1
|
Alisi L, Giovannetti F, Armentano M, Lucchino L, Lambiase A, Bruscolini A. Challenging corneal diseases and microRNA expression: Focus on rare diseases and new therapeutic frontiers. Surv Ophthalmol 2024:S0039-6257(24)00120-6. [PMID: 39343317 DOI: 10.1016/j.survophthal.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
MicroRNAs (miRNAs) function as posttranscriptional regulators of gene expression by targeting specific messenger RNA (mRNA). This interaction modulates mRNA stability or translational efficiency, ultimately impacting the level of protein production. Emerging evidence suggests that miRNAs act as critical regulators in corneal diseases. These molecules finetune key processes like cell proliferation, differentiation, inflammation, and wound healing. We reviewed the literature to understand the role that miRNAs may play in the development of challenging and poorly understood corneal diseases. We focused on vernal keratoconjunctivitis, neurotrophic keratitis, keratoconus, Fuchs endothelial corneal dystrophy, and limbal stem cell deficiency. Furthermore, we explored currently studied agonists or antagonists of miRNAs that share similar pathways with ocular diseases and could be employed in ophthalmology in the future. The distinct miRNA expression profiles observed in different ocular surface pathologies, combined with the remarkable stability and relatively easy access of miRNA sampling in biofluids, present possibilities for the development of noninvasive and highly accurate diagnostic tools. Furthermore, comprehending miRNA's pathophysiological role could open new frontiers to a more comprehensive understanding of the pathophysiology underlying ocular surface diseases, thereby paving the way for the creation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ludovico Alisi
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| | - Francesca Giovannetti
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| | - Marta Armentano
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| | - Luca Lucchino
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| | - Alessandro Lambiase
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy.
| | - Alice Bruscolini
- Department of Sense organs, Sapienza University of Rome, Viale del Policlinico 155, Rome 00166, Italy
| |
Collapse
|
2
|
Altug B, Soykan MN, Eyubova S, Eker Sariboyaci A, Dogan C, Ozalp O, Atalay E. Crosstalk among miR-29, α-SMA, and TGFβ1/β3 in melatonin-induced exosome (Mel-prExo) treated human limbal mesenchymal stem cells (hLMSCs): An insight into scarless healing of the cornea. Biofactors 2024. [PMID: 38804543 DOI: 10.1002/biof.2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Inflammatory mediators that infiltrate the corneal stroma after corneal infections, trauma or refractive surgery can trigger the transformation of corneal keratocytes into myofibroblasts, resulting in highly irregular collagen deposition and subsequently corneal scarring. Mesenchymal stem cells (MSCs) can be used as therapeutic agents to regenerate corneal and conjunctival tissue damage, regulate inflammation, and reduce the development of limbal stem cell failure. The use of MSC-derived exosomes as a cell-free therapeutic vector is a novel therapeutic approach. This study aimed to assess the effect of exosomes obtained from melatonin (Mel)-treated human limbal mesenchymal stem cells (hLMSCs) on naïve hLMSCs and to determine their influence on the antifibrotic and pro-regenerative pathways involved in corneal scarring. hLMSCs were treated with varying concentrations of Mel, followed by isolation and characterization of the procured exosomes (Mel-prExos). These exosomes were added to the cell culture media of naïve hLMSCs to examine their antifibrotic and pro-regenerative effects. The expression of miR-155, miR-29, TGFβ1, TGFβ3, PPARγ, and α-SMA miRNAs and genes were compared between Mel-treated hLMSCs and Mel-prExo-treated hLMSCs by using real-time PCR. We found that at 1 μM Mel and in the presence of Mel-prExos, TGFβ1 was expressed 0.001-fold, while TGFβ3 was expressed 0.6-fold. miR-29 expression was increased 38-fold in the control-Exo group compared to that in the control group. Changes in TGFβ1/β3 and α-SMA expression are associated with miR-29 and miR-155. This approach could prove beneficial for ocular surface tissue engineering applications.
Collapse
Affiliation(s)
- Burcugul Altug
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Merve Nur Soykan
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Sevinc Eyubova
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ayla Eker Sariboyaci
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Cezmi Dogan
- Department of Ophthalmology, İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, İstanbul, Türkiye
| | - Onur Ozalp
- Department of Ophthalmology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Eray Atalay
- Cellular Therapy and Stem Cell Production Application, Research Centre (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
- Department of Ophthalmology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| |
Collapse
|
3
|
Musa M, Enaholo E, Aluyi-Osa G, Atuanya GN, Spadea L, Salati C, Zeppieri M. Herpes simplex keratitis: A brief clinical overview. World J Virol 2024; 13:89934. [PMID: 38616855 PMCID: PMC11008405 DOI: 10.5501/wjv.v13.i1.89934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024] Open
Abstract
The aim of our minireview is to provide a brief overview of the diagnosis, clinical aspects, treatment options, management, and current literature available regarding herpes simplex keratitis (HSK). This type of corneal viral infection is caused by the herpes simplex virus (HSV), which can affect several tissues, including the cornea. One significant aspect of HSK is its potential to cause recurrent episodes of inflammation and damage to the cornea. After the initial infection, the HSV can establish a latent infection in the trigeminal ganglion, a nerve cluster near the eye. The virus may remain dormant for extended periods. Periodic reactivation of the virus can occur, leading to recurrent episodes of HSK. Factors triggering reactivation include stress, illness, immunosuppression, or trauma. Recurrent episodes can manifest in different clinical patterns, ranging from mild epithelial involvement to more severe stromal or endothelial disease. The severity and frequency of recurrences vary among individuals. Severe cases of HSK, especially those involving the stroma and leading to scarring, can result in vision impairment or even blindness in extreme cases. The cornea's clarity is crucial for good vision, and scarring can compromise this, potentially leading to visual impairment. The management of HSK involves not only treating acute episodes but also implementing long-term strategies to prevent recurrences and attempt repairs of corneal nerve endings via neurotization. Antiviral medications, such as oral Acyclovir or topical Ganciclovir, may be prescribed for prophylaxis. The immune response to the virus can contribute to corneal damage. Inflammation, caused by the body's attempt to control the infection, may inadvertently harm the corneal tissues. Clinicians should be informed about triggers and advised on measures to minimize the risk of reactivation. In summary, the recurrent nature of HSK underscores the importance of both acute and long-term management strategies to preserve corneal health and maintain optimal visual function.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
4
|
Kim YJ, Yeon Y, Lee WJ, Shin YU, Cho H, Lim HW, Kang MH. Analysis of MicroRNA Expression in Tears of Patients with Herpes Epithelial Keratitis: A Preliminary Study. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 35475887 PMCID: PMC9055549 DOI: 10.1167/iovs.63.4.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Herpes epithelial keratitis (HEK) is the most common form of herpes simplex virus (HSV) eye involvement, and understanding the molecular mechanisms underlying HEK is important. We investigated the expression of microRNAs (miRNAs) in the tears of patients with HEK. Methods Tear samples from eight patients with HEK and seven age-matched controls were evaluated. Clinical ophthalmologic evaluation was performed, and an anterior segment photograph was obtained after fluorescence staining. Dendritic or geographic ulcer areas were measured using ImageJ software. The expression of 43 different miRNAs in tears was measured using real-time polymerase chain reaction and compared between patients with HEK and controls. Differences in miRNA expression between the dendritic and geographic ulcer groups and correlations involving miRNA expression and ulcer area were evaluated. Results Of the 43 miRNAs, 23 were upregulated in patients with HEK compared to normal controls. MiR-15b-5p, miR-16-5p, miR-20b-5p, miR-21-5p, miR-23b-3p, miR-25-3p, miR-29a-3p, miR-30a-3p, miR-30d-5p, miR-92a-3p, miR-124-3p, miR-127-3p, miR-132-3p, miR-142-3p, miR-145-5p, miR-146a-5p, miR-146b-5p, miR-155-5p, miR-182-5p, miR-183-5p, miR-221-3p, miR-223-3p, and miR-338-5p were significantly upregulated in patients with HEK. MiR-29a-3p exhibited significant differences between the dendritic and geographic ulcer groups. All 23 miRNAs with significant differences between patients with HEK and the control group were not significantly correlated with ulcer area. Conclusions Twenty-three miRNAs were significantly upregulated in the tears of patients with HEK, and the expression of miRNAs may play important roles in herpes infection in relation to host immunity.
Collapse
Affiliation(s)
- Yu Jeong Kim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yeji Yeon
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Won June Lee
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yong Un Shin
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Heeyoon Cho
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Han Woong Lim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Min Ho Kang
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Roblain Q, Louis T, Yip C, Baudin L, Struman I, Caolo V, Lambert V, Lecomte J, Noël A, Heymans S. Intravitreal injection of anti-miRs against miR-142-3p reduces angiogenesis and microglia activation in a mouse model of laser-induced choroidal neovascularization. Aging (Albany NY) 2021; 13:12359-12377. [PMID: 33952723 PMCID: PMC8148470 DOI: 10.18632/aging.203035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is a worldwide leading cause of blindness affecting individuals over 50 years old. The most aggressive form, wet AMD, is characterized by choroidal neovascularization (CNV) and inflammation involving microglia recruitment. By using a laser-induced CNV mouse model, we provide evidence for a key role played by miR-142-3p during CNV formation. MiR-142-3p was overexpressed in murine CNV lesions and its pharmacological inhibition decreased vascular and microglia densities by 46% and 30%, respectively. Consistently, miR-142-3p overexpression with mimics resulted in an increase of 136% and 126% of blood vessels and microglia recruitment. Interestingly, miR-142-3p expression was linked to the activation state of mouse microglia cells as determined by morphological analysis (cell solidity) through a computational method. In vitro, miR-142-3p overexpression in human microglia cells (HMC3) modulated microglia activation, as shown by CD68 levels. Interestingly, miR142-3p modulation also regulated the production of VEGF-A, the main pro-angiogenic factor. Together, these data strongly support the unprecedented importance of miR-142-3p-dependent vascular-inflammation axis during CNV progression, through microglia activation.
Collapse
Affiliation(s)
- Quentin Roblain
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Thomas Louis
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Cassandre Yip
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ingrid Struman
- Molecular Angiogenesis Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Vincent Lambert
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Ophthalmic Tissue Bank, Department of Ophthalmology, University Hospital of Liège, Sart-Tilman, Belgium
| | - Julie Lecomte
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Sha XY, Shi Q, Liu L, Zhong JX. Update on the management of fungal keratitis. Int Ophthalmol 2021; 41:3249-3256. [PMID: 33929644 DOI: 10.1007/s10792-021-01873-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim of this article is to introduce the recent advance on the studies of fungal keratitis published over past 5 years. METHODS We performed literature review of articles published on PubMed, Google Scholar, CNKI and Web of Science relevant to the diagnosis, pathogenesis and novel treatment of fungal keratitis. RESULTS Excessive inflammation can lead to stromal damage and corneal opacification, hence the research on immune mechanism provides many potential therapeutic targets for fungal keratitis. Many researchers discussed the importance of earlier definitive diagnosis and were trying to find rapid and accurate diagnostic methods of pathogens. Develop new drug delivery systems and new routes of administration with better corneal penetration, prolonged ocular residence time, and better mucoadhesive properties is also one of the research hotspots. Additionally, many novel therapeutic agents and methods have been gradually applied in clinical ophthalmology. CONCLUSION The diagnosis and treatment of fungal keratitis are still a challenge for ophthalmologist, and many researches provide new methods to conquer these problems.
Collapse
Affiliation(s)
- Xiao-Yuan Sha
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qi Shi
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lian Liu
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jing-Xiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Li X, Sun M, Long Y. Cyanidin-3-O-Glucoside Attenuates Lipopolysaccharide-Induced Inflammation in Human Corneal Epithelial Cells by Inducing Let-7b-5p-Mediated HMGA2/PI3K/Akt Pathway. Inflammation 2021; 43:1088-1096. [PMID: 32248330 DOI: 10.1007/s10753-020-01194-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bacterial keratitis causes viability loss and apoptosis in the corneal epithelial cells (CECs). The cyanidin-3-O-glucoside (C3G) benefits visual system and also possess anti-bacterial and anti-inflammatory potentials. In the current study, the effects of C3G on human CECs (HCECs) against bacterial lipopolysaccharide (LPS)-induced disorders were assessed, and the mechanism driving the protective effect was explored by focusing on let-7b-5p-mediated HMGA2/PI3K/Akt pathway. The HCECs were incubated LPS of P. aeruginosa to induce inflammation and apoptosis, and then treated with C3G. The changes in cell viability, apoptosis, and inflammation were detected. Moreover, the effects of LPS and C3G on let-7b-5p level and HMGA2/PI3K/Akt pathway activity were also assessed. Thereafter, the HCECs were further transfected with let-7b-5p inhibitor to confirm its role in the vision-protective effects of C3G. The interaction between let-7b-5p and HMGA2 was verified with dual luciferase assay. The LPS treatment suppressed viability and induced apoptosis and inflammation in HCECs, which was associated with the down-regulated let-7b-5p level and up-regulated HMGA2/PI3K/Akt pathway activity. The impairments of LPS on HCECs were attenuated by C3G: the compound increased cell viability and inhibited apoptosis and inflammation. The C3G also induced let-7b-5p level and inactivated HMGA2/PI3K/Akt pathway. However, after the inhibition of let-7b-5p, the protective effects of C3G on HCECs against LPS were blocked. The results of dual luciferase assay showed the direct binding let-7b-5p to the promoter of HMGA2 gene. It was inferred that the C3G could ameliorate the LPS-induced disorders in HCECs. The effect depended on the induced level of let-7b-5p, which then inhibited HMGA2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiuyi Li
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, People's Republic of China
| | - Miaomiao Sun
- Department of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Duisburg, Germany
| | - Yan Long
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, People's Republic of China.
| |
Collapse
|
8
|
Prevalence and Antibiotic Resistance Patterns of Ocular Bacterial Strains Isolated from Pediatric Patients in University Hospital of Campania “Luigi Vanvitelli,” Naples, Italy. Int J Microbiol 2020. [DOI: 10.1155/2020/8847812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eye infections caused by bacteria are a serious public health problem among pediatric patients. These diseases, if not properly treated, can cause blindness and impaired vision. The study aimed to evaluate the antimicrobial resistance profiles of the main pathogens involved in eye infections. This study involved pediatric patients enrolled at the “Luigi Vanvitelli” University Hospital of Campania in Naples, Italy, between 2017 and 2019. Of a total of 228 pediatric patients, 73 (32%) tested positive for bacterial infection. In terms of strain distribution, 85% were Gram-positive bacteria, while 15% were Gram-negative bacteria. The most frequently isolated strains were coagulase-negative Staphylococci (60.4%), followed by Staphylococcus aureus (16.4%). The isolated bacteria showed a significant percentage of resistance to multiple antibiotics. Therefore, the identification of the causal bacteria and antimicrobial sensitivity tests are mandatory to select the effective drug for the treatment of eye infections and prevent the development of antibiotic-resistant bacteria.
Collapse
|
9
|
Wang L, Wang R, Xu C, Zhou H. Pathogenesis of Herpes Stromal Keratitis: Immune Inflammatory Response Mediated by Inflammatory Regulators. Front Immunol 2020; 11:766. [PMID: 32477330 PMCID: PMC7237736 DOI: 10.3389/fimmu.2020.00766] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes stromal keratitis (HSK) is one of the primary diseases that cause vision loss or even blindness after herpes simplex virus (HSV)-1 infection. HSK-associated vision impairment is predominantly due to corneal scarring and neovascularization caused by inflammation. In the infected cornea, HSV can activate innate and adaptive immune responses of host cells, which triggers a cascade of reactions that leads to the release of inflammatory cytokines, chemokines, microRNA, and other regulatory factors that have stimulating or inhibitory effects on tissue. Physiologically, host cells show homeostasis. In this review, we summarize the factors involved in HSK pathogenesis from the perspective of immunity, molecules, and pathological angiogenesis. We also describe in detail the pathogenesis of chronic inflammatory lesions of the corneal stroma in response to HSV-1 infection.
Collapse
Affiliation(s)
- Li Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Ophthalmology, Jilin City Central Hospital, Jilin, China
| | - Runbiao Wang
- Department of Ophthalmology, Jilin City Central Hospital, Jilin, China
| | - Chuyang Xu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Kalaimani L, Devarajan B, Subramanian U, Ayyasamy V, Namperumalsamy VP, Veerappan M, Chidambaranathan GP. MicroRNA Profiling of Highly Enriched Human Corneal Epithelial Stem Cells by Small RNA Sequencing. Sci Rep 2020; 10:7418. [PMID: 32366885 PMCID: PMC7198595 DOI: 10.1038/s41598-020-64273-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
The objective of the study was to elucidate the microRNA (miRNA) profile of an enriched human corneal epithelial stem cell (CESC) population in comparison to differentiated central corneal epithelial cells (CCECs) by small RNA sequencing. The CESCs were enriched by differential enzymatic treatment to isolate the basal limbal epithelial cells followed by laser capture microdissection of cells with nucleus to cytoplasm ratio ≥0.7, from donor tissues. Small RNA sequencing was carried out using Illumina NextSeq. 500 platform and the validation of differentially expressed miRNAs by quantitative real-time PCR (qPCR) and locked nucleic acid miRNA in-situ hybridization (LNA-ISH). The sequencing identified 62 miRNAs in CESCs and 611 in CCECs. Six miRNAs: hsa-miR-21-5p, 3168, 143-3p, 10a-5p, 150-5p and 1910-5p were found to be significantly upregulated in enriched CESCs, which was further confirmed by qPCR and LNA-ISH. The expression of hsa-miR-143-3p was exclusive to clusters of limbal basal epithelial cells. The targets of the upregulated miRNAs were predicted to be associated with signaling pathways -Wnt, PI3K-AKT, MAPK and pathways that regulate pluripotency of stem cells, cell migration, growth and proliferation. Further studies are essential to elucidate their functional role in maintenance of stemness. The findings of the study also hypothesize the inherent potential of hsa-miR-143-3p to serve as a biomarker for identifying CESCs.
Collapse
Affiliation(s)
- Lavanya Kalaimani
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
- Department of Biotechnology, Aravind Medical Research Foundation -Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | - Bharanidharan Devarajan
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Umadevi Subramanian
- Department of Bioinformatics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Vanniarajan Ayyasamy
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | | | - Muthukkaruppan Veerappan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Gowri Priya Chidambaranathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India.
- Department of Biotechnology, Aravind Medical Research Foundation -Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|