1
|
Mai N, Foysal MJ, Timms VJ, Pearson LA, Romanis CS, Mills TJT, Powell JR, Neilan BA. Seasonal and Spatial Dynamics of Fungal Leaf Endophytes in Eucalyptus crebra (Narrow-Leaved Ironbark). MICROBIAL ECOLOGY 2024; 87:142. [PMID: 39557685 PMCID: PMC11573855 DOI: 10.1007/s00248-024-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Fungal endophytes play an important role in improving the health and productivity of native and cultivated plant species. Despite their ecological and industrial importance, few eucalypt species have been studied in terms of their endophyte communities. We examined the seasonal and spatial dynamics of fungal leaf endophytes in the model species, Eucalyptus crebra (narrow-leaved ironbark), using ITS-based amplicon sequencing. Alpha and beta diversity analyses revealed significantly higher species richness in summer compared to autumn and spring. Similarly, two-way ANOVA analysis showed significantly higher species diversity in summer compared to autumn (observed p < 0.001, Chao1 p < 0.005) and spring (observed p < 0.005, Chao1 p < 0.005). No difference in Shannon index was observed among different canopy levels across the season. Beta-diversity showed differences in fungal composition across the seasons and at various canopy levels based on unweighted UniFrac distance metric (PERMANOVA season p < 0.001, canopy p < 0.05), signifying distinct separation of fungi based on presence-absence. Ascomycota was the most abundant and diverse phylum and was present throughout the year. In contrast, Basidiomycota was only observed during cooler and drier seasons. Neofusicoccum was the most abundant genus, but distribution fluctuated significantly across the seasons. Pestalotiopsis and Neopestalotiopsis were most abundant in the low leaf canopy, whereas Pseudosydowia was most abundant in the high canopy. This study indicates that the diversity and abundance of endophytic fungi in the leaves of healthy E. crebra trees fluctuate seasonally and across canopy levels. The data generated can be used as a baseline for assessing and potentially modulating the health of E. crebra and other important Eucalyptus spp.
Collapse
Affiliation(s)
- Neysa Mai
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Md Javed Foysal
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie Park, NSW, 2109, Australia
| | - Verlaine J Timms
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie Park, NSW, 2109, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie Park, NSW, 2109, Australia
| | - Caitlin S Romanis
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Toby J T Mills
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie Park, NSW, 2109, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Australian Research Council Centre of Excellence in Synthetic Biology, Macquarie Park, NSW, 2109, Australia.
| |
Collapse
|
2
|
Flores-Almaraz VS, Truong C, Hernández-Oaxaca D, Reyes-Galindo V, Mastretta-Yanes A, Jaramillo-Correa JP, Salas-Lizana R. Foliar mycobiome remains unaltered under urban air-pollution but differentially express stress-related genes. MICROBIAL ECOLOGY 2024; 87:72. [PMID: 38755460 PMCID: PMC11098924 DOI: 10.1007/s00248-024-02387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Air pollution caused by tropospheric ozone contributes to the decline of forest ecosystems; for instance, sacred fir, Abies religiosa (Kunth) Schltdl. & Cham. forests in the peri-urban region of Mexico City. Individual trees within these forests exhibit variation in their response to ozone exposure, including the severity of visible symptoms in needles. Using RNA-Seq metatranscriptomic data and ITS2 metabarcoding, we investigated whether symptom variation correlates with the taxonomic and functional composition of fungal mycobiomes from needles collected in this highly polluted area in the surroundings of Mexico City. Our findings indicate that ozone-related symptoms do not significantly correlate with changes in the taxonomic composition of fungal mycobiomes. However, genes coding for 30 putative proteins were differentially expressed in the mycobiome of asymptomatic needles, including eight genes previously associated with resistance to oxidative stress. These results suggest that fungal communities likely play a role in mitigating the oxidative burst caused by tropospheric ozone in sacred fir. Our study illustrates the feasibility of using RNA-Seq data, accessible from global sequence repositories, for the characterization of fungal communities associated with plant tissues, including their gene expression.
Collapse
Affiliation(s)
- Valeria Stephany Flores-Almaraz
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Distrito Federal, México
- Instituto de Biología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Camille Truong
- Royal Botanic Gardens Victoria, Birdwood Ave, Melbourne, VIC 3004, Australia.
| | - Diana Hernández-Oaxaca
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N, 62210, Cuernavaca, Morelos, México
| | - Verónica Reyes-Galindo
- Depto. de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Alicia Mastretta-Yanes
- Consejo Nacional de Humanidades Ciencias y Tecnología (CONAHCYT), Avenida Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México, 03940, México.
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico.
| | - Juan Pablo Jaramillo-Correa
- Depto. de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510, Coyoacán, Ciudad de México, Mexico
| | - Rodolfo Salas-Lizana
- Laboratorios de Micología. Depto. de Biología Comparada, Facultad de Ciencias., Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México.
| |
Collapse
|
3
|
Xu N, Lu H, Yi X, Peng S, Huang X, Zhang Y, He C. Potential of Alpha-(α)-Solanine as a Natural Inhibitor of Fungus Causing Leaf Spot Disease in Strawberry. Life (Basel) 2023; 13:life13020450. [PMID: 36836807 PMCID: PMC9961337 DOI: 10.3390/life13020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Curvularia trifolii is an important pathogenic fungus that causes leaf spot disease in strawberry and other crops. Increased resistance in pathogenic fungi against chemical fungicides necessitates the search for biological alternatives to control plant fungal diseases. The present study aimed to perform transcriptome and metabolome analysis of C. trifolii fungi. We evaluated the potential of an alkaloid, namely alpha (α)-solanine, to inhibit the growth of Curvularia under in vitro conditions. Furthermore, transcriptomic and metabolomic analysis of treated C. trifolii was performed to identify the differential genes and metabolites. Results revealed that treatment with α-solanine resulted in the poor growth and development of fungal spores. The transcriptome analysis revealed that 1413 genes were differentially expressed (DEGs), among which 340 unigenes were up-regulated, 100 unigenes were down-regulated, and the rest were unaffected in treated samples. Gene ontology analysis revealed that the majority of the genes were related to oxidative stress in the fungus. Additionally, using ultra-high performance liquid chromatography-tandem mass spectrometry, we identified 455 metabolites, among which the majority of metabolites were related to lipid biosynthesis. The high number of genes related to lipid biosynthesis and reactive oxygen species revealed that α-solanine causes oxidative stress in Curvularia, leading to growth inhibition, and can be potentially used as an alternative to chemical fungicides.
Collapse
Affiliation(s)
- Ning Xu
- College of Horticulture, Hunan Agricultural University, Nongda Road No.1, Changsha 410128, China
- Institute of Hunan Edible Fungi, Shuangtang Road No. 107, Changsha 410013, China
| | - Huan Lu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai 201403, China
| | - Xueqian Yi
- Hunan Institute of Traffic Engineering, Jiefang Road No. 430, Hengyang 421200, China
| | - Simin Peng
- College of Horticulture, Hunan Agricultural University, Nongda Road No.1, Changsha 410128, China
| | - Xiaohui Huang
- College of Horticulture, Hunan Agricultural University, Nongda Road No.1, Changsha 410128, China
| | - Yu Zhang
- College of Horticulture, Hunan Agricultural University, Nongda Road No.1, Changsha 410128, China
| | - Changzheng He
- College of Horticulture, Hunan Agricultural University, Nongda Road No.1, Changsha 410128, China
- Correspondence:
| |
Collapse
|
4
|
Marone MP, Campanari MFZ, Raya FT, Pereira GAG, Carazzolle MF. Fungal communities represent the majority of root-specific transcripts in the transcriptomes of Agave plants grown in semiarid regions. PeerJ 2022; 10:e13252. [PMID: 35529479 PMCID: PMC9070324 DOI: 10.7717/peerj.13252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
Agave plants present drought resistance mechanisms, commercial applications, and potential for bioenergy production. Currently, Agave species are used to produce alcoholic beverages and sisal fibers in semi-arid regions, mainly in Mexico and Brazil. Because of their high productivities, low lignin content, and high shoot-to-root ratio, agaves show potential as biomass feedstock to bioenergy production in marginal areas. Plants host many microorganisms and understanding their metabolism can inform biotechnological purposes. Here, we identify and characterize fungal transcripts found in three fiber-producing agave cultivars (Agave fourcroydes, A. sisalana, and hybrid 11648). We used leaf, stem, and root samples collected from the agave germplasm bank located in the state of Paraiba, in the Brazilian semiarid region, which has faced irregular precipitation periods. We used data from a de novo assembled transcriptome assembly (all tissues together). Regardless of the cultivar, around 10% of the transcripts mapped to fungi. Surprisingly, most root-specific transcripts were fungal (58%); of these around 64% were identified as Ascomycota and 28% as Basidiomycota in the three communities. Transcripts that code for heat shock proteins (HSPs) and enzymes involved in transport across the membrane in Ascomycota and Basidiomycota, abounded in libraries generated from the three cultivars. Indeed, among the most expressed transcripts, many were annotated as HSPs, which appear involved in abiotic stress resistance. Most HSPs expressed by Ascomycota are small HSPs, highly related to dealing with temperature stresses. Also, some KEGG pathways suggest interaction with the roots, related to transport to outside the cell, such as exosome (present in the three Ascomycota communities) and membrane trafficking, which were further investigated. We also found chitinases among secreted CAZymes, that can be related to pathogen control. We anticipate that our results can provide a starting point to the study of the potential uses of agaves' fungi as biotechnological tools.
Collapse
Affiliation(s)
- Marina Püpke Marone
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Fabio Trigo Raya
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil,Center for Computing and Engineering Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Department of Genetics, Evolution, Microbiology, and Immunology, University of Campinas, Campinas, São Paulo, Brazil,Center for Computing and Engineering Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|