1
|
Gharzouli M, Aouf AH, Moawad S, Ali H, Alsulami T, Farouk A, Hoppe K, Badr AN. Bio-preservative potential of marjoram and fennel essential oil nano-emulsions against toxigenic fungi in citrus: integrating in-vitro, in- vivo, and in- silico approaches. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025:1-19. [PMID: 40073209 DOI: 10.1080/19440049.2025.2473551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic Penicillium fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated. A simulated medium with fungal spores was used to assess anti-toxigenic activity, and a simulated infection experiment was conducted with orange and lemon fruits. The capacity and mechanisms of aromatic constituents were analysed through molecular docking assays targeting enzymes involved in fungal growth and mycotoxin production. The nanoparticles exhibited good stability (89.17%-92.41%) and compact formulation (density of 0.92-0.96 g/mL). Results demonstrated substantial effectiveness of nano-emulsions against toxigenic fungi, with major aromatic compounds identified as terpinene-4-ol (18%) and γ-terpinene (11%) in marjoram and estragole (38%) and anethole (29%) in fennel oil. Diffusion assays revealed significant anti-pathogen effects (8.33-11 mm) and antifungal activity (33.33 ± 2.88-89.33 ± 1.15 mm) of marjoram and fennel nano-emulsions. Results regarding simulated infected fruit reflect spoilage delay without impacting fruit quality or sensory. The interactions between oil or nano-emulsions and fungal enzymes showed strong binding-free energy values, with significant docking scores (-6.6 to -7.0 kcal/mol) for aromatic constituents. In conclusion, aromatic antifungals offer a promising strategy for controlling Penicillium, enhancing the safety and quality of oranges and lemons, with oil nanoparticles improving antifungal efficacy by significantly reducing mycelium weight and spore germination.
Collapse
Affiliation(s)
- Merihane Gharzouli
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, Setif, Algeria
| | - Abdel Hakim Aouf
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, Setif, Algeria
| | - Shimaa Moawad
- Flavor and Aroma Chemistry Department, National Research Center, Giza, Egypt
| | - Hatem Ali
- Food Technology Department, National Research Center, Giza, Egypt
| | - Tawfiq Alsulami
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Amr Farouk
- Flavor and Aroma Chemistry Department, National Research Center, Giza, Egypt
| | - Karolina Hoppe
- Department of Chemistry, Poznan University of Life Science, Poznań, Poland
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Wang M, Lan W, Zuo C, Wang Z, Zhao J, Yang Y, Tu K, Song D, Pan L. Assessment of optical properties and Monte-Carlo based simulation of light propagation in citrus infected by Penicillium italicum. Food Res Int 2024; 192:114787. [PMID: 39147489 DOI: 10.1016/j.foodres.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
This original work investigated the optical properties and Monte-Carlo (MC) based simulation of light propagation in the flavedo of Nanfeng tangerine (NF) and Gannan navel orange (GN) infected by Penicillium italicum. The increase of absorption coefficient (μa) at around 482 nm and the decrease at around 675 nm were both observed in infected NF and GN during storage, indicating the accumulation of carotenoids and loss of chlorophyll. Particularly, the μa in NF varied more intensively than GN, but the limited differences of reduced scattering coefficient (μs') were detected while postharvest infection. Besides, MC simulation of light propagation indicated that the photon packets weight and penetration depth at 482 nm in NF were reduced more than in GN flavedo, while there were almost no changes at the relatively low absorption wavelength of 926 nm. The simulated absorption energy at 482 nm in NF and GN presented more changes than those at 675 nm during infection, thus could provide better detection of citrus diseases. Furthermore, PLS-DA models can discriminate healthy and infected citrus, with the accuracy of 95.24 % for NF and 98.67 % for GN, respectively. Consequently, these results can provide theoretical fundamentals to improve modelling prediction robustness and accuracy.
Collapse
Affiliation(s)
- Mengyao Wang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Weijie Lan
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Changzhou Zuo
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Zhenjie Wang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Jingyuan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Yucan Yang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| | - Dajie Song
- School of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China.
| | - Leiqing Pan
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China.
| |
Collapse
|
3
|
Liu Y, Zhao L, Chen H, Ye Z, Guo L, Zhou Z. Nobiletin enhances the antifungal activity of eugenol nanoemulsion against Penicillium italicum in both in vitro and in vivo settings. Int J Food Microbiol 2024; 420:110769. [PMID: 38823189 DOI: 10.1016/j.ijfoodmicro.2024.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The study prepared and used eugenol nanoemulsion loaded with nobiletin as fungistat to study its antifungal activity and potential mechanism of Penicillium italicum (P. italicum). The results showed that the minimum inhibitory concentration (MIC) of eugenol nanoemulsion loaded with nobiletin (EGN) was lower than that of pure eugenol nanoemulsion (EG), which were 160 μg/mL and 320 μg/mL, respectively. At the same time, the mycelial growth inhibition rate of EGN nanoemulsion (54.68 %) was also higher than that of EG nanoemulsion (9.92 %). This indicates that EGN nanoemulsion is more effective than EG nanoemulsion. Compared with EG nanoemulsion, the treatment of EGN nanoemulsion caused more serious damage to the cell structure of P. italicum. At the same time, in vitro inoculation experiments found that EGN nanoemulsion has better control and delay the growth and reproduction of P. italicum in citrus fruits. And the results reflected that EGN nanoemulsion may be considered as potential resouces of natural antiseptic to inhibit blue mold disease of citrus fruits, because it has good antifungal activity.
Collapse
Affiliation(s)
- Yanchi Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Lintao Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hongyang Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Zimao Ye
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Zhang Y, Li B, Fu M, Wang Z, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Antifungal mechanisms of binary combinations of volatile organic compounds produced by lactic acid bacteria strains against Aspergillusflavus. Toxicon 2024; 243:107749. [PMID: 38710308 DOI: 10.1016/j.toxicon.2024.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Aspergillus flavus(A. flavus), a common humic fungus known for its ability to infect agricultural products, served as the subject of investigation in this study. The primary objective was to assess the antifungal efficacy and underlying mechanisms of binary combinations of five volatile organic compounds (VOCs) produced by lactic acid bacteria, specifically in their inhibition of A. flavus. This assessment was conducted through a comprehensive analysis, involving biochemical characterization and transcriptomic scrutiny. The results showed that VOCs induce notable morphological abnormalities in A. flavus conidia and hyphae. Furthermore, they disrupt the integrity of the fungal cell membrane and cell wall, resulting in the leakage of intracellular contents and an increase in extracellular electrical conductivity. In terms of cellular components, VOC exposure led to an elevation in malondialdehyde content while concurrently inhibiting the levels of total lipids, ergosterol, soluble proteins, and reducing sugars. Additionally, the impact of VOCs on A. flavus energy metabolism was evident, with significant inhibition observed in the activities of key enzymes, such as Na+/K+-ATPase, malate dehydrogenase, succinate dehydrogenase, and chitinase. And they were able to inhibit aflatoxin B1 synthesis. The transcriptomic analysis offered further insights, highlighting that differentially expressed genes (DEGs) were predominantly associated with membrane functionality and enriched in pathways about carbohydrate and amino acid metabolism. Notably, DEGs linked to cellular components and energy-related mechanisms exhibited down-regulation, thereby corroborating the findings from the biochemical analyses. In summary, these results elucidate the principal antifungal mechanisms of VOCs, which encompass the disruption of cell membrane integrity and interference with carbohydrate and amino acid metabolism in A. flavus.
Collapse
Affiliation(s)
- Yi Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Bin Li
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Mingze Fu
- College of Food Science, Southwest University, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China
| | - Zsolt Zalán
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Ferenc Hegyi
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Budapest, 1022, Hungary
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, 400715, China.
| |
Collapse
|
5
|
Li C, Yang S, Zhang M, Yang Y, Li Z, Peng L. SntB Affects Growth to Regulate Infecting Potential in Penicillium italicum. J Fungi (Basel) 2024; 10:368. [PMID: 38921355 PMCID: PMC11204802 DOI: 10.3390/jof10060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Penicillium italicum, a major postharvest pathogen, causes blue mold rot in citrus fruits through the deployment of various virulence factors. Recent studies highlight the role of the epigenetic reader, SntB, in modulating the pathogenicity of phytopathogenic fungi. Our research revealed that the deletion of the SntB gene in P. italicum led to significant phenotypic alterations, including delayed mycelial growth, reduced spore production, and decreased utilization of sucrose. Additionally, the mutant strain exhibited increased sensitivity to pH fluctuations and elevated iron and calcium ion stress, culminating in reduced virulence on Gannan Novel oranges. Ultrastructural analyses disclosed notable disruptions in cell membrane integrity, disorganization within the cellular matrix, and signs of autophagy. Transcriptomic data further indicated a pronounced upregulation of hydrolytic enzymes, oxidoreductases, and transport proteins, suggesting a heightened energy demand. The observed phenomena were consistent with a carbon starvation response potentially triggering apoptotic pathways, including iron-dependent cell death. These findings collectively underscored the pivotal role of SntB in maintaining the pathogenic traits of P. italicum, proposing that targeting PiSntB could offer a new avenue for controlling citrus fungal infections and subsequent fruit decay.
Collapse
Affiliation(s)
| | | | | | | | | | - Litao Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.L.); (S.Y.)
| |
Collapse
|
6
|
Chen Y, Xing M, Chen T, Tian S, Li B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chem 2023; 415:135787. [PMID: 36854245 DOI: 10.1016/j.foodchem.2023.135787] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Spoilage and mycotoxin contamination of fruits cause significant economic losses and food safety issues. Synthetic chemical fungicide treatment as primary postharvest management has attracted increasing public concern in recent years, because it may cause negative effects on the environment and human health. Numerous bioactive compounds from plants have demonstrated excellent control effects on fruit spoilage and mycotoxin contamination. Plant bioactive compounds have been considered one of the most promising alternatives, because they are generally regarded as safe and environmentally friendly. Here, we reviewed the most recent advances in plant bioactive compounds in the prevention of fungal spoilage and mycotoxin contamination in fruits. The control effects of these compounds and the mechanisms involved were summarized, and current limitations and future perspectives were discussed.
Collapse
Affiliation(s)
- Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China.
| |
Collapse
|
7
|
Olofinsan K, Abrahamse H, George BP. Therapeutic Role of Alkaloids and Alkaloid Derivatives in Cancer Management. Molecules 2023; 28:5578. [PMID: 37513450 PMCID: PMC10386240 DOI: 10.3390/molecules28145578] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is a neoplastic disease that remains a global challenge with a reported prevalence that is increasing annually. Though existing drugs can be applied as single or combined therapies for managing this pathology, their concomitant adverse effects in human applications have led to the need to continually screen natural products for effective and alternative anticancer bioactive principles. Alkaloids are chemical molecules that, due to their structural diversity, constitute a reserve for the discovery of lead compounds with interesting pharmacological activities. Several in vitro studies and a few in vivo findings have documented various cytotoxic and antiproliferative properties of alkaloids. This review describes chaetocochin J, neopapillarine, coclaurine, reflexin A, 3,10-dibromofascaplysin and neferine, which belong to different alkaloid classes with antineoplastic properties and have been identified recently from plants. Despite their low solubility and bioavailability, plant-derived alkaloids have viable prospects as sources of viable lead antitumor agents. This potential can be achieved if more research on these chemical compounds is directed toward investigating ways of improving their delivery in an active form close to target cells, preferably with no effect on neighboring normal tissues.
Collapse
Affiliation(s)
- Kolawole Olofinsan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
8
|
Sun Y, Li Y, Xu Y, Sang Y, Mei S, Xu C, Yu X, Pan T, Cheng C, Zhang J, Jiang Y, Gao Z. The Effects of Storage Temperature, Light Illumination, and Low-Temperature Plasma on Fruit Rot and Change in Quality of Postharvest Gannan Navel Oranges. Foods 2022; 11:foods11223707. [PMID: 36429299 PMCID: PMC9689076 DOI: 10.3390/foods11223707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Gannan navel orange (Citrus sinensis Osbeck cv. Newhall) is an economically important fruit, but postharvest loss occurs easily during storage. In this study, the effects of different temperatures, light illuminations, and low-temperature plasma treatments on the water loss and quality of the Gannan navel orange were investigated. The fruit began to rot after 90 d of storage at 5 °C and 20-45 d at 26 °C. Navel oranges stored at 26 °C had 7.2-fold and 3.1-fold higher rates of water loss at the early and late storage stages, respectively, as compared with those stored at 5 °C. Storage at 5 °C decreased the contents of total soluble solids at the early storage stage and the contents of titratable acids at the late storage stage, whereas storage at 26 °C decreased the contents of total soluble solids at the late storage stage and the contents of titratable acids at the early storage stage, respectively. Application of low-temperature plasma produced by air ionization for 6 min, or continuous blue or red light illumination significantly inhibited water loss within 7 and 21 d of storage at 22 °C, respectively, but exhibited no significant effect on fruit quality. Furthermore, the low-temperature plasma treatment protected against fruit rot. Thus, treatment with low-temperature plasma followed by storage at a low temperature under continuous red or blue light illumination was of potential value as a green technology for preserving Gannan navel orange during storage.
Collapse
Affiliation(s)
- Ying Sun
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuanyuan Li
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yu Xu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yali Sang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Siyi Mei
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Chaobin Xu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Xingguo Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Taoyu Pan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Chen Cheng
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Jun Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yueming Jiang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: (Y.J.); (Z.G.)
| | - Zhiqiang Gao
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (Y.J.); (Z.G.)
| |
Collapse
|
9
|
Sulaiman M, Jannat K, Nissapatorn V, Rahmatullah M, Paul AK, de Lourdes Pereira M, Rajagopal M, Suleiman M, Butler MS, Break MKB, Weber JF, Wilairatana P, Wiart C. Antibacterial and Antifungal Alkaloids from Asian Angiosperms: Distribution, Mechanisms of Action, Structure-Activity, and Clinical Potentials. Antibiotics (Basel) 2022; 11:1146. [PMID: 36139926 PMCID: PMC9495154 DOI: 10.3390/antibiotics11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug-resistant bacteria and fungi requires the development of antibiotics and antifungal agents. This review identified natural products isolated from Asian angiosperms with antibacterial and/or antifungal activities and analyzed their distribution, molecular weights, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1979 to 2022. One hundred and forty-one antibacterial and/or antifungal alkaloids were identified during this period, mainly from basal angiosperms. The most active alkaloids are mainly planar, amphiphilic, with a molecular mass between 200 and 400 g/mol, and a polar surface area of about 50 Å2, and target DNA and/or topoisomerase as well as the cytoplasmic membrane. 8-Acetylnorchelerythrine, cryptolepine, 8-hydroxydihydrochelerythrine, 6-methoxydihydrosanguinarine, 2'-nortiliacorinine, pendulamine A and B, rhetsisine, sampangine, tiliacorine, tryptanthrin, tylophorinine, vallesamine, and viroallosecurinine yielded MIC ≤ 1 µg/mL and are candidates for the development of lead molecules.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Monica Suleiman
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81411, Saudi Arabia
| | - Jean-Frédéric Weber
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR ŒNOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
10
|
Chen C, Peng X, Wan C, Zhang Y, Gan Z, Zeng J, Kai W, Chen J. Lignin Biosynthesis Pathway and Redox Balance Act Synergistically in Conferring Resistance against Penicillium italicum Infection in 7-Demethoxytylophorine-Treated Navel Orange. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8111-8123. [PMID: 35730981 DOI: 10.1021/acs.jafc.2c02348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
7-Demethoxytylophorine (DEM), a natural water-soluble phenanthroindolizidine alkaloid, has a great potential for in vitro suppression of Penicillium italicum growth. In the present study, we investigated the ability of DEM to confer resistance against P. italicum in harvested "Newhall" navel orange and the underlying mechanism. Results from the in vivo experiment showed that DEM treatment delayed blue mold development. The water-soaked lesion diameter in 40 mg L-1 DEM-treated fruit was 35.2% lower than that in the control after 96 h. Moreover, the decrease in peel firmness loss and increase in electrolyte leakage, superoxide anion (O2•-) production, and malondialdehyde (MDA) content were significantly inhibited by DEM treatment. Hydrogen peroxide (H2O2) burst in DEM-treated fruit at the early stage of P. italicum infection contributed to the conferred resistance by increasing the activities of lignin biosynthesis-related enzymes, along with the expressions of their encoding genes, resulting in lignin accumulation. The DEM-treated fruit maintained an elevated antioxidant capacity, as evidenced by high levels of ascorbic acid and glutathione content, and enhanced or upregulated the activities and gene expression levels of APX, GR, MDHAR, DHAR, GPX, and GST, thereby maintaining ROS homeostasis and reducing postharvest blue mold. Collectively, the results in the present study revealed a control mechanism in which DEM treatment conferred the resistance against P. italicum infection in harvested "Newhall" navel orange fruit by activating lignin biosynthesis and maintaining the redox balance.
Collapse
Affiliation(s)
- Chuying Chen
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuan Peng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Chunpeng Wan
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanan Zhang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zengyu Gan
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaoke Zeng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbin Kai
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| |
Collapse
|
11
|
Li X, Yang S, Zhang M, Yang Y, Peng L. Identification of Pathogenicity-Related Effector Proteins and the Role of Piwsc1 in the Virulence of Penicillium italicum on Citrus Fruits. J Fungi (Basel) 2022; 8:jof8060646. [PMID: 35736129 PMCID: PMC9224591 DOI: 10.3390/jof8060646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Blue mold caused by Penicillium italicum is one of the two major postharvest diseases of citrus fruits. The interactions of pathogens with their hosts are complicated, and virulence factors that mediate pathogenicity have not yet been identified. In present study, a prediction pipeline approach based on bioinformatics and transcriptomic data is designed to determine the effector proteins of P. italicum. Three hundred and seventy-five secreted proteins of P. italicum were identified, many of which (29.07%) were enzymes for carbohydrate utilization. Twenty-nine candidates were further analyzed and the expression patterns of 12 randomly selected candidate effector genes were monitored during the early stages of growth on PDA and infection of Navel oranges for validation. Functional analysis of a cell wall integrity-related gene Piwsc1, a core candidate, was performed by gene knockout. The deletion of Piwsc1 resulted in reduced virulence on citrus fruits, as presented by an approximate 57% reduction in the diameter of lesions. In addition, the mycelial growth rate, spore germination rate, and sporulation of ΔPiwsc1 decreased. The findings provide us with new insights to understand the pathogenesis of P. italicum and develop an effective and sustainable control method for blue mold.
Collapse
|
12
|
Jiang N, Wang L, Jiang D, Wang M, Liu H, Yu H, Yao W. Transcriptomic analysis of inhibition by eugenol of ochratoxin A biosynthesis and growth of Aspergillus carbonarius. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Transcriptomics Integrated with Metabolomics Reveals 2-Methoxy-1, 4-Naphthoquinone-Based Carbon Dots Induced Molecular Shifts in Penicillium italicum. J Fungi (Basel) 2022; 8:jof8050420. [PMID: 35628676 PMCID: PMC9145997 DOI: 10.3390/jof8050420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Penicillium italicum (P. italicum), a citrus blue mold, is a pathogenic fungus that greatly affects the postharvest quality of citrus fruits with significant economic loss. Our previous research showed that 2-methoxy-1, 4-naphthoquinone (MNQ) inhibited the growth of Penicillium italicum. However, the water dispersibility of MNQ will limit its further application. Herein, we synthesized MNQ-based carbon dots (2−CDs) with better water dispersibility, which showed a potential inhibitory effect on P. italicum (MIC = 2.8 μg/mL) better than that of MNQ (MIC = 5.0 μg/mL). Transcriptomics integrated with metabolomics reveals a total of 601 differentially enriched genes and 270 differentially accumulated metabolites that are co-mapped as disruptive activity on the cell cytoskeleton, glycolysis, and histone methylation. Furthermore, transmission electron microscopy analysis showed normal appearances and intracellular septum of P. italicum after treatment. These findings contribute tofurther understanding of the possible molecular action of 2−CDs.
Collapse
|
14
|
Peng X, Zhang Y, Wan C, Gan Z, Chen C, Chen J. Antofine Triggers the Resistance Against Penicillium italicum in Ponkan Fruit by Driving AsA-GSH Cycle and ROS-Scavenging System. Front Microbiol 2022; 13:874430. [PMID: 35495682 PMCID: PMC9039625 DOI: 10.3389/fmicb.2022.874430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Postharvest fungal infection can accelerate the quality deterioration of Ponkan fruit and reduce its commodity value. Penicillium italicum is the causal pathogen of blue mold in harvested citrus fruits, not only causing huge fungal decay but also leading to quality deterioration. In our preliminary study, antofine (ATF) was found to have a great potential for significant in vitro suppression of P. italicum growth. However, the regulatory mechanism underpinning ATF-triggered resistance against P. italicum in citrus fruit remains unclear. Here, the protective effects of ATF treatment on blue mold development in harvested Ponkan fruit involving the enhancement of ROS-scavenging system were investigated. Results showed that ATF treatment delayed blue mold development and peel firmness loss. Moreover, the increase of electrolyte leakage, O2 •- production, and malonyldialdehyde accumulation was significantly inhibited by ATF treatment. The ATF-treated Ponkan fruit maintained an elevated antioxidant capacity, as evidenced by inducted the increase in glutathione (GSH) content, delayed the declines of ascorbic acid (AsA) content and GSH/oxidized GSH ratio, and enhanced the activities of superoxide dismutase, catalase, peroxidase, and six key AsA-GSH cycle-related enzymes, along with their encoding gene expressions, thereby maintaining ROS homeostasis and reducing postharvest blue mold in harvested Ponkan fruit. Collectively, the current study revealed a control mechanism based on ATF-triggered resistance and maintenance of a higher redox state by driving AsA-GSH cycle and ROS-scavenging system in P. italicum-infected Ponkan fruit.
Collapse
Affiliation(s)
| | | | | | | | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Preservation and Non-destruction Testing of Fruits and Vegetables, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | | |
Collapse
|
15
|
Guo L, Li Y, Mao X, Tao R, Tao B, Zhou Z. Antifungal Activity of Polymethoxylated Flavonoids (PMFs)-Loaded Citral Nanoemulsion against Penicillium italicum by Causing Cell Membrane Damage. J Fungi (Basel) 2022; 8:jof8040388. [PMID: 35448619 PMCID: PMC9029654 DOI: 10.3390/jof8040388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
A major citrus postharvest pathogen, Penicillium italicum (P. italicum), causes substantial economic losses in citrus. In this study, a citral nanoemulsion containing polymethoxylated flavonoids (PMFs), the antimicrobial compounds from citrus, was prepared. The antifungal activity and potential antifungal mechanisms of the nanoemulsion against P. italicum were evaluated. The results showed that the growth of P. italicum was effectively inhibited by the nanoemulsion, with a minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 62.5 and 250 mg L−1, respectively. The nanoemulsion significantly inhibited spore germination and mycelial growth, and it altered the morphology of P. italicum. In addition, the permeability of the cell membrane increased with increasing nanoemulsion concentrations, as evidenced by a rapid rise in extracellular electric conductivity and stronger red fluorescence from mycelia (propidium iodide staining). Compared with the control, the nanoemulsion treatment induced a decrease in total lipid and ergosterol contents in P. italicum cells by 64.61% and 60.58%, respectively, demonstrating that membrane integrity had been disrupted. The results indicated that the PMFs-loaded nanoemulsion exerted antifungal activity against P. italicum by disrupting cell membrane integrity and permeability; such a nanoemulsion may be used as a potential fungicide substitute for preservation in citrus fruits.
Collapse
Affiliation(s)
- Long Guo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Yi Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Xiaoxue Mao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Rui Tao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Boyun Tao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (L.G.); (Y.L.); (X.M.); (R.T.); (B.T.)
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
- Correspondence: ; Tel.: +86-023-6825-1047
| |
Collapse
|
16
|
Cheng X, Yang Y, Zhu X, Yuan P, Gong B, Ding S, Shan Y. Inhibitory mechanisms of cinnamic acid on the growth of Geotrichum citri-aurantii. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Li L, Xin Z, Okwong RO, OuYang Q, Che J, Zhou J, Tao N. Antofine inhibits postharvest green mold due to imazalil-resistant Penicillium digitatum strain Pdw03 by triggering oxidative burst. J Food Biochem 2021; 45:e13751. [PMID: 33949723 DOI: 10.1111/jfbc.13751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 01/05/2023]
Abstract
The emergence of imazalil (IMZ) resistance in Penicillium digitatum has become a great threat for controlling citrus green mold. In this paper, we investigated the antifungal efficiency and mechanism of an alkaloid antofine against an IMZ-resistant P. digitatum strain Pdw03. Results showed that antofine exhibited a strong antifungal activity against the mycelial growth of strain Pdw03, with a minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of 1.56 × 10-3 and 1.25 × 10-2 g/L, respectively. In vivo application of antofine effectively delayed the disease progress and reduced the incidence of green mold in citrus fruit. The disease incidence of 10 × MFC antofine-treated fruit after 6 days of storage was only 11% ± 4%, which was significantly lower than that of the control (100% ± 0%). Antofine treatment altered mycelial morphology of strain Pdw03 without affecting the cell wall integrity. Although the ergosterol contents remained stable, a decrease in the total lipid content induced by lipid peroxidation was observed at 30 min of exposure, indicating disruption of cell membrane permeability of strain Pdw03. In addition, the mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) contents were also decreased at 60 min of exposure. These results indicated that antofine inhibited the growth of strain Pdw03 by disrupting cell membrane permeability and impairing energy metabolism induced by oxidative burst. PRACTICAL APPLICATIONS: One of the most economically important postharvest diseases of citrus fruit is green mold caused by Penicillium digitatum. The pathogen is mainly controlled by using imazalil, but the prolonged and extensive application of this chemical fungicide has led to emergence of numerous IMZ-resistant strains among P. digitatum isolates. Consequently, new and safe strategies for controlling citrus green mold caused by IMZ-resistant P. digitatum strains are urgently needed. In this study, an alkaloid antofine effectively inhibited the growth of IMZ-resistant P. digitatum strain Pdw03 and significantly decreased green mold incidence in the affected citrus fruits. Antofine induced membrane lipid peroxidation of Pdw03 mycelia, resulting in damage to the cell membrane and impairment of energy metabolism. Antofine is therefore a potential antifungal agent for the control of green mold, which provide theoretical guidance for the food industry.
Collapse
Affiliation(s)
- Lu Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Zhitong Xin
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | | | - Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Jinxin Che
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Jia Zhou
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
18
|
Extraction optimization of antifungal compounds from Thalictrum foliolosum DC. roots. SOUTH AFRICAN JOURNAL OF BOTANY 2021. [DOI: 10.1016/j.sajb.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Limonin Enhances the Antifungal Activity of Eugenol Nanoemulsion against Penicillium Italicum In Vitro and In Vivo Tests. Microorganisms 2021; 9:microorganisms9050969. [PMID: 33946160 PMCID: PMC8144956 DOI: 10.3390/microorganisms9050969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Penicillium italicum, the cause of citrus blue mold, is a pathogenic fungus that seriously affects the postharvest quality of citrus fruit and causes serious economic loss. In this study, a eugenol nanoemulsion containing limonin, an antimicrobial component from citrus seeds, was prepared using a high-pressure microfluidizer and the antifungal activity of the nanoemulsions against P. italicum was evaluated based on the conidial germination rate, mycelial growth, and scanning electron microscopy analysis. The results showed that the minimum inhibitory concentration and the inhibition rate of limonin-loaded eugenol nanoemulsion was 160 μg/mL and 59.21%, respectively, which was more potent than that of the limonin-free eugenol emulsion. After treatment with the nanoemulsions, the integrity of the P. italicum cell membrane was disrupted, the cell morphology was abnormal, and the leakage of nucleic acid and protein was observed. In addition, the challenge test on citrus fruits revealed that the limonin-loaded eugenol emulsion inhibited citrus infection for longer periods, with an infection rate of 29.2% after 5 days. The current research shows that nanoemulsions containing limonin and eugenol have effective antifungal activity against P. italicum, and may be used as a substitute for inhibiting blue mold in citrus fruits.
Collapse
|
20
|
Possible fungicidal effect of citral on kiwifruit pathogens and their mechanisms of actions. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2021. [DOI: 10.1016/j.pmpp.2021.101631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Elsherbiny EA, Taher MA, Abd El-Aziz MH, Mohamed SY. Action mechanisms and biocontrol of Purpureocillium lilacinum against green mould caused by Penicillium digitatum in orange fruit. J Appl Microbiol 2021; 131:1378-1390. [PMID: 33484589 DOI: 10.1111/jam.15016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023]
Abstract
AIMS The present study evaluated, for the first time, the inhibitory effects of the filtrate of Purpureocillium lilacinum against Penicillium digitatum. METHODS AND RESULTS No direct contact between P. lilacinum and P. digitatum was observed during the dual culture test and the inhibition zone was 6·1 mm. The filtrate of P. lilacinum completely inhibited P. digitatum growth and spore germination at the concentration of 64%. The filtrate increased the permeability of the cell membrane and the content of MDA in P. digitatum. The ergosterol content in P. digitatum was strongly inhibited at 32% by 81·1%. The green mould incidence and severity in filtrate-treated fruit at 64% were 71·7 and 80·7% lower than in the control, respectively. The filtrate enhanced the activity of PAL, PPO and POD enzymes in orange fruit. The POD and PAL gene expression levels were significantly upregulated in the fruit treated with the filtrate. CONCLUSIONS This study indicated that the antifungal mechanism of P. lilacinum filtrate against P. digitatum is mainly by the damage of the fungal cell membrane and its components. SIGNIFICANCE AND IMPACT OF THE STUDY This work provides the pioneer evidence on the application of P. lilacinum filtrate as a novel biocontrol agent for orange green mould.
Collapse
Affiliation(s)
- E A Elsherbiny
- Plant Pathology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - M A Taher
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - M H Abd El-Aziz
- Department of Genetics, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - S Y Mohamed
- Horticulture Research Institute, Agricultural Research Center, Cairo, Egypt
| |
Collapse
|
22
|
Shen Y, Chen C, Cai N, Yang R, Chen J, Kahramanoǧlu İ, Okatan V, Rengasamy KRR, Wan C. The Antifungal Activity of Loquat ( Eriobotrya japonica Lindl.) Leaves Extract Against Penicillium digitatum. Front Nutr 2021; 8:663584. [PMID: 34490318 PMCID: PMC8417588 DOI: 10.3389/fnut.2021.663584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023] Open
Abstract
This study was performed to determine the antifungal activity of loquat (Eriobotrya japonica Lindl) leaf extract (LLE) against the citrus postharvest pathogen Penicillium digitatum (P. digitatum). The LLE exhibited an antifungal activity against P. digitatum, with a minimum inhibitory concentration (MIC) of 0.625 mg/ml and a minimum fungicidal concentration (MFC) of 1.25 mg/ml. Significant inhibitory effects of LLE on mycelial growth and spore germination of P. digitatum were seen in a dose-dependent manner. Simultaneously, to investigate possible antifungal mechanisms by LLE, we analyzed their influence on morphological changes, cell membrane permeability, cell wall and cell membrane integrity, and adenosine phosphates (ATP, ADP, and AMP) levels. Alterations, such as sunken surface and malformation, occurred in the LLE-treated P. digitatum spores. Furthermore, intracellular inclusion content decreased after LLE treatment, indicating an increase in cell membrane permeability. Besides, the LLE treatment induced a significant decline in the level of adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP) with a noticeable addition of extracellular ATP, ADP, and AMP during the entire treatment period. Overall, the results manifested that the antifungal activity of LLE against P. digitatum can be attributed to the derangement of cell membrane permeability and disordered energy metabolism. This is the first report on the mechanism of antifungal activity of LLE and could be useful in the development of targeted fungicides from natural origin.
Collapse
Affiliation(s)
- Yuting Shen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Nan Cai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ruopeng Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
- *Correspondence: Jinyin Chen
| | - İbrahim Kahramanoǧlu
- Faculty of Agricultural Sciences and Technologies, European University of Lefke, Gemikonagi, Turkey
| | - Volkan Okatan
- Department of Horticulture, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Kannan R. R. Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits, Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Chunpeng Wan
| |
Collapse
|
23
|
Kanashiro AM, Akiyama DY, Kupper KC, Fill TP. Penicillium italicum: An Underexplored Postharvest Pathogen. Front Microbiol 2020; 11:606852. [PMID: 33343551 PMCID: PMC7746842 DOI: 10.3389/fmicb.2020.606852] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
In the agricultural sector, citrus is one of the most important fruit genus in the world. In this scenario, Brazil is the largest producer of oranges; 34% of the global production, and exporter of concentrated orange juice; 76% of the juice consumed in the planet, summing up US$ 6.5 billion to Brazilian GDP. However, the orange production has been considerable decreasing due to unfavorable weather conditions in recent years and the increasing number of pathogen infections. One of the main citrus post-harvest phytopathogen is Penicillium italicum, responsible for the blue mold disease, which is currently controlled by pesticides, such as Imazalil, Pyrimethanil, Fludioxonil, and Tiabendazole, which are toxic chemicals harmful to the environment and also to human health. In addition, P. italicum has developed considerable resistance to these chemicals as a result of widespread applications. To address this growing problem, the search for new control methods of citrus post-harvest phytopathogens is being extensively explored, resulting in promising new approaches such as biocontrol methods as “killer” yeasts, application of essential oils, and antimicrobial volatile substances. The alternative methodologies to control P. italicum are reviewed here, as well as the fungal virulence factors and infection strategies. Therefore, this review will focus on a general overview of recent research carried out regarding the phytopathological interaction of P. italicum and its citrus host.
Collapse
Affiliation(s)
| | | | - Katia Cristina Kupper
- Advanced Citrus Research Center, Sylvio Moreira/Campinas Agronomic Institute, São Paulo, Brazil
| | | |
Collapse
|
24
|
Feng G, Li X, Wang W, Deng L, Zeng K. Effects of Peptide Thanatin on the Growth and Transcriptome of Penicillium digitatum. Front Microbiol 2020; 11:606482. [PMID: 33381100 PMCID: PMC7767931 DOI: 10.3389/fmicb.2020.606482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
Penicillium digitatum is the most damaging pathogen provoking green mold in citrus fruit during storage, and there is an urgent need for novel antifungal agents with high efficiency. The aim of this study was to investigate the antifungal effects of peptide thanatin against P. digitatum and the molecular mechanisms. Results showed that peptide thanatin had a prominent inhibitory effect on P. digitatum by in vitro and in vivo test. A total of 938 genes, including 556 downregulated and 382 upregulated genes, were differentially expressed, as revealed by RNA-seq of whole P. digitatum genomes analysis with or without thanatin treatment. The downregulated genes mainly encoded RNA polymerase, ribosome biogenesis, amino acid metabolism, and major facilitator superfamily. The genes associated with heat shock proteins and antioxidative systems were widely expressed in thanatin-treated group. DNA, RNA, and the protein content of P. digitatum were significantly decreased after thanatin treatment. In conclusion, thanatin could inhibit the growth of P. digitatum, and the underlying mechanism might be the genetic information processing and stress response were affected. The research will provide more precise and directional clues to explore the inhibitory mechanism of thanatin on growth of P. digitatum.
Collapse
Affiliation(s)
- Guirong Feng
- College of Food Science, Southwest University, Chongqing, China
| | - Xindan Li
- College of Food Science, Southwest University, Chongqing, China
| | - Wenjun Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage and Logistics, Southwest University, Chongqing, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage and Logistics, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Lin SH, Luo P, Yuan E, Zhu X, Zhang B, Wu X. Physiological and Proteomic Analysis of Penicillium digitatum in Response to X33 Antifungal Extract Treatment. Front Microbiol 2020; 11:584331. [PMID: 33240238 PMCID: PMC7677231 DOI: 10.3389/fmicb.2020.584331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Penicillium digitatum is a widespread pathogen among Rutaceae species that causes severe fruit decay symptoms on infected citrus fruit (known as citrus green mold). The employment of fungicides can effectively control the citrus green mold, significantly reducing agricultural economic loss. In this study, we found that the X33 antifungal extract produced by Streptomyces lavendulae strain X33 inhibited the hyphae polarization of P. digitatum. Additionally, physiological and proteomic analysis strategies were applied to explore the inhibitory mechanism of the X33 antifungal extract of the S. lavendulae strain X33 on the mycelial growth of P. digitatum. A total of 277 differentially expressed proteins, consisting of 207 upregulated and 70 downregulated, were identified from the comparative proteomics analysis. The results indicated that the X33 antifungal extract induced mitochondrial membrane dysfunction and cellular integrity impairment, which can affect energy metabolism, oxidative stress, and transmembrane transport. The improved alkaline phosphatase activity and extracellular conductivity, increased H2O2 and malondialdehyde contents, and inhibition of energy, amino acid, and sugar metabolism indicated that the oxidative stress of P. digitatum is induced by the X33 antifungal extract. These findings provided insight into the antifungal mechanism of the X33 antifungal extract against P. digitatum by suggesting that it may be an effective fungicide for controlling citrus postharvest green mold.
Collapse
Affiliation(s)
- Shu-Hua Lin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Pan Luo
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiangdong Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, China.,Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, China
| |
Collapse
|
26
|
Synthesis and Antifungal Activities of Cinnamaldehyde Derivatives against Penicillium digitatum Causing Citrus Green Mold. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8898692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Penicillium digitatum (green mold) is pathogenic fungi and causes citrus fruit postharvest rotting that leads to huge economic losses across the world. The current study was aimed to develop a new derivative of cinnamaldehyde (4-methoxycinnamaldehyde) through the cross-hydroxyaldehyde condensation method with benzaldehyde substituted by a benzene ring under the catalysis of alkaline reagent and, moreover, to test their antifungal potential against P. digitatum, the major citrus fruit rotting fungi. Multiple derivatives of cinnamaldehyde viz. 4-nitro CA, 4-chloro CA, 4-bromo CA, 4-methyl CA, 4-methoxy CA, and 2,4-dimethoxy CA were synthesized in the current study whereas the 4-methoxy CA showed highest antifungal actions for citrus fruit postharvest rotting fungi P. digitatum. Moreover, 4-methoxy CA was found to reduce the spore germination and growth by damaging the fungal cell membrane, as well as declined the levels of reducing sugars.
Collapse
|
27
|
Díaz MA, Pereyra MM, Santander FFS, Perez MF, Córdoba JM, Alhussein M, Karlovsky P, Dib JR. Protection of Citrus Fruits from Postharvest Infection with Penicillium digitatum and Degradation of Patulin by Biocontrol Yeast Clavispora lusitaniae 146. Microorganisms 2020; 8:E1477. [PMID: 32993018 PMCID: PMC7601000 DOI: 10.3390/microorganisms8101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/31/2023] Open
Abstract
Fungal rots are one of the main causes of large economic losses and deterioration in the quality and nutrient composition of fruits during the postharvest stage. The yeast Clavispora lusitaniae 146 has previously been shown to efficiently protect lemons from green mold caused by Penicillium digitatum. In this work, the effect of yeast concentration and exposure time on biocontrol efficiency was assessed; the protection of various citrus fruits against P. digitatum by C. lusitaniae 146 was evaluated; the ability of strain 146 to degrade mycotoxin patulin was tested; and the effect of the treatment on the sensory properties of fruits was determined. An efficient protection of lemons was achieved after minimum exposure to a relatively low yeast cell concentration. Apart from lemons, the yeast prevented green mold in grapefruits, mandarins, oranges, and tangerines, implying that it can be used as a broad-range biocontrol agent in citrus. The ability to degrade patulin indicated that strain 146 may be suitable for the control of further Penicillium species. Yeast treatment did not alter the sensory perception of the aroma of fruits. These results corroborate the potential of C. lusitaniae 146 for the control of postharvest diseases of citrus fruits and indicate its suitability for industrial-scale fruit processing.
Collapse
Affiliation(s)
- Mariana Andrea Díaz
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Martina María Pereyra
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Fabricio Fabián Soliz Santander
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Josefina María Córdoba
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
| | - Mohammad Alhussein
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany;
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Goettingen, Grisebachstrasse 6, D-37077 Göttingen, Germany;
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pje. Caseros, 4000 Tucumán, Argentina; (M.A.D.); (M.M.P.); (F.F.S.S.); (M.F.P.); (J.M.C.)
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 Tucumán, Argentina
| |
Collapse
|
28
|
Jia XH, Zhao HX, Du CL, Tang WZ, Wang XJ. Possible pharmaceutical applications can be developed from naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloids. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 20:845-868. [PMID: 32994757 PMCID: PMC7517060 DOI: 10.1007/s11101-020-09723-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloids (PIAs and PQAs) are two small groups of herbal metabolites sharing a similar pentacyclic structure with a highly oxygenated phenanthrene moiety fused with a saturated or an unsaturated N-heterocycle (indolizidine/quinolizidine moieties). Natural PIAs and PQAs only could be obtained from finite plant families (such as Asclepiadaceae, Lauraceae and Urticaceae families, etc.). Up to date, more than one hundred natural PIAs, while only nine natural PQAs had been described. PIA and PQA analogues have been applied to the development of potent anticancer agents all along because of their excellent cytotoxic activity. However, in the last two decades, other great biological properties, such as anti-inflammatory and antiviral activities were revealed successively by different pharmacological assays. Especially because of their potent antiviral activity against coronavirus (TGEV, SARS CoV and MHV) and tobacco mosaic virus, PIA and PQA analogues have attracted much pharmaceutical attention again, some of them have been used to present interesting targets for total or semi synthesis, and structure-activity relationship (SAR) study for the development of antiviral agents. In this review, natural PIA and PQA analogues obtained in the last two decades with their herbal origins, key spectroscopic characteristics for structural identification, biological activity with possible SARs and application prospects were systematically summarized. We hope this paper can stimulate further investigations on PIA and PQA analogues as an important source for potential drug discovery.
Collapse
Affiliation(s)
- Xian-hui Jia
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Huan-xin Zhao
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Cheng-lin Du
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Wen-zhao Tang
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| | - Xiao-jing Wang
- Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062 People’s Republic of China
| |
Collapse
|
29
|
Paenibacillus brasilensis YS-1: A Potential Biocontrol Agent to Retard Xinyu Tangerine Senescence. AGRICULTURE 2020. [DOI: 10.3390/agriculture10080330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Xinyu tangerine (Citrus reticulata Blanco) is a non-climacteric fruit that is widely cultivated and consumed in China but highly susceptible to fungal infections. Antagonistic microorganisms can control postharvest diseases and extend the storage life of citrus fruits. However, little work has been done to investigate the effects of applying Paenibacillus brasilensis YS-1 by immersion to enhance the cold storability of Xinyu tangerines. Fruits were soaked with P. brasilensis YS-1 fermented filtrates for 10 min and in sterile water as the control. The decay incidence, weight loss, nutrient content, respiration rate, malondialdehyde (MDA) content, and defensive enzymes activities in citrus fruit were measured during cold storage at 5 ± 0.5 °C. The results showed that P. brasilensis YS-1 treatment significantly reduced postharvest decay and effectively maintained the nutritional quality compared to the control under cold storage. The weight loss, respiration rate, and MDA content were lower in P. brasilensis YS-1-treated fruits than the control fruits, indicating that P. brasilensis YS-1 treatment increased the activities of superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalnine ammonia-lyase (PAL). According to the results, a postharvest application of P. brasilensis YS-1 can control the postharvest decay and maintain fruit quality, as well as increase the defensive enzyme activity, so as to achieve the purpose of retarding postharvest senescence in citrus fruit.
Collapse
|
30
|
Chen C, Wan C, Peng X, Chen J. A flavonone pinocembroside inhibits Penicillium italicum growth and blue mold development in 'Newhall' navel oranges by targeting membrane damage mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104505. [PMID: 32359555 DOI: 10.1016/j.pestbp.2019.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Blue mold caused by Penicillium italicum is an important postharvest disease of citrus fruit. The antifungal activity of a flavonone pinocembroside compound obtained from the fruit of Ficus hirta Vahl., was evaluated against P. italicum. Pinocembroside showed antifungal activity against in vitro mycelial growth of P. italicum, with the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 200 and 800 mg/L, respectively. The blue mold development on 'Newhall' navel oranges was inhibited by pinocembroside in a dose-dependent manner. Moreover, pinocembroside might exert its antifungal activity via membrane-targeted mechanism with increasing membrane permeability, reduction of antioxidant enzyme activity and acceleration of lipid peroxidation in the pathogen. This pioneering study suggested that pinocembroside suppressed postharvest blue mold by direct inhibition of P. italicum mycelial growth via membrane-targeting mechanism, thus providing a novel mode of action against traditional fungicides for controlling blue mold of citrus fruit.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| | - Xuan Peng
- Pingxiang University, Pingxiang 330075, People's Republic of China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China; Pingxiang University, Pingxiang 330075, People's Republic of China.
| |
Collapse
|
31
|
Chen C, Chen J, Wan C. Pinocembrin-7-Glucoside (P7G) Reduced Postharvest Blue Mold of Navel Orange by Suppressing Penicillium italicum Growth. Microorganisms 2020; 8:E536. [PMID: 32276525 PMCID: PMC7232162 DOI: 10.3390/microorganisms8040536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
The current study aimed to examine the in vitro and in vivo antifungal potential of pinocembrin-7-glucoside (P7G). P7G is an antifungal flavanone glycoside isolated from Ficus hirta Vahl. fruit against Penicillium italicum, a causative pathogen of blue mold disease in citrus fruit, and this study elucidates its possible action mechanism. P7G had a prominent mycelial growth inhibitory activity against P. italicum, with an observed half maximal effective concentration, minimum inhibitory concentration and minimum fungicidal concentration of 0.08, 0.2, and 0.8 g/L, respectively. The data from the in vivo test show that P7G significantly reduced blue mold symptoms and disease development of P. italicum in artificially inoculated "Newhall" navel orange. Compared to the control, increases in the cell membrane permeability of P. italicum supernatant and decreases in the intracellular constituent (e.g., soluble protein, reducing sugar, and total lipid) contents of P. italicum mycelia were identified, supporting scanning electron microscopy and transmission electron microscopy observations. Furthermore, a marked decline in both chitin and glucanase contents of P. italicum mycelia treated with P7G was induced by increasing its related degrading enzyme activities, suggesting that the cell wall structure was destroyed. The current study indicated that P7G may be a novel alternative for reducing blue mold by suppressing mycelial growth of P. italicum via a cell membrane/wall-targeting mechanism.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Non-destructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Non-destructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
- Pingxiang University, Pingxiang 337055, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Non-destructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
32
|
Chen C, Peng X, Chen J, Wan C. Antioxidant, Antifungal Activities of Ethnobotanical Ficus hirta Vahl. and Analysis of Main Constituents by HPLC-MS. Biomedicines 2020; 8:biomedicines8010015. [PMID: 31952281 PMCID: PMC7168232 DOI: 10.3390/biomedicines8010015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
The medicinal and edible plant, Ficus hirta Vahl. (also called hairy fig), is used for the treatment of constipation, inflammation, postpartum hypogalactia, tumors, and cancer. There is an urgent need for scientific evaluation to verify the pharmacological properties of F. hirta. Therefore, in vitro assays evaluated the antioxidant and antifungal activities of various solvent extracts of hairy fig fruits (HFF). HFF extracts had abundant antioxidant components for a significant amount of total phenolic (TPC) and flavonoid contents (TFC) (TPC from 17.75 ± 0.52 to 85.25 ± 1.72 mg gallic acid/g dw and TFC from 15.80 ± 0.59 to 144.22 ± 8.46 mg rutin/g dw, respectively). The ethyl acetate extract (EAE) and acetone extract (AE) of HFF demonstrated potent antioxidant activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 values of 2.52 and 2.02 mg/mL, respectively) and ABTS radicals (IC50 values of 3.06 and 9.26 mg/mL, respectively). Moreover, the AE with a high TFC showed a prominent in vitro and in vivo antifungal activity against Penicillium italicum, causing citrus blue mold. Eighteen metabolites were identified or putatively identified from six HFF extracts. Current findings indicated that HFF extracts had significant antioxidant and antifungal activities and could potentially be used as an alternative agent for the preservation of agricultural products.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Xuan Peng
- Pingxiang University, Pingxiang 337055, China;
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
- Pingxiang University, Pingxiang 337055, China;
- Correspondence: (J.C.); (C.W.); Tel.: +86-791-83813158 (C.W.)
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
- Correspondence: (J.C.); (C.W.); Tel.: +86-791-83813158 (C.W.)
| |
Collapse
|
33
|
Chen C, Cai N, Chen J, Wan C. UHPLC-Q-TOF/MS-Based Metabolomics Approach Reveals the Antifungal Potential of Pinocembroside against Citrus Green Mold Phytopathogen. PLANTS (BASEL, SWITZERLAND) 2019; 9:E17. [PMID: 31877872 PMCID: PMC7020183 DOI: 10.3390/plants9010017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Pinocembroside (PiCB) isolated from Ficus hirta Vahl. fruit was studied herein with the aim to find the potential mechanism for significant inhibition of growth of Penicillium digitatum, a causative pathogen of citrus green mold disease. PiCB substantially inhibited mycelial growth of P. digitatum, with the observed half maximal effective concentration (EC50), minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) of 120.3, 200, and 400 mg/L, respectively. Moreover, PiCB altered hyphal morphology and cellular morphology by breaking and shrinking of mycelia, decomposing cell walls, cytoplasmic inclusions. In addition to, a non-targeted metabolomics analysis by UHPLC-Q-TOF/MS was also performed, which revealed that PiCB treatment notably disrupted the metabolisms of amino acids, lipids, fatty acids, TCA, and ribonucleic acids, thereby contributing to membrane peroxidation. Current findings provide a new perception into the antifungal mechanism of PiCB treatment in inhibiting P. digitatum growth through membrane peroxidation.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (N.C.)
| | - Nan Cai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (N.C.)
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (N.C.)
- Pingxiang University, Pingxiang 337055, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits & Vegetables in Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China; (C.C.); (N.C.)
| |
Collapse
|
34
|
Wang L, Jiang N, Wang D, Wang M. Effects of Essential Oil Citral on the Growth, Mycotoxin Biosynthesis and Transcriptomic Profile of Alternaria alternata. Toxins (Basel) 2019; 11:toxins11100553. [PMID: 31547106 PMCID: PMC6832348 DOI: 10.3390/toxins11100553] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Alternaria alternata is a critical phytopathogen that causes foodborne spoilage and produces a polyketide mycotoxin, alternariol (AOH), and its derivative, alternariol monomethyl ether (AME). In this study, the inhibitory effects of the essential oil citral on the fungal growth and mycotoxin production of A. alternata were evaluated. Our findings indicated that 0.25 μL/mL (222.5 μg/mL) of citral completely suppressed mycelial growth as the minimum inhibitory concentration (MIC). Moreover, the 1/2MIC of citral could inhibit more than 97% of the mycotoxin amount. Transcriptomic profiling was performed by comparative RNA-Seq analysis of A. alternata with or without citral treatment. Out of a total of 1334 differentially expressed genes (DEGs), 621 up-regulated and 713 down-regulated genes were identified under citral stress conditions. Numerous DEGs for cell survival, involved in ribosome and nucleolus biogenesis, RNA processing and metabolic processes, and protein processing, were highly expressed in response to citral. However, a number of DEGs responsible for the metabolism of several carbohydrates and amino acids, sulfate and glutathione metabolism, the metabolism of xenobiotics and transporter activity were significantly more likely to be down-regulated. Citral induced the disturbance of cell integrity through the disorder of gene expression, which was further confirmed by the fact that exposure to citral caused irreversibly deleterious disruption of fungal spores and the inhibition of ergosterol biosynthesis. Citral perturbed the balance of oxidative stress, which was likewise verified by a reduction of total antioxidative capacity. In addition, citral was able to modulate the down-regulation of mycotoxin biosynthetic genes, including pksI and omtI. The results provide new insights for exploring inhibitory mechanisms and indicate citral as a potential antifungal and antimytoxigenic alternative for cereal storage.
Collapse
Affiliation(s)
- Liuqing Wang
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Beijing), Ministry of Agriculture and Rural Affairs, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China.
| | - Nan Jiang
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Beijing), Ministry of Agriculture and Rural Affairs, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China.
| | - Duo Wang
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Beijing), Ministry of Agriculture and Rural Affairs, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China.
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Beijing), Ministry of Agriculture and Rural Affairs, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China.
| |
Collapse
|
35
|
Guo M, Zhang X, Li M, Li T, Duan X, Zhang D, Hu L, Huang R. Label-Free Proteomic Analysis of Molecular Effects of 2-Methoxy-1,4-naphthoquinone on Penicillium italicum. Int J Mol Sci 2019; 20:ijms20143459. [PMID: 31337149 PMCID: PMC6678512 DOI: 10.3390/ijms20143459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
Penicillium italicum is the principal pathogen causing blue mold of citrus. Searching for novel antifungal agents is an important aspect of the post-harvest citrus industry because of the lack of higher effective and low toxic antifungal agents. Herein, the effects of 2-methoxy-1,4-naphthoquinone (MNQ) on P. italicum and its mechanism were carried out by a series of methods. MNQ had a significant anti-P. italicum effect with an MIC value of 5.0 µg/mL. The label-free protein profiling under different MNQ conditions identified a total of 3037 proteins in the control group and the treatment group. Among them, there were 129 differentially expressed proteins (DEPs, up-regulated > 2.0-fold or down-regulated < 0.5-fold, p < 0.05), 19 up-regulated proteins, 26 down-regulated proteins, and 67 proteins that were specific for the treatment group and another 17 proteins that were specific for the control group. Of these, 83 proteins were sub-categorized into 23 hierarchically-structured GO classifications. Most of the identified DEPs were involved in molecular function (47%), meanwhile 27% DEPs were involved in the cellular component and 26% DEPs were involved in the biological process. Twenty-eight proteins identified for differential metabolic pathways by KEGG were sub-categorized into 60 classifications. Functional characterization by GO and KEGG enrichment results suggests that the DEPs are mainly related to energy generation (mitochondrial carrier protein, glycoside hydrolase, acyl-CoA dehydrogenase, and ribulose-phosphate 3-epimerase), NADPH supply (enolase, pyruvate carboxylase), oxidative stress (catalase, glutathione synthetase), and pentose phosphate pathway (ribulose-phosphate 3-epimerase and xylulose 5-phosphate). Three of the down-regulated proteins selected randomly the nitro-reductase family protein, mono-oxygenase, and cytochrome P450 were verified using parallel reaction monitoring. These findings illustrated that MNQ may inhibit P. italicum by disrupting the metabolic processes, especially in energy metabolism and stimulus response that are both critical for the growth of the fungus. In conclusion, based on the molecular mechanisms, MNQ can be developed as a potential anti-fungi agent against P. italicum.
Collapse
Affiliation(s)
- Meixia Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Meiying Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
36
|
The Antifungal Potential of Carvacrol against Penicillium Digitatum through 1H-NMR Based Metabolomics Approach. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carvacrol (5-Isopropyl-2-methylphenol), a volatile oil constituent, mainly exists in Labiaceae family plants. Carvacrol has long been studied for its natural antifungal potential and food preservative potential. However, its exact mode of action, especially against Penicillium digitatum (P. digitatum), remains unexplored. Herein, a 1H-NMR-based metabolomic technique was used to investigate the antifungal mechanism of carvacrol against P. digitatum. The metabolomic profiling data showed that alanine, aspartate, glutamate, and glutathione metabolism were imbalanced in the fungal hyphae. A strong positive correlation was seen between aspartate, glutamate, alanine, and glutamine, with a negative correlation among glutathione and lactate. These metabolic changes revealed that carvacrol-induced oxidative stress had disturbed the energy production and amino acid metabolism of P. digitatum. The current study will improve the understanding of the metabolic changes posed by plant-based fungicides in order to control citrus fruit green mold caused by P. digitatum. Moreover, the study will provide a certain experimental and theoretical basis for the development of novel citrus fruit preservatives.
Collapse
|
37
|
Chen C, Cai N, Chen J, Wan C. Clove Essential Oil as an Alternative Approach to Control Postharvest Blue Mold Caused by Penicillium italicum in Citrus Fruit. Biomolecules 2019; 9:biom9050197. [PMID: 31117317 PMCID: PMC6572225 DOI: 10.3390/biom9050197] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Penicillium italicum causes blue mold disease and leads to huge economic losses in citrus production. As a natural antifungal agent, clove essential oil (CEO), which is a generally recognized as safe (GRAS) substance, shows strong in vitro activity against fungal pathogens. However, few studies on CEO for controlling postharvest blue mold disease caused by P. italicum in citrus fruit have been reported. Our aims were to investigate the control efficacy and possible mechanisms involved of CEO against P. italicum. In the present study, CEO treatment inhibited the disease development of blue mold when applied at 0.05% to 0.8% (v/v), and with the effective concentration being obtained as 0.4% (v/v). Besides its direct antifungal activity, CEO treatment also spurred a rapid accumulation of H2O2 compared with untreated fruits, which might contribute to enhancing an increase in the activities of defense-related enzymes, such as β-1,3-glucanase (β-Glu), chitinase (CHI), phenylalanine ammonia-lyase (PAL), peroxidase (POD), polyphenol oxidase (PPO), and lipoxygenase (LOX) in citrus fruit. Results of real time-quantitative polymerase chain reaction (RT-qPCR) showed that the gene expressions of β-Glu, CHI, PAL, POD and PPO were up-regulated in CEO-treated fruits. At the same time, CEO treatment led to down-regulated expression of the LOX gene in citrus fruit. Clove essential oil effectively control the disease incidence of blue mold decay in citrus fruit by motivating the host-defense responses, suppressing the malondialdehyde (MDA) accumulation while enhancing the activities and gene expressions of defense-related enzymes. Our study provides an alternative preservative applying CEO to reduce postharvest fungal decay in citrus fruit.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Nan Cai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
- Pingxiang University, Pingxiang 337055, China.
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|