitis, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Anna G. Zlobina
- Belgorod Blood Center, 308007 Belgorod, Russia; (A.G.Z.); (A.V.Z.)
| | | | - Ksenia A. Bocharova
- Medical Faculty, Belgorod State National Research University, 308015 Belgorod, Russia;
| | - Vera V. Belyakova
- Gavrilov Moscow Blood Center, Moscow Health Department, 125284 Moscow, Russia; (V.V.B.); (S.V.R.); (N.V.I.)
| | - Svetlana V. Rassolova
- Gavrilov Moscow Blood Center, Moscow Health Department, 125284 Moscow, Russia; (V.V.B.); (S.V.R.); (N.V.I.)
| | - Nadezhda V. Ivanova
- Gavrilov Moscow Blood Center, Moscow Health Department, 125284 Moscow, Russia; (V.V.B.); (S.V.R.); (N.V.I.)
| | - Sergey A. Solonin
- Sklifosovsky Research Institute for Emergency Medicine, Moscow Health Department, 129090 Moscow, Russia; (S.A.S.); (A.I.B.); (M.A.G.)
| | - Alexey I. Bazhenov
- Sklifosovsky Research Institute for Emergency Medicine, Moscow Health Department, 129090 Moscow, Russia; (S.A.S.); (A.I.B.); (M.A.G.)
| | - Mikhail A. Godkov
- Sklifosovsky Research Institute for Emergency Medicine, Moscow Health Department, 129090 Moscow, Russia; (S.A.S.); (A.I.B.); (M.A.G.)
| | - Mikhail I. Mikhailov
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia; (I.A.P.); (A.A.K.); (O.V.I.); (V.S.K.); (M.A.L.); (F.A.A.M.); (M.I.M.)
- Laboratory of Molecular Epidemiology of Viral Hepatitis, Central Research Institute of Epidemiology, 111123 Moscow, Russia
- Medical Faculty, Belgorod State National Research University, 308015 Belgorod, Russia;
| |
Collapse
|
8
|
Wu H, Zhou L, Wang F, Chen Z, Lu Y. Molecular epidemiology and phylogeny of the emerging zoonotic virus Rocahepevirus: A global genetic analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105557. [PMID: 38244748 DOI: 10.1016/j.meegid.2024.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Human infections with Rocahepevirus ratti genotype C1 (HEV-C1) in Hong Kong of China, Canada, Spain, and France have drawn worldwide concern towards Rocahepevirus. This study conducted a global genetic analysis of Rocahepevirus, aiming to furnish comprehensive molecular insights and promote further research. We retrieved 817 Rocahepevirus sequences from the GenBank database through October 31, 2023, categorizing them according to research, sample collection area and date, genotype, host, and sequence length. Subsequently, we conducted descriptive epidemiological, phylogenetic evolutionary, and protein polymorphism (in length and identity) analyses on these sequences. Rocahepevirus genomes were identified across twenty-eight countries, predominantly in Asia (71.73%, 586/817) and Europe (26.44%, 216/817). The HEV-C1 dominates Rocahepevirus (77.2%, 631/817), while newly discovered Rocahepevirus genotypes (C3/C4/C5 and other unclassified genotypes) were primarily identified in Europe (25/120) and China (91/120). Muridae animals (72.5%, 592/817) serve as the primary hosts for Rocahepevirus, with other hosts encompassing species from the families Soricidae, Hominidae, Mustelidae, and Cricetidae. Additionally, Rocahepevirus genomes (C1 genotype) were identified in sewage samples recently. The phylogenetic evolution of Rocahepevirus exhibits considerable variation. Specifically, HEV-C1 can be classified into at least six genetic groups (G1 to G6), with human HEV-C1 distributed across multiple evolutionary clades. The overall ORF1 and ORF2 amino acid sequence lengths were significantly different (P < 0.001) across Rocahepevirus genotypes. HEV-C1/C2/C3 and HEV-C4/C5 displayed substantial differences in amino acid sequence identity (58.4%-59.6%). The identification of Rocahepevirus genomes has expanded across numerous countries, particularly in European and Asian countries, coinciding with an expanding host range and emergence of new genotypes. The evolutionary path of Rocahepevirus is intricate, where the HEV-C1 dominates globally and internally forms multiple evolutionary groups (G1 to G6), exhibiting diverse genetic variation within human HEV-C1. Significant differences exist in the protein polymorphism (in length and identity) across Rocahepevirus genotypes. Given Rocahepevirus's shift from an animal virus to a zoonotic pathogen, worldwide cooperation in monitoring Rocahepevirus genomes is vital.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Fengge Wang
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Zixiang Chen
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|