1
|
Wang Z, Wang R, Na Z, Liang S, Wu F, Xie H, Zhang X, Xu W, Wang X. Network Pharmacology Analysis of Liquid-Cultured Armillaria ostoyae Mycelial Metabolites and Their Molecular Mechanism of Action against Gastric Cancer. Molecules 2024; 29:1668. [PMID: 38611946 PMCID: PMC11013622 DOI: 10.3390/molecules29071668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Armillaria sp. are traditional edible medicinal mushrooms with various health functions; however, the relationship between their composition and efficacy has not yet been determined. Here, the ethanol extract of liquid-cultured Armillaria ostoyae mycelia (AOME), a pure wild Armillaria sp. strain, was analyzed using UHPLC-QTOF/MS, network pharmacology, and molecular docking techniques. The obtained extract affects various metabolic pathways, such as JAK/STAT and PI3K/AKT. The extract also contains important compounds such as 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl] benzamide, isoliquiritigenin, and 7-hydroxycoumarin. Moreover, the extract targets key proteins, including EGFR, SCR, and IL6, to suppress the progression of gastric cancer, thereby synergistically inhibiting cancer development. The molecular docking analyses indicated that the main compounds stably bind to the target proteins. The final cell culture experimental data showed that the ethanol extract inhibited MGC-803 gastric cancer cells. In summary, our research revealed the beneficial components of AOME for treating gastric cancer and its associated molecular pathways. However, further research is needed to confirm its effectiveness and safety in gastric cancer patients.
Collapse
Affiliation(s)
- Zhishuo Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ruiqi Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Zhiguo Na
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Shanshan Liang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Fan Wu
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Hongyao Xie
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xue Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Wei Xu
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
2
|
Hua Z, Teng X, Huang J, Zhou J, Zhao Y, Huang L, Yuan Y. The Armillaria response to Gastrodia elata is partially mediated by strigolactone-induced changes in reactive oxygen species. Microbiol Res 2023; 278:127536. [PMID: 39491259 DOI: 10.1016/j.micres.2023.127536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Armillaria root diseases, caused by Armillaria spp., pose a significant threat to woody plants worldwide and result in substantial economic losses. However, certain species in the genus Armillaria can establish a unique symbiotic relationship with Gastrodia elata, which is the only known example of a plant benefiting from Armillaria. Although various plant signals that play a role in this interaction have been identified, the mechanism remains largely unknown from the Armillaria's perspective. In this study, we performed whole-genome sequencing of an Armillaria gallica strain named NRC001 isolated from G. elata. Comparative genomic analysis showed it is low-pathogenic Armillaria spp., which possesses 169 expanded gene families compared to high-pathogenic Armillaria spp. Among these expanded families, transcriptomic analysis revealed a significant increase in expression levels of four reactive oxygen species (ROS)-related gene families in A. gallica on G. elata compared to A. gallica on wood. Thus, a systematic survey of ROS-related gene families was carried out, and a total of 218 genes belonging to 44 ROS-related gene families in A. gallica were identified. Physiological experiments and transcriptome analysis showed that strigolactones (SLs) released by G. elata have a mediation impact on ROS, particularly enhancing the ROS scavenging activities by increasing the expression level and activity of several enzymes, such as catalase and glutathione reductase. Among the ROS-related genes, the aquaporin (AQP) is crucial as it is responsible for transporting hydrogen peroxide (H2O2) across the cell membrane. Five orthologs of AQP genes in A. gallica were identified and overexpressed in yeast. Only AgAQPA from the so-called 'other aquaglyceroporin' subfamily was demonstrated to be capable of mediating H2O2 transport in A. gallica. To our best knowledge, this is the first 'other aquaglyceroporins' gene in fungi to be identified as having transporter capacity. This study not only provides new insights into the mechanisms by which SL signaling regulates interactions between Armillaria and G. elata, but also sheds light on the function of fungal AQPs.
Collapse
Affiliation(s)
- Zhongyi Hua
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiying Teng
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingwen Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junhui Zhou
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuyang Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Sahu N, Indic B, Wong-Bajracharya J, Merényi Z, Ke HM, Ahrendt S, Monk TL, Kocsubé S, Drula E, Lipzen A, Bálint B, Henrissat B, Andreopoulos B, Martin FM, Bugge Harder C, Rigling D, Ford KL, Foster GD, Pangilinan J, Papanicolaou A, Barry K, LaButti K, Virágh M, Koriabine M, Yan M, Riley R, Champramary S, Plett KL, Grigoriev IV, Tsai IJ, Slot J, Sipos G, Plett J, Nagy LG. Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria. Nat Microbiol 2023; 8:1668-1681. [PMID: 37550506 PMCID: PMC7615209 DOI: 10.1038/s41564-023-01448-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.
Collapse
Affiliation(s)
- Neha Sahu
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia
| | - Zsolt Merényi
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tori-Lee Monk
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
- INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Balázs Bálint
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bill Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR 1136 'Interactions Arbres/Microorganismes', Centre INRAE Grand Est - Nancy, Champenoux, France
| | - Christoffer Bugge Harder
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, København Ø, Denmark
- Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Kathryn L Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Gary D Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Máté Virágh
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary
| | - Maxim Koriabine
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mi Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simang Champramary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Krista L Plett
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, Institute of Forest and Natural Resource Management, University of Sopron, Sopron, Hungary
| | - Jonathan Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - László G Nagy
- Biological Research Center, Synthetic and Systems Biology Unit, Szeged, Hungary.
| |
Collapse
|
4
|
Wingfield BD, Berger DK, Coetzee MPA, Duong TA, Martin A, Pham NQ, van den Berg N, Wilken PM, Arun-Chinnappa KS, Barnes I, Buthelezi S, Dahanayaka BA, Durán A, Engelbrecht J, Feurtey A, Fourie A, Fourie G, Hartley J, Kabwe ENK, Maphosa M, Narh Mensah DL, Nsibo DL, Potgieter L, Poudel B, Stukenbrock EH, Thomas C, Vaghefi N, Welgemoed T, Wingfield MJ. IMA genome‑F17 : Draft genome sequences of an Armillaria species from Zimbabwe, Ceratocystis colombiana, Elsinoë necatrix, Rosellinia necatrix, two genomes of Sclerotinia minor, short‑read genome assemblies and annotations of four Pyrenophora teres isolates from barley grass, and a long-read genome assembly of Cercospora zeina. IMA Fungus 2022; 13:19. [PMID: 36411457 PMCID: PMC9677705 DOI: 10.1186/s43008-022-00104-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Brenda D. Wingfield
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Dave K. Berger
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Martin P. A. Coetzee
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A. Duong
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Anke Martin
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Nam Q. Pham
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Noelani van den Berg
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kiruba Shankari Arun-Chinnappa
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,PerkinElmer Pty Ltd., Level 2, Building 5, Brandon Business Park, 530‑540, Springvale Road, Glen Waverley, VIC 3150 Australia
| | - Irene Barnes
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sikelela Buthelezi
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Alvaro Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, Riau 28300 Indonesia
| | - Juanita Engelbrecht
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Alice Feurtey
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Arista Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Gerda Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jesse Hartley
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Eugene N. K. Kabwe
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Mkhululi Maphosa
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Deborah L. Narh Mensah
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa ,grid.423756.10000 0004 1764 1672CSIR, Food Research Institute, Accra, Ghana
| | - David L. Nsibo
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Lizel Potgieter
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Barsha Poudel
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Eva H. Stukenbrock
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Chanel Thomas
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Niloofar Vaghefi
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,grid.1008.90000 0001 2179 088XSchool of Agriculture and Food, University of Melbourne, Parkville, VIC 3010 Australia
| | - Tanya Welgemoed
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| |
Collapse
|
5
|
Di Lella S, La Porta N, Tognetti R, Lombardi F, Nardin T, Larcher R. White rot fungal impact on the evolution of simple phenols during decay of silver fir wood by UHPLC-HQOMS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:170-183. [PMID: 34322910 PMCID: PMC9290616 DOI: 10.1002/pca.3077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Silver fir (Abies alba Mill.) is one of the most valuable conifer wood species in Europe. Among the main opportunistic pathogens that cause root and butt rot on silver fir are Armillaria ostoyae and Heterobasidion abietinum. Due to the different enzymatic pools of these wood-decay fungi, different strategies in metabolizing the phenols were available. OBJECTIVE This work explores the changes in phenolic compounds during silver fir wood degradation. METHODOLOGY Phenols were analyzed before and after fungus inoculation in silver fir macerated wood after 2, 4 and 6 months. All samples were analyzed using high-performance liquid chromatography coupled to a hybrid quadrupole-orbitrap mass spectrometer. RESULTS Thirteen compounds, including simple phenols, alkylphenyl alcohols, hydroxybenzoketones, hydroxycinnamaldehydes, hydroxybenzaldehydes, hydroxyphenylacetic acids, hydroxycinnamic acids, hydroxybenzoic acids and hydroxycoumarins, were detected. Pyrocatechol, coniferyl alcohol, acetovanillone, vanillin, benzoic acid, 4-hydroxybenzoic acid and vanillic acid contents decreased during the degradation process. Methyl vanillate, ferulic acid and p-coumaric were initially produced and then degraded. Scopoletin was accumulated. Pyrocatechol, acetovanillone and methyl vanillate were found for the first time in both degrading and non-degrading wood of silver fir. CONCLUSIONS Despite differences in the enzymatic pool, both fungi caused a significant decrease in the amounts of phenolic compounds with the accumulation of the only scopoletin. Principal component analysis revealed an initial differentiation between the degradation activity of the two fungal species during degradation, but similar phenolic contents at the end of wood degradation.
Collapse
Affiliation(s)
- Stefania Di Lella
- Department of Biosciences and TerritoryUniversity of MolisePescheItaly
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
- Department of Agricultural, Environmental and Food SciencesUniversity of MoliseCampobassoItaly
| | - Nicola La Porta
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
- The EFI Project Centre on Mountain Forests (MOUNTFOR)Edmund Mach FoundationTrentoItaly
| | - Roberto Tognetti
- Department of Agricultural, Environmental and Food SciencesUniversity of MoliseCampobassoItaly
- The EFI Project Centre on Mountain Forests (MOUNTFOR)Edmund Mach FoundationTrentoItaly
| | - Fabio Lombardi
- Department of AgrariaUniversity Mediterranea of Reggio CalabriaReggio CalabriaItaly
| | - Tiziana Nardin
- Technology Transfer CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Roberto Larcher
- Technology Transfer CentreFondazione Edmund MachSan Michele all'AdigeItaly
| |
Collapse
|
6
|
Comparative Structural and Compositional Analyses of Cow, Buffalo, Goat and Sheep Cream. Foods 2021; 10:foods10112643. [PMID: 34828924 PMCID: PMC8618205 DOI: 10.3390/foods10112643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
Factors affecting milk and milk fraction composition, such as cream, are poorly understood, with most research and human health application associated with cow cream. In this study, proteomic and lipidomic analyses were performed on cow, goat, sheep and Bubalus bubalis (from now on referred to as buffalo), bulk milk cream samples. Confocal laser scanning microscopy was used to determine the composition, including protein, lipid and their glycoconjugates, and the structure of the milk fat globules. BLAST2GO was used to annotate functional indicators of cream protein. Functional annotation of protein highlighted a broad level of similarity between species. However, investigation of specific biological process terms revealed distinct differences in antigen processing and presentation, activation, and production of molecular mediators of the immune response. Lipid analyses revealed that saturated fatty acids were lowest in sheep cream and similar in the cream of the other species. Palmitic acid was highest in cow and lowest in sheep cream. Cow and sheep milk fat globules were associated with thick patches of protein on the surface, while buffalo and goat milk fat globules were associated with larger areas of aggregated protein and significant surface adsorbed protein, respectively. This study highlights the differences between cow, goat, sheep, and buffalo milk cream, which can be used to support their potential application in functional foods such as infant milk formula.
Collapse
|
7
|
García-Béjar B, Owens RA, Briones A, Arévalo-Villena M. Proteomic profiling and glycomic analysis of the yeast cell wall in strains with Aflatoxin B 1 elimination ability. Environ Microbiol 2021; 23:5305-5319. [PMID: 34029450 DOI: 10.1111/1462-2920.15606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
The use of microorganisms for Aflatoxin B1 elimination has been studied as a new alternative tool and it is known that cell wall carried out a critical role. For that reason, cell wall and soluble intracellular fraction of eight yeasts with AFB1 detoxification capability were analysed. The quantitative and qualitative comparative label-free proteomic allowed the identification of diverse common constituent proteins, which revealed that putative cell wall proteins entailed less than 10% of the total proteome. It was possible to characterize different enzymes linked to cell wall polysaccharides biosynthesis as well as other proteins related with the cell wall organization and regulation. Additionally, the concentration of the principal polysaccharides was determined which permitted us to observe that β-glucans concentration was higher than mannans in most of the samples. In order to better understand the biosorption role of the cell wall against the AFB1 , an antimycotic (Caspofungin) was used to damage the cell wall structure. This assay allowed the observation of an effect on the normal growth of those yeasts with damaged cell walls that were exposed to AFB1 . This effect was not observed in yeast with intact cell walls, which may reveal a protective role of this structure against mycotoxins.
Collapse
Affiliation(s)
- Beatriz García-Béjar
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - María Arévalo-Villena
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
8
|
Sahu N, Merényi Z, Bálint B, Kiss B, Sipos G, Owens RA, Nagy LG. Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species. Microorganisms 2021; 9:149. [PMID: 33440901 PMCID: PMC7827401 DOI: 10.3390/microorganisms9010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Wood-decaying Basidiomycetes are among the most efficient degraders of plant cell walls, making them key players in forest ecosystems, global carbon cycle, and in bio-based industries. Recent insights from -omics data revealed a high functional diversity of wood-decay strategies, especially among the traditional white-rot and brown-rot dichotomy. We examined the mechanistic bases of wood-decay in the conifer-specialists Armillaria ostoyae and Armillaria cepistipes using transcriptomic and proteomic approaches. Armillaria spp. (Fungi, Basidiomycota) include devastating pathogens of temperate forests and saprotrophs that decay wood. They have been discussed as white-rot species, though their response to wood deviates from typical white-rotters. While we observed an upregulation of a diverse suite of plant cell wall degrading enzymes, unlike white-rotters, they possess and express an atypical wood-decay repertoire in which pectinases and expansins are enriched, whereas lignin-decaying enzymes (LDEs) are generally downregulated. This combination of wood decay genes resembles the soft-rot of Ascomycota and appears widespread among Basidiomycota that produce a superficial white rot-like decay. These observations are consistent with ancestral soft-rot decay machinery conserved across asco- and Basidiomycota, a gain of efficient lignin-degrading ability in white-rot fungi and repeated, complete, or partial losses of LDE encoding gene repertoires in brown- and secondarily soft-rot fungi.
Collapse
Affiliation(s)
- Neha Sahu
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Zsolt Merényi
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Balázs Bálint
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - Brigitta Kiss
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
| | - György Sipos
- Research Center for Forestry and Wood Industry, Functional Genomics and Bioinformatics Group, University of Sopron, 9400 Sopron, Hungary;
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Rebecca A. Owens
- Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - László G. Nagy
- Biological Research Center, Synthetic and Systems Biology Unit, 6726 Szeged, Hungary; (N.S.); (Z.M.); (B.B.); (B.K.)
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
9
|
García‐Béjar B, Owens RA, Briones A, Arévalo‐Villena M. Differential distribution and proteomic response of
Saccharomyces cerevisiae
and non‐model yeast species to zinc. Environ Microbiol 2020; 22:4633-4646. [DOI: 10.1111/1462-2920.15206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Beatriz García‐Béjar
- Department of Analytical Chemistry and Food Technology University of Castilla‐La Mancha Ciudad Real 13071 Spain
| | - Rebecca A. Owens
- Department of Biology Maynooth University Maynooth Co. Kildare Ireland
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology University of Castilla‐La Mancha Ciudad Real 13071 Spain
| | - María Arévalo‐Villena
- Department of Analytical Chemistry and Food Technology University of Castilla‐La Mancha Ciudad Real 13071 Spain
| |
Collapse
|
10
|
Morrin ST, Owens RA, Le Berre M, Gerlach JQ, Joshi L, Bode L, Irwin JA, Hickey RM. Interrogation of Milk-Driven Changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1902-1917. [PMID: 30663306 DOI: 10.1021/acs.jafc.8b06484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bovine colostrum is a rich source of bioactive components which are important in the development of the intestine, in stimulating gut structure and function and in preparing the gut surface for subsequent colonization of microbes. What is not clear, however, is how colostrum may affect the repertoire of receptors and membrane proteins of the intestinal surface and the post-translational modifications associated with them. In the present work, we aimed to characterize the surface receptor and glycan profile of human HT-29 intestinal cells after exposure to a bovine colostrum fraction (BCF) by means of proteomic and glycomic analyses. Integration of label-free quantitative proteomic analysis and lectin array profiles confirmed that BCF exposure results in changes in the levels of glycoproteins present at the cell surface and also changes to their glycosylation pattern. This study contributes to our understanding of how milk components may regulate intestinal cells and prime them for bacterial interaction.
Collapse
Affiliation(s)
- Sinead T Morrin
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rebecca A Owens
- Department of Biology , Maynooth University , Maynooth , W23 F2H6 , County Kildare , Ireland
| | - Marie Le Berre
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Jared Q Gerlach
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lokesh Joshi
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence , University of California, San Diego , La Jolla , California 92093 , United States
| | - Jane A Irwin
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
| |
Collapse
|