1
|
Haenni M, Châtre P, Beyrouthy R, Drapeau A, François P, Madec JY, Bonnet R. No genetic link between E. coli isolates carrying mcr-1 in bovines and humans in France. J Glob Antimicrob Resist 2025:S2213-7165(24)00485-5. [PMID: 39756652 DOI: 10.1016/j.jgar.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Colistin is a last-line antibiotic used to treat severe human infections caused by carbapenemase-producing Gram-negative bacteria. In parallel, colistin has massively been used in the veterinary field so that mcr-1-positive E. coli have spread worldwide in livestock, potentially constituting a reservoir of colistin-resistant isolates that can be further transmitted to humans. OBJECTIVES In France, the mcr-1 gene was frequently identified in E. coli of bovine origin. This genomic study assessed whether French human mcr-1-positive E. coli might originate or derive from the bovine reservoir. MATERIAL AND METHODS Human (n=24) and bovine (n=127) isolates collected between 2011-2019 were included and colistin-resistance was confirmed by MICs. The detection of mcr-1 was performed by PCR. Isolates were short-read whole-genome sequenced and a cgMLST-based phylogeny was constructed. The genetic support of mcr-1 was identified using short-read sequences or Southern blots. RESULTS The mcr-1 gene was carried by a high diversity of genetic backgrounds, among which ST167 and ST10 were the most widespread. No clonally-related isolates between bovines and humans were observed. In bovines, mcr-1 was identified on IncHI2 and IncX4 plasmids and increasingly on the chromosome, while it was also found on IncI2 and p0111 plasmids in humans. CONCLUSION Although similar STs (ST744 and ST88) and plasmid types (IncHI2, IncX4) carried mcr-1, no hypothesis of a transfer from bovines to humans could be supported by the data. Furthermore, the increasing chromosomal location of mcr-1 over time may reflect an animal-specific evolutionary pathway deserving further investigation.
Collapse
Affiliation(s)
- Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France.
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Racha Beyrouthy
- Institut National de la Santé et de la Recherche Médicale (UMR 1071), Institut National de la Recherche Agronomique (USC-2018), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antoine Drapeau
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Richard Bonnet
- Institut National de la Santé et de la Recherche Médicale (UMR 1071), Institut National de la Recherche Agronomique (USC-2018), Université Clermont Auvergne, Clermont-Ferrand, France; Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire, Clermont-Ferrand, France
| |
Collapse
|
2
|
Aydın Uysal A, Tünger A. Investigation of Colistin resistance and method comparison in Klebsiella pneumoniae strains. Diagn Microbiol Infect Dis 2025; 111:116584. [PMID: 39520775 DOI: 10.1016/j.diagmicrobio.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This study aimed to assess the prevalence of colistin resistance in the study group and compare alternative methods with the gold standard. It sought to evaluate the prevalence of plasmid-mediated colistin resistance genes. MATERIAL AND METHODS The colistin susceptibility of 151 K. pneumoniae strains was determined using Sensititre™, CBDE, ETEST®, and VITEK®2. Results were compared with BMD. The presence of the mcr gene was assessed using polymerase chain reaction. RESULTS The colistin resistance rate was 16,6 %. The categorical agreement of Sensititre™, CBDE, and ETEST® was 100 %. VITEK®2 had a CA of 98 %, a major error of 0.79 %, and a very major error of 8 %. Essential agreement for Sensititre™, ETEST®, and VITEK®2 was 92.7 %, 52.3 %, and 78.1 %, respectively. There were no mcr genes in any strains. CONCLUSIONS Due to the difficulty of applying BMD, colistin resistance data are insufficient globally. Continuous epidemiological studies and validation of alternative methods are needed.
Collapse
Affiliation(s)
- Ayça Aydın Uysal
- Ege University Faculty of Medicine Hospital, Department of Medical Microbiology 35100, Bornova, İzmir, Türkiye.
| | - Alper Tünger
- Ege University Faculty of Medicine Hospital, Department of Medical Microbiology 35100, Bornova, İzmir, Türkiye
| |
Collapse
|
3
|
He Y, Liang B, Mai J, Lan F, Xiong Z, Liu X, Yang K, Liu X, Liu S, Zhao Z, Zeng Y, Luo X, Zhang Y, Zhou Z. Distribution of disinfectant resistant genes in mcr-1-carrying Escherichia coli isolated from children in southern China. Microb Pathog 2025; 198:107114. [PMID: 39551109 DOI: 10.1016/j.micpath.2024.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Colistin, a polymyxin antibiotic, serves as a crucial defense against multidrug-resistant gram-negative bacteria, despite its nephrotoxicity. However, the plasmid-mediated mobilization of the polymyxin resistance gene, mcr-1, presents a significant public health threat. The widespread use of disinfectants has resulted in Escherichia coli (E. coli) carrying mcr-1 also showing disinfectant resistance. The aim of this study is to investigate the distribution of disinfectant genes and resistance to disinfectants in mcr-1-carring E coli from children in the South China. METHODS We evaluated the distribution of twelve disinfectant-resistance genes by PCR. Evaluated the correlation between disinfectant-resistance genes and resistance to disinfectants and antibiotics. We also examined the correlation between the strains' biofilm formation and the presence of disinfectant-resistance genes. Bioinformatic tools were employed to analyze resistance genes, virulence genes, and insertion sequences. Five strains were randomly selected to examine the effects of sub-inhibitory concentration (sub-MIC) of 8 disinfectants on the expression of the mcr-1 gene by qRT-PCR. RESULTS The most prevalent of the nine biocide resistance genes were mdfA, sugE(c), ydgE, and ydgF (n = 21; all 100 %). The qacG, qacF, sugE(p) and tehA gene was not detected. Furthermore, benzalkonium chloride (BC) and potassium hydrogen persulfate (PMPS)-based disinfectants were effective against all mcr-1-carrying E. coli strains. The majority of mcr-1 were distributed among the InHI2 plasmid types, although three strains lacked mcr-1 on their plasmids. Biofilm formation was observed in 48 % of the strains. emrD and sitABCD showed significant associations with the susceptibility of the strains to 84 disinfectants (P of 0.0351 and 0.0300). In addition, sitABCD was significantly associated with susceptibility to povidone-iodine (PVP-I) (P value of 0.0062). Compared to the untreated group, stimulation with sub-MIC of peracetic acid (PAA) and PVP-I resulted in decreased or increased mcr-1 expression in five E. coli strains, respectively (P of 0.0011 for PAA and P of 0.0476 for PVP-I). CONCLUSION BC and PMPS based disinfectants were effective against all mcr-1 carrying E. coli strains. Most of the mcr-1 genes were distributed among the InHI2 plasmid types. The emrD and sitABCD genes are highly associated with resistance to 84 disinfectants, and the sitABCD gene was highly associated with resistance to PVP-I. PVP-I selective pressure may encourage the maintenance of mcr-1 gene in E. coli.
Collapse
Affiliation(s)
- Yunxing He
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China; Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China
| | - Bingshao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Jialiang Mai
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Fangjun Lan
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China
| | - ZhiLe Xiong
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China
| | - Xiaochun Liu
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China
| | - Kaiyue Yang
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China
| | - Xiuju Liu
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China
| | - Shuyan Liu
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China
| | - Zhimin Zhao
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China
| | - Yixin Zeng
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xinyi Luo
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Zhang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhenwen Zhou
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
4
|
Chetri S. Escherichia coli: An arduous voyage from commensal to Antibiotic-resistance. Microb Pathog 2025; 198:107173. [PMID: 39608506 DOI: 10.1016/j.micpath.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Escherichia coli (E. coli), a normal intestinal microbiota is one of the most common pathogen known for infecting urinary tract, wound, lungs, bone marrow, blood system and brain. Irrational and overuse of commercially available antibiotics is the most imperative reason behind the emergence of the life threatening infections caused due to antibiotic resistant pathogens. The World Health Organization (WHO) identified antimicrobial resistance (AMR) as one of the 10 biggest public health threats of our time. This harmless commensal can acquire a range of mobile genetic elements harbouring genes coding for virulence factors becoming highly versatile human pathogens causing severe intestinal and extra intestinal diseases. Although, E. coli has been the most widely studied micro-organism, it never ceases to astound us with its ability to open up new research avenues and reveal cutting-edge survival mechanisms in diverse environments that impact human and surrounding environment. This review aims to summarize and highlight persistent research gaps in the field, including: (i) the transfer of resistant genes among bacterial species in diverse environments, such as those associated with humans and animals; (ii) the development of resistance mechanisms against various classes of antibiotics, including quinolones, tetracyclines, etc., in addition to β-lactams; and (iii) the relationship between resistance and virulence factors for understanding how virulence factors and resistance interact to gain a better grasp of how resistance mechanisms impact an organism's capacity to spread illness and interact with the host's defences. Moreover, this review aims to offer a thorough overview, exploring the history and factors contributing to antimicrobial resistance (AMR), the different reported pathotypes, and their links to virulence in both humans and animals. It will also examine their prevalence in various contexts, including food, environmental, and clinical settings. The objective is to deliver a more informative and current analysis, highlighting the evolution from microbiota (historical context) to sophisticated diseases caused by highly successful pathogens. Developing more potent tactics to counteract antibiotic resistance in E. coli requires filling in these gaps. By bridging these gaps, we can strengthen our capacity to manage and prevent resistance, which will eventually enhance public health and patient outcomes.
Collapse
Affiliation(s)
- Shiela Chetri
- Department of Microbiology, Thassim Beevi Abdul Kader College for Women, Kilakarai, Tamilnadu, India.
| |
Collapse
|
5
|
Fukuda A, Kozaki Y, Kürekci C, Suzuki Y, Nakajima C, Usui M. Spreading Ability of Tet(X)-Harboring Plasmid and Effect of Tetracyclines as a Selective Pressure. Microb Drug Resist 2024; 30:489-501. [PMID: 39575688 DOI: 10.1089/mdr.2024.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Tigecycline is a last-resort antimicrobial in humans. Tetracyclines are the most widely used antimicrobials in livestock. Mobile tigecycline resistance genes [tet(X)] are disseminated worldwide, and tetracycline use may have promoted the selection of tet(X) genes. Thus, the selective pressure on tet(X) genes and their plasmids in livestock must be elucidated. We performed a retrospective study to clarify the prevalence of tigecycline-resistant Escherichia coli from pigs in Thailand. Screening for tigecycline resistance was performed on 107 E. coli strains from 25 samples, and tet(X)-carrying plasmids were characterized. tet(X) genes were cloned and expressed in E. coli. Bacterial growth rate in the presence of tetracycline as a result of the presence of tet(X) genes was also evaluated. Thirty-two tet(X4)-harboring tigecycline-resistant E. coli strains were detected in 10/25 samples (40%). The tet(X4) genes were carried on various Inc-type plasmids and flanked by ISCR2. The tet(X)-carrying plasmids were transferred to E. coli and Klebsiella pneumoniae. Acquisition of tet(X) genes and their plasmids improved bacterial growth in the presence of tetracycline. In summary, tetracycline use exerts selective pressure on tet(X) genes and their various backbone plasmids; therefore, a reduced amount of tetracycline use is important to limit the spreading of tet(X) genes.
Collapse
Affiliation(s)
- Akira Fukuda
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yuta Kozaki
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Cemil Kürekci
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Hatay Mustafa Kemal University, Antakya, Türkiye
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Division of Vaccinology for Clinical Development, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
6
|
Osisiogu EU, Singh B, Feglo PK, Duedu KO. Detection of PhoP-mediated colistin resistance in Gram-negative bacteria without mcr genes in human population in the Ho Municipality, Ghana. Heliyon 2024; 10:e39633. [PMID: 39524735 PMCID: PMC11544047 DOI: 10.1016/j.heliyon.2024.e39633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) has become a global public health threat, with colistin emerging as a last-resort treatment option for multidrug-resistant Gram-negative infections. However, the emergence of colistin resistance, mediated by mechanisms like mutations in the PhoP gene, raises concerns about the future utility of this antibiotic. This study aimed to determine the prevalence of PhoP-mediated colistin resistance in Gram-negative bacteria isolated from the stool of residents in the Ho Municipality, Ghana. Methods In this cross-sectional study, 110 stool samples were collected from June 2021 to December 2022. Gram-negative bacteria were isolated, and colistin susceptibility was determined by broth microdilution. Genomic DNA from resistant isolates was extracted and sequenced using the Nanopore platform to detect the presence of the PhoP gene. Results Of the 107 Gram-negative isolates, 57 % were resistant to colistin. The PhoP gene was detected in 61.4 % of the colistin-resistant isolates, with the highest prevalence observed in Proteus mirabilis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Conclusion The study reveals a high prevalence of PhoP-mediated colistin resistance among Gram-negative bacteria colonizing residents in the Ho Municipality, highlighting the role of the gut microbiota as a reservoir for antibiotic resistance. Continued surveillance and a collaborative One Health approach are crucial to address this growing threat.
Collapse
Affiliation(s)
- Emmanuel U. Osisiogu
- Department of Clinical Microbiology, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Science Laboratory Technology, Faculty of Applied Science and Technology, Dr Hilla Limann Technical University, Wa, Ghana
| | - Bhavana Singh
- Department of Clinical Microbiology, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Paediatrics, University Health Services, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Patrick K. Feglo
- Department of Clinical Microbiology, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwabena O. Duedu
- College of Life Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom
- Department of Biomedical Science, School of Basic and Biomedical Science, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
7
|
Cui L, Li P, Xu Q, Huang J, Gu X, Song M, Sun S. Antimicrobial resistance and clonal relationships of Salmonella enterica Serovar Gallinarum biovar pullorum strains isolated in China based on whole genome sequencing. BMC Microbiol 2024; 24:414. [PMID: 39425016 PMCID: PMC11487782 DOI: 10.1186/s12866-024-03296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Pullorum disease is a serious problem in many countries. Caused by Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum), it creates huge economic losses in the poultry industry. Although pullorum disease has been well-controlled in many developed countries, it is still a critical problem in developing countries. However, there is still a lack of information on S. Pullorum strains isolated from different regions and sources in China. The objective of this study was to supply the antimicrobial resistance patterns and clonal relationships of S. Pullorum from breeder chicken farms. METHODS In this study, a total of 114 S. Pullorum strains recovered from 11 provinces and municipalities in China between 2020 and 2021 were selected. These 114 S. Pullorum strains were analyzed using whole genome sequencing (WGS). Antimicrobial resistance (AMR) was tested both by genotypic prediction using the WGS method and using disc diffusion to assess phenotypic AMR. RESULTS These 114 sequenced S. Pullorum strains were divided into three sequence types (STs), the dominant STs was ST92 (104/114). Further core genome multi-locus sequence typing analysis indicated that 114 S. Pullorum strains may have a close relationship, which could be clonally transmitted among different provinces and municipalities. Our results showed a close relationship between the S. Pullorum strains found in different regions, indicating these strains may have been transmitted in China a long time ago. Nearly all S. Pullorum strains 94.74% (n = 108) were resistant to at least one antimicrobial class, and 35.96% of the examined Salmonella strains were considered multiple drug resistant. CONCLUSION Overall, this study showed that S. Pullorum strains in China have a close genetic relationship in terms of antimicrobial resistance, suggesting widespread clonal transmission.
Collapse
Affiliation(s)
- Lulu Cui
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Peiyong Li
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qi Xu
- China Animal Disease Control Center, Beijing, 102618, China
| | - Jiaqi Huang
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaoxue Gu
- China Animal Disease Control Center, Beijing, 102618, China.
| | - Mengze Song
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Shuhong Sun
- College of Animal Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
8
|
Wang Q, Wang W, Zhu Q, Shoaib M, Chengye W, Zhu Z, Wei X, Bai Y, Zhang J. The prevalent dynamic and genetic characterization of mcr-1 encoding multidrug resistant Escherichia coli strains recovered from poultry in Hebei, China. J Glob Antimicrob Resist 2024; 38:354-362. [PMID: 38795771 DOI: 10.1016/j.jgar.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVES Colistin is known as the last resort antibiotic to treat the infections caused by multidrug resistant foodborne pathogens. The emergence and widespread dissemination of plasmid-mediated colistin resistance gene mcr-1 in the Escherichia coli (E. coli) incurs potential threat to public health. Here, we investigated the epidemiology, transmission dynamics, and genetic characterization of mcr-1 harbouring E. coli isolates from poultry originated in Hebei Province, China. METHODS A total of 297 faecal samples were collected from the two large poultry farms in Hebei Province, China. The samples were processed for E. coli identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S rDNA sequencing. Then, the mcr-1 gene harbouring E. coli strains were identified by polymerase chain reaction and subjected to antimicrobial susceptibility testing by broth microdilution assay. The genomic characterization of the isolates was done by whole genome sequencing using the various bioinformatics tools, and multi-locus sequence typing was done by sequence analysis of the seven housekeeping genes. The conjugation experiment was done to check the transferability of mcr-1 along with the plasmid stability testing. RESULTS A total of six mcr-1 E. coli isolates with minimum inhibitory concentration of 4 μg/mL were identified from 297 samples (2.02%). The mcr-1 harbouring E. coli were identified as multidrug resistant and belonged to ST101 (n = 4) and ST410 (n = 2). The genetic environment of mcr-1 presented its position on IncHI2 plasmid in 4 isolates and p0111 in 2 isolates, which is a rarely reported plasmid type for mcr-1. Moreover, both type of plasmids was transferable to recipient J53, and mcr-1 was flanked by 3 mobile elements ISApl1, Tn3, and IS26 forming a novel backbone Tn3-IS26-mcr-1- pap2-ISApl1 on the p0111 plasmid. The phylogenetic analysis shared a common lineage with mcr-1 harbouring isolates from the environment, humans, and animals, which indicate its horizontal spread among the diverse sources, species, and hosts. CONCLUSION This study recommends the one health approach for future surveillance across multiple sources and bacterial species to adopt relevant measures and reduce global resistance crises.
Collapse
Affiliation(s)
- Qing Wang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, Gansu Province, PR China; Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Qiqi Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, PR China
| | - Muhammad Shoaib
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Wang Chengye
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, PR China
| | - Zhen Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China; College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, PR China
| | - Xiaojuan Wei
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China
| | - Jiyu Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, Gansu Province, PR China; Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, PR China; Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China.
| |
Collapse
|
9
|
Catherine N A, Claudia S, Savino A, Edgar MM, Rogers K, Julius LB, Morgan A, Imelda TK, Joel B, Frederick B, Andreas T. Antibiotic resistance of E. coli isolates from different water sources in Mbarara, Uganda. JOURNAL OF WATER AND HEALTH 2024; 22:1579-1593. [PMID: 39340372 DOI: 10.2166/wh.2024.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/11/2024] [Indexed: 09/30/2024]
Abstract
Escherichia coli is widely used as an indicator of recent faecal pollution of water. Most E. coli strains are commensals; however, isolates in water samples have been shown to carry antibiotic resistance determinants. In total, 47 E. coli were isolated from selected drinking water sources in Mbarara, Uganda. The isolates were examined for their susceptibility to seven antibiotics and the presence of nine antibiotic-resistance genes (mostly β-lactamase genes) and class 1 integrons. Isolates showed a high resistance to ampicillin of 55.5% and a high sensitivity to azithromycin and gentamicin at 98 and 96%, respectively. PCR analysis showed the presence of extended-spectrum β-lactamase genes blaCTX-M-32 and blaCMY-2 in 64 and 36% of the isolates. The carbapenemase genes blaOXA-48, blaVIM-2, blaNDM-1, and blaKPC-3 were either not detected or only in a very small number of the isolates, whereas class 1 integrons were present in 68% of the isolates. This study proves that antimicrobial resistance exists in E. coli in water used for drinking purposes in Mbarara city. There is a need for public health actors to improve the surveillance of microbiological quality of drinking water to minimize health risks.
Collapse
Affiliation(s)
- Abaasa Catherine N
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda E-mail:
| | - Stange Claudia
- DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Ayesiga Savino
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Mulogo M Edgar
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Kalyetsi Rogers
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Lejju B Julius
- Faculty of Science, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Andama Morgan
- Faculty of Science, Muni University, Mbarara city, Uganda
| | - Tamwesigire K Imelda
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Bazira Joel
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Byarugaba Frederick
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara city, Uganda
| | - Tiehm Andreas
- DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| |
Collapse
|
10
|
Ho CS, Wong CTH, Aung TT, Lakshminarayanan R, Mehta JS, Rauz S, McNally A, Kintses B, Peacock SJ, de la Fuente-Nunez C, Hancock REW, Ting DSJ. Antimicrobial resistance: a concise update. THE LANCET MICROBE 2024:100947. [DOI: 10.1016/j.lanmic.2024.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
11
|
Liu C, Sun S, Sun Y, Li X, Gu W, Luo Y, Wang N, Wang Q. Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173498. [PMID: 38815827 DOI: 10.1016/j.scitotenv.2024.173498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Antibiotics are widely used in China's aquaculture, agricultural, and clinical settings and can lead to antibiotic resistance in various pathogens. Although the pooled prevalence estimate (PPE) and antibiotic resistance of Escherichia coli (E. coli) in food and clinical settings has been extensively studied, a comprehensive analysis of the published literature is lacking. We conducted a comprehensive search for research indicators for 2001-2020 in eight major Chinese and English literature databases. Antibiotic PPE and resistance trends of 5933 and 29,451 E. coli isolates were screened and analysed in 35 food studies (total 1821) and 62 clinical studies (total 5159). E. coli strains derived from food had the highest antibiotic resistance rate to tetracycline (TET, 71.3 %), followed by trimethoprim-sulfamethoxazole (SXT, 62.5 %) and cefazolin (CFZ, 36.2 %). E. coli strains isolated from clinical environments were highly resistant to piperacillin (PIP, 71.7 %), TET (68.3 %) and CFZ (60.9 %), consistent with foodborne E. coli drug resistance patterns. E. coli strains isolated from food and clinical samples collected in laboratories carry multiple antibiotic resistance genes (ARGs), such as blaTEM, gryA, gryB, sul1, and tetA, making E. coli a reservoir of ARGs. This study highlights the presence of drug-resistant E. coli pathogens and ARGs in food and clinical environments.
Collapse
Affiliation(s)
- Changzhen Liu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Weimin Gu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
12
|
Hatrongjit R, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Boueroy P, Akeda Y, Okada K, Iida T, Hamada S, Kerdsin A. Genomic analysis of carbapenem- and colistin-resistant Klebsiella pneumoniae complex harbouring mcr-8 and mcr-9 from individuals in Thailand. Sci Rep 2024; 14:16836. [PMID: 39039157 PMCID: PMC11263567 DOI: 10.1038/s41598-024-67838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
The surge in mobile colistin-resistant genes (mcr) has become an increasing public health concern, especially in carbapenem-resistant Enterobacterales (CRE). Prospective surveillance was conducted to explore the genomic characteristics of clinical CRE isolates harbouring mcr in 2015-2020. In this study, we aimed to examine the genomic characteristics and phonotypes of mcr-8 and mcr-9 harbouring carbapenem-resistant K. pneumoniae complex (CRKpnC). Polymerase chain reaction test and genome analysis identified CRKpnC strain AMR20201034 as K. pneumoniae (CRKP) ST147 and strain AMR20200784 as K. quasipneumoniae (CRKQ) ST476, harbouring mcr-8 and mcr-9, respectively. CRKQ exhibited substitutions in chromosomal-mediated colistin resistance genes (pmrB, pmrC, ramA, and lpxM), while CRKP showed two substitutions in crrB, pmrB, pmrC, lpxM and lapB. Both species showed resistance to colistin, with minimal inhibitory concentrations of 8 µg/ml for mcr-8-carrying CRKP isolate and 32 µg/ml for mcr-9-carrying CRKQ isolate. In addition, CRKP harbouring mcr-8 carried blaNDM, while CRKQ harbouring mcr-9 carried blaIMP, conferring carbapenem resistance. Analysis of plasmid replicon types carrying mcr-8 and mcr-9 showed FIA-FII (96,575 bp) and FIB-HI1B (287,118 bp), respectively. In contrast with the plasmid carrying the carbapenemase genes, the CRKQ carried blaIMP-14 on an IncC plasmid, while the CRKP harboured blaNDM-1 on an FIB plasmid. This finding provides a comprehensive insight into another mcr-carrying CRE from patients in Thailand. The other antimicrobial-resistant genes in the CRKP were blaCTX-M-15, blaSHV-11, blaOXA-1, aac(6')-Ib-cr, aph(3')-VI, ARR-3, qnrS1, oqxA, oqxB, sul1, catB3, fosA, and qacE, while those detected in CRKQ were blaOKP-B-15, qnrA1, oqxA, oqxB, sul1, fosA, and qacE. This observation highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harbouring CRE and the need for rational drug use in all sectors.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | | - Kazuhisa Okada
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tetsuya Iida
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| |
Collapse
|
13
|
Wang Y, Sun D, Xu Z, Jiao X, Chen X. Mobile Colistin Resistance and Plasmid-Mediated Quinolone Resistance Genes in Escherichia coli from China, 1993-2019. Foodborne Pathog Dis 2024; 21:416-423. [PMID: 38629721 DOI: 10.1089/fpd.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) genes and mobile colistin resistance (MCR) genes in Escherichia coli (E. coli) have been widely identified, which is considered a global threat to public health. In the present study, we conducted an analysis of MCR genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) and PMQR genes [qnrA, qnrB, qnrC, qnrD, qnrE1, qnrVC, qnrS, aac(6')-Ib-cr, qepA, and oqxAB] in E. coli from China, 1993-2019. From the 3,663 E. coli isolates examined, 1,613 (44.0%) tested positive for PMQR genes, either individually or in combination. Meanwhile, 262 isolates (7.0%) carried the MCR genes. Minimum inhibitory concentration (MIC) analyses of 17 antibiotics for the MCR gene-carrying strains revealed universal multidrug resistance. Resistance to polymyxin varied between 4 μg/mL and 64 μg/mL, with MIC50 and MIC90 at 8 μg/mL and 16 μg/mL, respectively. In addition, fluctuations in the detection rates of these resistant genes correlated with the introduction of antibiotic policies, host origin, temporal trends, and geographical distribution. Continuous surveillance of PMQR and MCR variants in bacteria is required to implement control and prevention strategies.
Collapse
Affiliation(s)
- Yujin Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Dewei Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Elbediwi M, Rolff J. Metabolic pathways and antimicrobial peptide resistance in bacteria. J Antimicrob Chemother 2024; 79:1473-1483. [PMID: 38742645 DOI: 10.1093/jac/dkae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Antimicrobial resistance is a pressing concern that poses a significant threat to global public health, necessitating the exploration of alternative strategies to combat drug-resistant microbial infections. Recently, antimicrobial peptides (AMPs) have gained substantial attention as possible replacements for conventional antibiotics. Because of their pharmacodynamics and killing mechanisms, AMPs display a lower risk of bacterial resistance evolution compared with most conventional antibiotics. However, bacteria display different mechanisms to resist AMPs, and the role of metabolic pathways in the resistance mechanism is not fully understood. This review examines the intricate relationship between metabolic genes and AMP resistance, focusing on the impact of metabolic pathways on various aspects of resistance. Metabolic pathways related to guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) [collectively (p)ppGpp], the tricarboxylic acid (TCA) cycle, haem biosynthesis, purine and pyrimidine biosynthesis, and amino acid and lipid metabolism influence in different ways metabolic adjustments, biofilm formation and energy production that could be involved in AMP resistance. By targeting metabolic pathways and their associated genes, it could be possible to enhance the efficacy of existing antimicrobial therapies and overcome the challenges exhibited by phenotypic (recalcitrance) and genetic resistance toward AMPs. Further research in this area is needed to provide valuable insights into specific mechanisms, uncover novel therapeutic targets, and aid in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Animal Health Research Institute, Agriculture Research Centre, 12618 Cairo, Egypt
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
15
|
Huang Y, Zhu Y, Yue HY, Liu YY, Deng LM, Lv L, Wang C, Yang J, Liu JH. Flavomycin restores colistin susceptibility in multidrug-resistant Gram-negative bacteria. mSystems 2024; 9:e0010924. [PMID: 38695565 PMCID: PMC11237640 DOI: 10.1128/msystems.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/28/2024] [Indexed: 06/19/2024] Open
Abstract
Polymyxin is used as a last resort antibiotics for infections caused by multi-drug resistant (MDR) Gram-negative bacteria and is often combined with other antibiotics to improve clinical effectiveness. However, the synergism of colistin and other antibiotics remains obscure. Here, we revealed a notable synergy between colistin and flavomycin, which was traditionally used as an animal growth promoter and has limited activity against Gram-negative bacteria, using checkerboard assay and time-kill curve analyses. The importance of membrane penetration induced by colistin was assessed by examining the intracellular accumulation of flavomycin and its antimicrobial impact on Escherichia coli (E. coli) strains with truncated lipopolysaccharides. Besides, a mutation in the flavomycin binding site was created to confirm its role in the observed synergy. This synergy is manifested as an augmented penetration of the E. coli outer membrane by colistin, leading to increased intracellular accumulation of flavomycin and enhanced cell killing thereafter. The observed synergy was dependent on the antimicrobial activity of flavomycin, as mutation of its binding site abolished the synergy. In vivo studies confirmed the efficacy of colistin combined with flavomycin against MDR E. coli infections. This study is the first to demonstrate the synergistic effect between colistin and flavomycin, shedding light on their respective roles in this synergism. Therefore, we propose flavomycin as an adjuvant to enhance the potency of colistin against MDR Gram-negative bacteria. IMPORTANCE Colistin is a critical antibiotic in combating multi-drug resistant Gram-negative bacteria, but the emergence of mobilized colistin resistance (mcr) undermines its effectiveness. Previous studies have found that colistin can synergy with various drugs; however, its exact mechanisms with hydrophobic drugs are still unrevealed. Generally, the membrane destruction of colistin is thought to be the essential trigger for its interactions with its partner drugs. Here, we use clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) for specifically mutating the binding site of one hydrophobic drug (flavomycin) and show that antimicrobial activity of flavomycin is critical for the synergy. Our results first give the evidence that the synergy is set off by colistin's membrane destruction and operated the final antimicrobial function by its partner drugs.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Yan Zhu
- Systems Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hui-Ying Yue
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Li-Min Deng
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Chengzhen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Nagarajan T, Gayathri MP, Mack J, Nyokong T, Govindarajan S, Babu B. Blue-Light-Activated Water-Soluble Sn(IV)-Porphyrins for Antibacterial Photodynamic Therapy (aPDT) against Drug-Resistant Bacterial Pathogens. Mol Pharm 2024; 21:2365-2374. [PMID: 38620059 DOI: 10.1021/acs.molpharmaceut.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antimicrobial resistance has emerged as a global threat to the treatment of infectious diseases. Antibacterial photodynamic therapy (aPDT) is a promising alternative approach and is highly suitable for the treatment of cutaneous bacterial infections through topical applications. aPDT relies on light-responsive compounds called photosensitizer (PS) dyes, which generate reactive oxygen species (ROS) when induced by light, thereby killing bacterial cells. Despite several previous studies in this area, the molecular details of targeting and cell death mediated by PS dyes are poorly understood. In this study, we further investigate the antibacterial properties of two water-soluble Sn(IV) tetrapyridylporphyrins that were quaternized with methyl and hexyl groups (1 and 2). In this follow-up study, we demonstrate that Sn(IV)-porphyrins can be photoexcited by blue light (a 427 nm LED) and exhibit various levels of bactericidal activity against both Gram-(+) and Gram-(-) strains of bacteria. Using localization studies through fluorescence microscopy, we show that 2 targets the bacterial membrane more effectively than 1 and exhibits comparatively higher aPDT activity. Using multiple fluorescence reporters, we demonstrate that photoactivation of 1 and 2 results in extensive collateral damage to the bacterial cells including DNA cleavage, membrane damage, and delocalization of central systems necessary for bacterial growth and division. In summary, this investigation provides deep insights into the mechanism of bacterial killing mediated by the Sn(IV)-porphyrins. Moreover, our approach offers a new method for evaluating the activity of PS, which may inspire the discovery of new PS with enhanced aPDT activity.
Collapse
Affiliation(s)
- T Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravati 522502, India
| | - M P Gayathri
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | | | - Balaji Babu
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| |
Collapse
|
17
|
Nambiar RB, Elbediwi M, Ed-Dra A, Wu B, Yue M. Epidemiology and antimicrobial resistance of Salmonella serovars Typhimurium and 4,[5],12:i- recovered from hospitalized patients in China. Microbiol Res 2024; 282:127631. [PMID: 38330818 DOI: 10.1016/j.micres.2024.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Global emergence of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is a continuing challenge for modern healthcare. However, the knowledge, regarding the epidemiology of salmonellosis caused by the monophasic variant S. 4,[5],12:i:- in hospitalized patients, is limited in China. To bridge this gap, we carried out a retrospective study to determine the antimicrobial resistance, trends, and risk factors of S. Typhimurium and S. 4,[5],12:i:- (n = 329) recovered from patients in Zhejiang province between 2011 and 2019. The results showed that 90.57% (298/329) of the isolates were MDR; among them, 48.94% (161/329) and 12.46% (41/329) were phenotypically resistant to cephalosporins and fluoroquinolones, respectively, which are the drugs of choice used to treat salmonellosis in clinics. Additionally, we observed a higher incidence of infections among the young population (<5 years old). Notably, the higher prevalence of ST34 (sequence type 34) isolates, especially after 2014, with MDR (57.05%, 170/298) phenotype, and incidence of ST34 isolates co-harbouring mcr-1 (mobile colistin resistance gene) and blaCTX-M-14 (β-lactamase gene) suggest an association between STs and drug resistance. Together, the increasing prevalence of MDR ST34 calls for enhanced monitoring strategies to mitigate the spread and dissemination of MDR clones of S. Typhimurium and S. 4,[5],12:i-. Our study provides improved knowledge about non-typhoid Salmonella (NTS) infections, which could help in the effective recommendation of antimicrobials in hospitalized patients.
Collapse
Affiliation(s)
- Reshma B Nambiar
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, BP: 591, Beni Mellal, Morocco
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Mondal AH, Khare K, Saxena P, Debnath P, Mukhopadhyay K, Yadav D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024; 12:772. [PMID: 38674716 PMCID: PMC11051878 DOI: 10.3390/microorganisms12040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics.
Collapse
Affiliation(s)
- Aftab Hossain Mondal
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kriti Khare
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Prachika Saxena
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Parbati Debnath
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
19
|
Stanley ND, Jeevan JA, Yadav B, Gunasekaran K, Pichamuthu K, Chandiraseharan VK, Sathyendra S, Hansdak SG, Iyyadurai R. Association of antibiotic duration and all-cause mortality in a prospective study of patients with ventilator-associated pneumonia in a tertiary-level critical care unit in Southern India. BMJ Open 2024; 14:e077428. [PMID: 38604633 PMCID: PMC11015278 DOI: 10.1136/bmjopen-2023-077428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVES To estimate all-cause mortality in ventilator-associated pneumonia (VAP) and determine whether antibiotic duration beyond 8 days is associated with reduction in all-cause mortality in patients admitted with VAP in the intensive care unit. DESIGN A prospective cohort study of patients diagnosed with VAP based on the National Healthcare Safety Network definition and clinical criteria. SETTING Single tertiary care hospital in Southern India. PARTICIPANTS 100 consecutive adult patients diagnosed with VAP were followed up for 28 days postdiagnosis or until discharge. OUTCOME MEASURES The incidence of mortality at 28 days postdiagnosis was measured. Tests for association and predictors of mortality were determined using χ2 test and multivariate Cox regression analysis. Secondary outcomes included baseline clinical parameters such as age, underlying comorbidities as well as measuring total length of stay, number of ventilator-free days and antibiotic-free days. RESULTS The overall case fatality rate due to VAP was 46%. There was no statistically significant difference in mortality rates between those receiving shorter antibiotic duration (5-8 days) and those on longer therapy. Among those who survived until day 9, the observed risk difference was 15.1% between both groups, with an HR of 1.057 (95% CI 0.26 to 4.28). In 70.4% of isolates, non-fermenting Gram-negative bacilli were identified, of which the most common pathogen isolated was Acinetobacter baumannii (62%). CONCLUSION In this hospital-based cohort study, there is insufficient evidence to suggest that prolonging antibiotic duration beyond 8 days in patients with VAP improves survival.
Collapse
Affiliation(s)
- Nivin Daniel Stanley
- Department of Medicine, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - Jonathan Arul Jeevan
- Department of Medicine, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - Bijesh Yadav
- Department of Biostatistics, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - Karthik Gunasekaran
- Department of Medicine, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - Kishore Pichamuthu
- Department of Critical Care Medicine, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | | | - Sowmya Sathyendra
- Department of Medicine, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - Samuel George Hansdak
- Department of Medicine, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| | - Ramya Iyyadurai
- Department of Medicine, Christian Medical College and Hospital Vellore, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Martino F, Petroni A, Menocal MA, Corso A, Melano R, Faccone D. New insights on mcr-1-harboring plasmids from human clinical Escherichia coli isolates. PLoS One 2024; 19:e0294820. [PMID: 38408071 PMCID: PMC10896549 DOI: 10.1371/journal.pone.0294820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/09/2023] [Indexed: 02/28/2024] Open
Abstract
Mobile colistin resistance (mcr) genes were described recently in Gram-negative bacteria including carbapenem-resistant Enterobacterales. There are ten mcr genes described in different Gram-negative bacteria, however, Escherichia coli harboring mcr-1 gene is by far the most frequent combination. In Argentina, mcr-1 gene was characterized only on plasmids belonging to IncI2 group. The aim of this work was to get new insights of mcr-1-harboring plasmids from E. coli. Eight E. coli isolates from a larger collection of 192 clinical E. coli isolates carrying the mcr-1 gene were sequenced using next generation technologies. Three isolates belonged to ST131 high-risk clone, and five to single ST, ST38, ST46, ST226, ST224, and ST405. Eight diverse mcr-1-harboring plasmids were analyzed: IncI2 (1), IncX4 (3), IncHI2/2A (3) and a hybrid IncFIA/HI1A/HI1B (1) plasmid. Plasmids belonging to the IncI2 (n = 1) and IncX4 (n = 3) groups showed high similarity with previously described plasmids. Two IncHI2/HI2A plasmids, showed high identity between them, while the third, showed several differences including additional resistance genes like tet(A) and floR. One IncFIA/H1A/H1B hybrid plasmid was characterized, highly similar to pSRC27-H, a prototype plasmid lacking mcr genes. mcr-1.5 variant was found in four plasmids with three different Inc groups: IncI2, IncHI2/HI2A and the hybrid FIA/HI1A/HI1B plasmid. mcr-1.5 variant is almost exclusively described in our country and with a high frequency. In addition, six E. coli isolates carried three allelic variants codifying for CTX-M-type extended-spectrum-β-lactamases: blaCTX-M-2 (3), blaCTX-M-65 (2), and blaCTX-M-14 (1). It is the first description of mcr-1 harboring plasmids different to IncI2 group in our country. These results represents new insights about mcr-1 harboring plasmids recovered from E. coli human samples from Argentina, showing different plasmid backbones and resistance gene combinations.
Collapse
Affiliation(s)
- Florencia Martino
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires City, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires City, Argentina
| | - Alejandro Petroni
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires City, Argentina
| | - María Alejandra Menocal
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires City, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires City, Argentina
| | - Roberto Melano
- Public Health Ontario Laboratory, Toronto, Ontario, Canadá
- University of Toronto, Toronto, Ontario, Canadá
- Pan American Health Organization, Washington, D.C., United States of America
| | - Diego Faccone
- Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistance (NRLAR), National Institute of Infectious Diseases (INEI), ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires City, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires City, Argentina
| |
Collapse
|
21
|
De Koster S, Xavier BB, Lammens C, Perales Selva N, van Kleef-van Koeveringe S, Coenen S, Glupczynski Y, Leroux-Roels I, Dhaeze W, Hoebe CJPA, Dewulf J, Stegeman A, Kluytmans-Van den Bergh M, Kluytmans J, Goossens H. One Health surveillance of colistin-resistant Enterobacterales in Belgium and the Netherlands between 2017 and 2019. PLoS One 2024; 19:e0298096. [PMID: 38394276 PMCID: PMC10890735 DOI: 10.1371/journal.pone.0298096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Colistin serves as the last line of defense against multidrug resistant Gram-negative bacterial infections in both human and veterinary medicine. This study aimed to investigate the occurrence and spread of colistin-resistant Enterobacterales (ColR-E) using a One Health approach in Belgium and in the Netherlands. METHODS In a transnational research project, a total of 998 hospitalized patients, 1430 long-term care facility (LTCF) residents, 947 children attending day care centres, 1597 pigs and 1691 broilers were sampled for the presence of ColR-E in 2017 and 2018, followed by a second round twelve months later for hospitalized patients and animals. Colistin treatment incidence in livestock farms was used to determine the association between colistin use and resistance. Selective cultures and colistin minimum inhibitory concentrations (MIC) were employed to identify ColR-E. A combination of short-read and long-read sequencing was utilized to investigate the molecular characteristics of 562 colistin-resistant isolates. Core genome multi-locus sequence typing (cgMLST) was applied to examine potential transmission events. RESULTS The presence of ColR-E was observed in all One Health sectors. In Dutch hospitalized patients, ColR-E proportions (11.3 and 11.8% in both measurements) were higher than in Belgian patients (4.4 and 7.9% in both measurements), while the occurrence of ColR-E in Belgian LTCF residents (10.2%) and children in day care centres (17.6%) was higher than in their Dutch counterparts (5.6% and 12.8%, respectively). Colistin use in pig farms was associated with the occurrence of colistin resistance. The percentage of pigs carrying ColR-E was 21.8 and 23.3% in Belgium and 14.6% and 8.9% in the Netherlands during both measurements. The proportion of broilers carrying ColR-E in the Netherlands (5.3 and 1.5%) was higher compared to Belgium (1.5 and 0.7%) in both measurements. mcr-harboring E. coli were detected in 17.4% (31/178) of the screened pigs from 7 Belgian pig farms. Concurrently, four human-related Enterobacter spp. isolates harbored mcr-9.1 and mcr-10 genes. The majority of colistin-resistant isolates (419/473, 88.6% E. coli; 126/166, 75.9% Klebsiella spp.; 50/75, 66.7% Enterobacter spp.) were susceptible to the critically important antibiotics (extended-spectrum cephalosporins, fluoroquinolones, carbapenems and aminoglycosides). Chromosomal colistin resistance mutations have been identified in globally prevalent high-risk clonal lineages, including E. coli ST131 (n = 17) and ST1193 (n = 4). Clonally related isolates were detected in different patients, healthy individuals and livestock animals of the same site suggesting local transmission. Clonal clustering of E. coli ST10 and K. pneumoniae ST45 was identified in different sites from both countries suggesting that these clones have the potential to spread colistin resistance through the human population or were acquired by exposure to a common (food) source. In pig farms, the continuous circulation of related isolates was observed over time. Inter-host transmission between humans and livestock animals was not detected. CONCLUSIONS The findings of this study contribute to a broader understanding of ColR-E prevalence and the possible pathways of transmission, offering insights valuable to both academic research and public health policy development.
Collapse
Affiliation(s)
- Sien De Koster
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, HIV/STI Unit, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, ZNA Middelheim, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, GZA Ziekenhuizen, Wilrijk, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | - Samuel Coenen
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Isabel Leroux-Roels
- Laboratory of Medical Microbiology and Infection Control Department, Ghent University Hospital, Ghent, Belgium
| | | | - Christian J. P. A. Hoebe
- Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
- Living Lab Public Health, Public Health Service South Limburg, Heerlen, the Netherlands
| | - Jeroen Dewulf
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Veterinary Epidemiology Unit, Ghent University, Merelbeke, Belgium
| | - Arjan Stegeman
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marjolein Kluytmans-Van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Kluytmans
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Microvida Laboratory for Microbiology, Amphia Hospital, Breda, The Netherlands
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
22
|
Kujat Choy S, Neumann EM, Romero-Barrios P, Tamber S. Contribution of Food to the Human Health Burden of Antimicrobial Resistance. Foodborne Pathog Dis 2024; 21:71-82. [PMID: 38099924 PMCID: PMC10877391 DOI: 10.1089/fpd.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
The impact of foodborne antimicrobial resistance (AMR) on the human health burden of AMR infections is unknown. The aim of this review was to evaluate and summarize the scientific literature investigating all potential sources of human AMR infections related to food. A literature search was conducted in Embase (Ovid) and MEDLINE (Ovid) databases to identify appropriate studies published between 2010 and 2023. The results of the search were reviewed and categorized based on the primary subject matter. Key concepts from each category are described from the perspective of food safety as a public health objective. The search yielded 3457 references, 1921 remained after removal of duplicates, abstracts, editorials, comments, notes, retractions, and errata. No properly designed source attribution studies were identified, but 383 journal articles were considered relevant and were classified into eight subcategories and discussed in the context of four streams of evidence: prevalence data, epidemiological studies, outbreak investigations and human health impact estimates. There was sufficient evidence to conclude that AMR genes, whether present in pathogenic or nonpathogenic bacteria, constitute a foodborne hazard. The level of consumer risk owing to this hazard cannot be accurately estimated based on the data summarized here. Key gaps in the literature are noted.
Collapse
Affiliation(s)
- Sonya Kujat Choy
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Eva-Marie Neumann
- Library Services Division, Corporate Services Branch, Health Canada, Ottawa, Canada
| | - Pablo Romero-Barrios
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Sandeep Tamber
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
23
|
Aworh MK, Nilsson P, Egyir B, Owusu FA, Hendriksen RS. Rare serovars of non-typhoidal Salmonella enterica isolated from humans, beef cattle and abattoir environments in Nigeria. PLoS One 2024; 19:e0296971. [PMID: 38252613 PMCID: PMC10802957 DOI: 10.1371/journal.pone.0296971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
INTRODUCTION Salmonella is considered one of the most significant pathogens in public health since it is a bacterium that is frequently linked to food-borne illnesses in humans. Some Salmonella serovars are responsible for outbreaks that are connected to the consumption of animal products. Cattle are connected to humans through a shared environment and the food chain as a significant source of animal protein. In Nigeria, antimicrobial medications are easily accessible for use in food-producing animals. Abattoir environments are reservoirs of foodborne bacteria like non-typhoidal Salmonella enterica (NTS), that have become resistant to antibiotics used for prophylaxis or treatment in animals. This study investigated the prevalence and resistance patterns of Salmonella enterica serovars in abattoir employees, beef cattle and abattoir environments in Abuja and Lagos, Nigeria. METHODS A total of 448 samples were collected from healthy personnel, slaughtered cattle, and abattoir environments between May and December 2020. Using Kirby-Bauer disk diffusion method, the resistance profile of NTS isolates were determined. Multidrug resistance (MDR) was considered when NTS was resistant to ≥3 antimicrobial drug classes. We performed phenotypic and genotypic characterizations of all Salmonella isolates including serotyping. Descriptive statistics were used to analyze the data. RESULTS Twenty-seven (6%) NTS isolates were obtained. Prevalence of NTS was highest in abattoir environments (15.5%; 9/58), followed by cattle (4.8%;13/272) and abattoir employees (4.2%; 5/118). A high prevalence of resistance was observed for gentamicin (85.2%; 23/27) and tetracycline (77.8%; 21/27). Whole-genome sequencing of 22 NTS showed dissemination of aac(6')-laa (22/22), qnrB19 (1/22), fosA7 (1/22), and tetA (1/22) genes. Serovar diversity of NTS varied with source. S. Anatum, a rare serovar predominated with a prevalence of 18.2% (4/22). Chromosomal point mutations showed ParC T57S substitution in 22 NTS analyzed. Among 22 NTS, 131 mobile genetic elements (MGEs) were detected including insertion sequences (56.5%) and miniature inverted repeats (43.5%). Two integrating MGEs IS6 and IS21 were observed to carry the tetA gene + Incl-1 on the same contig in NTS originating from cattle. Rare serovars namely S. Abony and S. Stormont with MDR phenotypes recovered from cattle and abattoir environments were closely related with a pairwise distance of ≤5 SNPs. CONCLUSIONS First report of rare serovars in Nigeria with MDR phenotypes in humans, cattle, and abattoir environments. This study demonstrates the spread of resistance in the abattoir environment possibly by MGEs and emphasizes the importance of genomic surveillance. Beef cattle may be a risk to public health because they spread a variety of rare Salmonella serovars. Therefore, encouraging hand hygiene among abattoir employees while processing beef cattle will further reduce NTS colonization in this population. This requires a One Health collaborative effort among various stakeholders in human health, animal health, and environmental health.
Collapse
Affiliation(s)
- Mabel Kamweli Aworh
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Nigeria Field Epidemiology and Laboratory Training Programme, Abuja, Nigeria
| | - Pernille Nilsson
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Felicia Amoa Owusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Rene S. Hendriksen
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Memesh R, Yasir M, Ledder RG, Zowawi H, McBain AJ, Azhar EI. An update on the prevalence of colistin and carbapenem-resistant Gram-negative bacteria in aquaculture: an emerging threat to public health. J Appl Microbiol 2024; 135:lxad288. [PMID: 38059867 DOI: 10.1093/jambio/lxad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Aquaculture has been recognized as a hotspot for the emergence and spread of antimicrobial resistance genes conferring resistance to clinically important antibiotics. This review gives insights into studies investigating the prevalence of colistin and carbapenem resistance (CCR) among Gram-negative bacilli in aquaculture. Overall, a high incidence of CCR has been reported in aquatic farms in several countries, with CCR being more prevalent among opportunistic human pathogens such as Acinetobacter nosocomialis, Shewanella algae, Photobacterium damselae, Vibrio spp., Aeromonas spp., as well as members of Enterobacteriaceae family. A high proportion of isolates in these studies exhibited wide-spectrum profiles of antimicrobial resistance, highlighting their multidrug-resistance properties (MDR). Several mobile colistin resistance genes (including, mcr-1, mcr-1.1, mcr-2, mcr-2.1, mcr-3, mcr-3.1, mcr-4.1, mcr-4.3, mcr-5.1, mcr-6.1, mcr-7.1, mcr-8.1, and mcr-10.1) and carbapenemase encoding genes (including, blaOXA-48, blaOXA-55, blaNDM, blaKPC, blaIMI, blaAIM, blaVIM, and blaIMP) have been detected in aquatic farms in different countries. The majority of these were carried on MDR Incompatibility (Inc) plasmids including IncA/C, and IncX4, which have been associated with a wide host range of different sources. Thus, there is a risk for the possible spread of resistance genes between fish, their environments, and humans. These findings highlight the need to monitor and regulate the usage of antimicrobials in aquaculture. A multisectoral and transdisciplinary (One Health) approach is urgently needed to reduce the spread of resistant bacteria and/or resistance genes originating in aquaculture and avoid their global reach.
Collapse
Affiliation(s)
- Roa Memesh
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ruth G Ledder
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hosam Zowawi
- College of Medicine, King Saud bin Abdul-Aziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Faidah H. An Update on Colistin in Clinical Healthcare Unit in the Kingdom of Saudi Arabia: A Narrative Review. Curr Pharm Des 2024; 30:2829-2834. [PMID: 39108120 DOI: 10.2174/0113816128303422240723091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 10/22/2024]
Abstract
Globally, gram-negative bacteria are a significant cause of morbidity. Multi-drug resistance bacteria are responsible for an increasing surge in infections that place a high cost on healthcare systems around the world. Recently, colistin, an antibiotic belonging to the polymyxin family, was reintroduced to combat multidrug- resistant gram-negative bacteria. Excessive and persistent use of colistin has led to the development and spread of colistin-resistant gram-negative bacteria throughout the globe. Healthcare units in various countries, including Saudi Arabia, are currently battling colistin-resistant gram-negative bacteria. Recently, colistin-resistant gram-negative bacteria have become a major health concern in Saudi Arabia. Hence, extensive epidemiological surveys and studies are required to understand the current status of the colistin antibiotic. Examining the knowledge currently available to the medical community on the molecular mechanism, clinical effectiveness, molecular epidemiology, and bacterial resistance to colistin in Saudi Arabia is the aim of this review.
Collapse
Affiliation(s)
- Hani Faidah
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
26
|
Wang W, Cui J, Liu F, Hu Y, Li F, Zhou Z, Deng X, Dong Y, Li S, Xiao J. Genomic characterization of Salmonella isolated from retail chicken and humans with diarrhea in Qingdao, China. Front Microbiol 2023; 14:1295769. [PMID: 38164401 PMCID: PMC10757937 DOI: 10.3389/fmicb.2023.1295769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Salmonella, especially antimicrobial resistant strains, remains one of the leading causes of foodborne bacterial disease. Retail chicken is a major source of human salmonellosis. Here, we investigated the prevalence, antimicrobial resistance (AMR), and genomic characteristics of Salmonella in 88 out of 360 (24.4%) chilled chicken carcasses, together with 86 Salmonella from humans with diarrhea in Qingdao, China in 2020. The most common serotypes were Enteritidis and Typhimurium (including the serotype I 4,[5],12:i:-) among Salmonella from both chicken and humans. The sequence types were consistent with serotypes, with ST11, ST34 and ST19 the most dominantly identified. Resistance to nalidixic acid, ampicillin, tetracycline and chloramphenicol were the top four detected in Salmonella from both chicken and human sources. High multi-drug resistance (MDR) and resistance to third-generation cephalosporins resistance were found in Salmonella from chicken (53.4%) and humans (75.6%). In total, 149 of 174 (85.6%) Salmonella isolates could be categorized into 60 known SNP clusters, with 8 SNP clusters detected in both sources. Furthermore, high prevalence of plasmid replicons and prophages were observed among the studied isolates. A total of 79 antimicrobial resistant genes (ARGs) were found, with aac(6')-Iaa, blaTEM-1B, tet(A), aph(6)-Id, aph(3″)-Ib, sul2, floR and qnrS1 being the dominant ARGs. Moreover, nine CTX-M-type ESBL genes and the genes blaNMD-1, mcr-1.1, and mcr-9.1 were detected. The high incidence of MDR Salmonella, especially possessing lots of mobile genetic elements (MGEs) in this study posed a severe risk to food safety and public health, highlighting the importance of improving food hygiene measures to reduce the contamination and transmission of this bacterium. Overall, it is essential to continue monitoring the Salmonella serotypes, implement the necessary prevention and strategic control plans, and conduct an epidemiological surveillance system based on whole-genome sequencing.
Collapse
Affiliation(s)
- Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jing Cui
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Feng Liu
- Pharmaceutical Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital) Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, China
| | - Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhemin Zhou
- Key Laboratory of Alkene-carbon Fibres-based Technology and Application for Detection of Major Infectious Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xiangyu Deng
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shaoting Li
- Guangdong University of Technology, Guangzhou, China
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
27
|
Taha AE, Alduraywish AS, Alanazi AA, Alruwaili AH, Alruwaili AL, Alrais MM, Alyousef AA, Alrais AA, Alanazi MA, Alhudaib SN, Alazmi BM. High Bacterial Contamination Load of Self-Service Facilities in Sakaka City, Aljouf, Saudi Arabia, with Reduced Sensitivity to Some Antimicrobials. Microorganisms 2023; 11:2937. [PMID: 38138082 PMCID: PMC10745763 DOI: 10.3390/microorganisms11122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Although self-service facilities (SSFs) have been used on a large scale worldwide, they can be easily contaminated by microorganisms from the hands of their sequential users. This research aimed to study the prevalence and antimicrobial susceptibility/resistance of bacteria contaminating SSFs in Sakaka, Aljouf, Saudi Arabia. We randomly swabbed the surfaces of 200 SSFs, then used the suitable culture media, standard microbiological methods, and the MicroScan WalkAway Microbiology System, including the identification/antimicrobial susceptibility testing-combo panels. A high SSFs' bacterial contamination load was detected (78.00%). Ninety percent of the samples collected in the afternoon, during the maximum workload of the SSFs, yielded bacterial growth (p < 0.001 *). Most of the contaminated SSFs were supermarket payment machines, self-pumping equipment at gas stations (p = 0.004 *), online banking service machines (p = 0.026 *), and barcode scanners in supermarkets. In the antiseptic-deficient areas, 55.1% of the contaminated SSFs were detected (p = 0.008 *). Fifty percent of the contaminated SSFs were not decontaminated. The most common bacterial contaminants were Escherichia coli (70 isolates), Klebsiella pneumoniae (66 isolates), Staphylococcus epidermidis (34 isolates), methicillin-resistant Staphylococcus aureus (18 isolates), and methicillin-sensitive Staphylococcus aureus (14 isolates), representing 31.53%, 29.73%, 15.32%, 8.11%, and 6.31% of the isolates, respectively. Variable degrees of reduced sensitivity to some antimicrobials were detected among the bacterial isolates. The SSFs represent potential risks for the exchange of antimicrobial-resistant bacteria between the out-hospital environment and the hospitals through the hands of the public. As technology and science advance, there is an urgent need to deploy creative and automated techniques for decontaminating SSFs and make use of recent advancements in materials science for producing antibacterial surfaces.
Collapse
Affiliation(s)
- Ahmed E. Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | | | - Ali A. Alanazi
- College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | | | | | - Mmdoh M. Alrais
- College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | | | | | | | | | - Bandar M. Alazmi
- College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
28
|
Daoud L, Al-Marzooq F, Ghazawi A, Anes F, Collyns T. High efficacy and enhanced synergistic activity of the novel siderophore-cephalosporin cefiderocol against multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae from inpatients attending a single hospital in the United Arab Emirates. J Infect Public Health 2023; 16 Suppl 1:33-44. [PMID: 37953111 DOI: 10.1016/j.jiph.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Cefiderocol (CFDC) is a novel siderophore-cephalosporin, which usually penetrates the bacteria through the iron-uptake pathways. Data is limited on the factors affecting CFDC activity and methods for overcoming resistance development. Synergistic approaches are needed to tackle antimicrobial resistance. This study aimed to determine CFDC activity on Klebsiella pneumoniae isolates from patients attending a single hospital in the United Arab Emirates (UAE), to explore the effect of β-lactamases on CFDC activity and to enhance CFDC susceptibility in both iron-depleted and iron-enriched conditions. METHODS We investigated 238 K. pneumoniae strains from diverse clinical sources. β-lactamase genes were detected by PCR. Susceptibility to CFDC and 12 comparator antibiotics were tested. Combinations of CFDC with β-lactamase inhibitors (BLIs) and/or an outer membrane (OM) permeabilizer (polymyxin B nonapeptide) were tested in iron-depleted and iron-enriched conditions. RESULTS CFDC exhibited efficacy of 97.9%, against multidrug-resistant (MDR), and extensively drug-resistant (XDR) strains, in addition to strains resistant to the last resort drugs such as colistin and tigecycline, including dual carbapenemase-producers (blaNDM and blaOXA-48-like) with MIC ≤ 0.06-8 µg/ml. It was effective in killing strains with single and multiple β-lactamases; however, it lost activity in iron-enriched conditions. Synergy was achieved with dual combination of CFDC and BLIs, especially avibactam, which caused a significant reduction in MICs even in iron-enriched conditions. A significant reduction was seen with the triple combination including an OM permeabilizer plus avibactam. Killing-kinetic studies proved that the combination therapy caused dose reduction and faster killing by CFDC than the monotherapy. CONCLUSIONS CFDC was deemed effective against MDR and XDR K. pneumoniae. Synergistic combination of CFDC with BLIs and OM permeabilizers could be effective to treat infections in iron-rich sites, but this should be investigated in vivo.
Collapse
Affiliation(s)
- Lana Daoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Febin Anes
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
29
|
Bhandari M, Poelstra JW, Kauffman M, Varghese B, Helmy YA, Scaria J, Rajashekara G. Genomic Diversity, Antimicrobial Resistance, Plasmidome, and Virulence Profiles of Salmonella Isolated from Small Specialty Crop Farms Revealed by Whole-Genome Sequencing. Antibiotics (Basel) 2023; 12:1637. [PMID: 37998839 PMCID: PMC10668983 DOI: 10.3390/antibiotics12111637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella is the leading cause of death associated with foodborne illnesses in the USA. Difficulty in treating human salmonellosis is attributed to the development of antimicrobial resistance and the pathogenicity of Salmonella strains. Therefore, it is important to study the genetic landscape of Salmonella, such as the diversity, plasmids, and presence antimicrobial resistance genes (AMRs) and virulence genes. To this end, we isolated Salmonella from environmental samples from small specialty crop farms (SSCFs) in Northeast Ohio from 2016 to 2021; 80 Salmonella isolates from 29 Salmonella-positive samples were subjected to whole-genome sequencing (WGS). In silico serotyping revealed the presence of 15 serotypes. AMR genes were detected in 15% of the samples, with 75% exhibiting phenotypic and genotypic multidrug resistance (MDR). Plasmid analysis demonstrated the presence of nine different types of plasmids, and 75% of AMR genes were located on plasmids. Interestingly, five Salmonella Newport isolates and one Salmonella Dublin isolate carried the ACSSuT gene cassette on a plasmid, which confers resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline. Overall, our results show that SSCFs are a potential reservoir of Salmonella with MDR genes. Thus, regular monitoring is needed to prevent the transmission of MDR Salmonella from SSCFs to humans.
Collapse
Affiliation(s)
- Menuka Bhandari
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.B.); (M.K.)
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Michael Kauffman
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.B.); (M.K.)
| | - Binta Varghese
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; (B.V.); (J.S.)
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Joy Scaria
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; (B.V.); (J.S.)
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.B.); (M.K.)
| |
Collapse
|
30
|
Abban MK, Ayerakwa EA, Mosi L, Isawumi A. The burden of hospital acquired infections and antimicrobial resistance. Heliyon 2023; 9:e20561. [PMID: 37818001 PMCID: PMC10560788 DOI: 10.1016/j.heliyon.2023.e20561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
The burden of Hospital care-associated infections (HCAIs) is becoming a global concern. This is compounded by the emergence of virulent and high-risk bacterial strains such as "ESKAPE" pathogens - (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species), especially within Intensive care units (ICUs) that house high-risk and immunocompromised patients. In this review, we discuss the contributions of AMR pathogens to the increasing burden of HCAIs and provide insights into AMR mechanisms, with a particular focus on last-resort antibiotics like polymyxins. We extensively discuss how structural modifications of surface-membrane lipopolysaccharides and cationic interactions influence and inform AMR, and subsequent severity of HCAIs. We highlight some bacterial phenotypic survival mechanisms against polymyxins. Lastly, we discuss the emergence of plasmid-mediated resistance as a phenomenon making mitigation of AMR difficult, especially within the ICUs. This review provides a balanced perspective on the burden of HCAIs, associated pathogens, implication of AMR and factors influencing emerging AMR mechanisms.
Collapse
Affiliation(s)
- Molly Kukua Abban
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Eunice Ampadubea Ayerakwa
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Lydia Mosi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Abiola Isawumi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
31
|
Binsker U, Oelgeschläger K, Neumann B, Werner G, Käsbohrer A, Hammerl JA. Genomic Evidence of mcr-1.26 IncX4 Plasmid Transmission between Poultry and Humans. Microbiol Spectr 2023; 11:e0101523. [PMID: 37358464 PMCID: PMC10434184 DOI: 10.1128/spectrum.01015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023] Open
Abstract
Colistin is still commonly used and misused in animal husbandry driving the evolution and dissemination of transmissible plasmid-mediated colistin resistance (mcr). mcr-1.26 is a rare variant and, so far, has only been detected in Escherichia coli obtained from a hospitalized patient in Germany in 2018. Recently, it was also notified in fecal samples from a pigeon in Lebanon. We report on the presence of 16 colistin-resistant, mcr-1.26-carrying extended-spectrum beta-lactamase (ESBL)-producing and commensal E. coli isolated from poultry samples in Germany, of which retail meat was the most common source. Short- and long-read genome sequencing and bioinformatic analyses revealed the location of mcr-1.26 exclusively on IncX4 plasmids. mcr-1.26 was identified on two different IncX4 plasmid types of 33 and 38 kb and was associated with an IS6-like element. Based on the genetic diversity of E. coli isolates, transmission of the mcr-1.26 resistance determinant is mediated by horizontal transfer of IncX4 plasmids, as confirmed by conjugation experiments. Notably, the 33-kb plasmid is highly similar to the plasmid reported for the human sample. Furthermore, we identified the acquisition of an additional beta-lactam resistance linked to a Tn2 transposon on the mcr-1.26 IncX4 plasmids of three isolates, indicating progressive plasmid evolution. Overall, all described mcr-1.26-carrying plasmids contain a highly conserved core genome necessary for colistin resistance development, transmission, replication, and maintenance. Variations in the plasmid sequences are mainly caused by the acquisition of insertion sequences and alteration in intergenic sequences or genes of unknown function. IMPORTANCE Evolutionary events causing the emergence of new resistances/variants are usually rare and challenging to predict. Conversely, common transmission events of widespread resistance determinants are quantifiable and predictable. One such example is the transmissible plasmid-mediated colistin resistance. The main determinant, mcr-1, has been notified in 2016 but has successfully established itself in multiple plasmid backbones in diverse bacterial species across all One Health sectors. So far, 34 variants of mcr-1 are described, of which some can be used for epidemiological tracing-back analysis to identify the origin and transmission dynamics of these genes. Here, we report the presence of the rare mcr-1.26 gene in E. coli isolated from poultry since 2014. Based on the temporal occurrence and high similarity of the plasmids between poultry and human isolates, our study provides first indications for poultry husbandry as the primary source of mcr-1.26 and its transmission between different niches.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kathrin Oelgeschläger
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Bernd Neumann
- Institute for Hospital Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical University, Nuremberg General Hospital, Germany
| | - Guido Werner
- Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A. Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
32
|
Karim MR, Zakaria Z, Hassan L, Faiz NM, Ahmad NI. The occurrence and molecular detection of mcr-1 and mcr-5 genes in Enterobacteriaceae isolated from poultry and poultry meats in Malaysia. Front Microbiol 2023; 14:1208314. [PMID: 37601372 PMCID: PMC10435970 DOI: 10.3389/fmicb.2023.1208314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The advent of antimicrobials-resistant (AMR), including colistin-resistant bacteria, poses a significant challenge to animal and human health, food safety, socio-economic growth, and the global environment. This study aimed to ascertain the colistin resistance prevalence and molecular mechanisms of colistin resistance in Enterobacteriaceae. The colistin resistance was determined using broth microdilution assay, PCR; and Sanger sequencing of mcr genes responsible for colistin resistance in Enterobacteriaceae (n = 627), including Escherichia coli (436), Salmonella spp. (n = 140), and Klebsiella pneumoniae (n = 51), obtained from chicken and chicken meats. Out of 627 Enterobacteriaceae, 8.6% of isolates exhibited colistin resistance phenotypically. Among these colistin resistant isolates, 9.3% (n = 37) were isolated from chicken meat, 7.2% (n = 11) from the cloacal swab of chicken and 7.9% (n = 6) from the litter samples. Overall, 12.96% of colistin-resistant isolates were positive with mcr genes, in which mcr-1 and mcr-5 genes were determined in 11.11% and 1.85% of colistin-resistant isolates, respectively. The E. coli isolates obtained from chicken meats, cloacal swabs and litter samples were found positive for mcr-1, and Salmonella spp. originated from the chicken meat sample was observed with mcr-5, whereas no mcr genes were observed in K. pneumoniae strains isolated from any of the collected samples. The other colistin resistance genes, including mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, mcr-9, and mcr-10 were not detected in the studied samples. The mcr-1 and mcr-5 genes were sequenced and found to be 100% identical to the mcr-1 and mcr-5 gene sequences available in the NCBI database. This is the first report of colistin resistance mcr-5 gene in Malaysia which could portend the emergence of mcr-5 harboring bacterial strains for infection. Further studies are needed to characterize the mr-5 harbouring bacteria for the determination of plasmid associated with mcr-5 gene.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
- Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Zunita Zakaria
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Nik Mohd Faiz
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Nur Indah Ahmad
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
33
|
Claudia SS, Carmen SS, Andrés D, Marcela MA, Kerly CA, Bryan BM, John CJ, José GF. Risk factors associated with colistin resistance in carbapenemase-producing Enterobacterales: a multicenter study from a low-income country. Ann Clin Microbiol Antimicrob 2023; 22:64. [PMID: 37533063 PMCID: PMC10398925 DOI: 10.1186/s12941-023-00609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
PURPOSE The aim of this study was to assess the risk factors for colistin-resistant carbapenemase-producing Enterobacterales (CR-CPE), and describe the mortality associated with this organism, in a low-income country. METHODS A descriptive, observational, and prospective multicenter study was carried out in Guayaquil, Ecuador. All patients with carbapenem-resistant Enterobacterales admitted between December 2021 and May 2022 were enrolled. Infection definitions were established according to the Centers for Disease Control and Prevention (CDC) protocols. The presence of carbapenemase-producing Enterobacterales was confirmed with a multiplex PCR for blaKPC, blaNDM, blaOXA-48, blaVIM, and blaIMP genes. MCR-1 production was studied molecularly, and MLST assays were carried out. RESULTS Out of 114 patients enrolled in the study, 32 (28.07%) had at least one positive sample for CR-CPE. Klebsiella pneumoniae ST512-KPC-3 was the most frequent microorganism isolated. Parenteral feeding, β-lactamase inhibitor use, recent hemodialysis, and renal failure were all considered independent risk factors for carrying CR-CPE. A mortality of 41.22% was detected, but we could not find any difference between colistin-resistant and colistin-susceptible CPE. MCR-1 production was not detected in any of the isolates studied. CONCLUSION A significant burden for CR-CPE was found in a South American country that was mainly caused by the high-risk clone K. pneumoniae ST512-KPC-3 and not mediated by mcr-1 production. Its acquisition involved parenteral feeding, β-lactamase inhibitor use, recent hemodialysis, and renal failure as independent risk factors, demonstrating the critical need for infection prevention and stewardship programs to avoid dissemination to other countries in the region.
Collapse
Affiliation(s)
- Soria-Segarra Claudia
- Sosecali. Medical Services, Guayaquil, EC, 090308, Ecuador.
- Faculty of Medical Sciences, Guayaquil University, Guayaquil, Ecuador.
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & ibs, Granada, Spain.
| | - Soria-Segarra Carmen
- Sosecali. Medical Services, Guayaquil, EC, 090308, Ecuador
- Department of Internal Medicine, School of Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | | | | | - Cevallos-Apolo Kerly
- Hospital de Infectología Dr. José Daniel Rodríguez Maridueña, Guayaquil, Ecuador
| | | | - Chuzan J John
- Department of Microbiology, Hospital Alcívar, Guayaquil, Ecuador
| | - Gutierrez-Fernández José
- Department of Microbiology, Hospital Virgen de las Nieves, Institute for Biosanitary Research-Ibs, Granada, Spain
| |
Collapse
|
34
|
Zhang Z, Li J, Zhou R, Xu Q, Qu S, Lin H, Wang Y, Li P, Zheng X. Serotyping and Antimicrobial Resistance Profiling of Multidrug-Resistant Non-Typhoidal Salmonella from Farm Animals in Hunan, China. Antibiotics (Basel) 2023; 12:1178. [PMID: 37508274 PMCID: PMC10376037 DOI: 10.3390/antibiotics12071178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) is a foodborne pathogen and a prevalent causative agent for disease outbreaks globally. The Salmonella enterica serovar 4,[5],12:i:- (S.4,[5],12:i:-) belongs to the monophasic variant of Salmonella typhimurium, which is of current global concern. In this study, the epidemiology and genomic characterization of S. 4,[5],12:i:- isolates from 17 livestock farms in Hunan Province between 2019 and 2020, as well as their susceptibility to 14 antimicrobial agents, were profiled. Twelve Salmonella serotypes were identified using the White-Kauffmann-Le Minor scheme, and whole-genome sequencing analyses were conducted based on these isolates. Overall, 107 Salmonella strains were isolated, of which 73% (78/107) were multidrug resistant. Resistance to tetracycline (85.05%) was found to be the most prevalent, followed by the oqxAB and aac(6')-Ib-cr genes. S. typhimurium (monophasic) 4,[5],12:i:- was the most common serotype, followed by S. typhimurium and S. derby. Most antimicrobial-resistant strains were isolated from pigs, indicating that they could be important reservoirs of resistant non-typhoidal Salmonella strains. The presence of similar genetic environments in S. 4,[5],12:i:- indicates both vertical and horizontal transmission of resistance plasmids, which may promote the spread of drug resistance genes. Appropriate measures should be taken to curb the prevalence of S. 4,[5],12:i:-.
Collapse
Affiliation(s)
- Zhuohui Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Rushun Zhou
- Hunan Provincial Institution of Veterinary Drug and Feed Control, Changsha 410006, China
| | - Qianqian Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Shiyin Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Hongguang Lin
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Yan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Pishun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
35
|
Zahedi Bialvaei A, Eslami P, Ganji L, Dolatyar Dehkharghani A, Asgari F, Koupahi H, Barzegarian Pashacolaei HR, Rahbar M. Prevalence and epidemiological investigation of mgrB-dependent colistin resistance in extensively drug resistant Klebsiella pneumoniae in Iran. Sci Rep 2023; 13:10680. [PMID: 37393362 PMCID: PMC10314893 DOI: 10.1038/s41598-023-37845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Carbapenemases-producing K. pneumoniae are challenging antimicrobial therapy of hospitalised patients, which is further complicated by colistin resistance. The aim of this study was to investigate the molecular epidemiological insights into carbapenemases-producing and colistin-resistant clinical K. pneumoniaeA total of 162 colistin resistant clinical strains of K. pneumoniae were collected during 2017-2019. Antimicrobial susceptibility and the colistin minimum inhibitory concentration were determined. Using PCR assay, the prevalence of resistance-associated genes including blaKPC, blaIMP, blaVIM, blaOXA-48, blaNDM-1 and mcr-1 to -9 was examined. Additionally, a PCR assay was used to examine the mgrB gene in colistin-resistant bacteria. 94.4% of the tested strains were resistant to imipenem and 96.3% were resistant to meropenem. Colistin resistance (MIC > 4 µg/L) was observed in 161 isolates (99.4%) by Colistin Broth Disk Elution method. The KPC enzyme was the most common carbapenemase and was identified in 95 strains (58.6%), followed by the IMP, VIM and OXA-48 detected in 47 (29%), 23 (14.2%) and 12 (7.4%) isolates, respectively. However, no NDM-1 gene was detected. Additionally, none of the studied isolates harbored mcr variants, while mgrB gene was observed in 152 (92.6%) isolates. Colistin resistance of K. pneumoniae isolates may be associated with mgrB gene mutation. To stop the spread of resistant K. pneumoniae, surveillance must be improved, infection prevention protocols must be followed, and antibiotic stewardship must be practised.
Collapse
Affiliation(s)
- Abed Zahedi Bialvaei
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Eslami
- Department of Microbiology, Milad Hospital, Tehran, Iran
| | - Leila Ganji
- Department of Microbiology, Ministry of Health & Medical Education, Iranian Reference Health Laboratories Research Center, Tehran, Iran
| | - Alireza Dolatyar Dehkharghani
- Department of Microbiology, Ministry of Health & Medical Education, Iranian Reference Health Laboratories Research Center, Tehran, Iran
| | - Farhad Asgari
- Department of Microbiology, Ministry of Health & Medical Education, Iranian Reference Health Laboratories Research Center, Tehran, Iran
| | - Hossein Koupahi
- Department of Microbiology, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | | | - Mohammad Rahbar
- Department of Microbiology, Ministry of Health & Medical Education, Iranian Reference Health Laboratories Research Center, Tehran, Iran.
| |
Collapse
|
36
|
Tuttle JT, Bruce TJ, Butts IAE, Roy LA, Abdelrahman HA, Beck BH, Kelly AM. Investigating the Ability of Edwardsiella ictaluri and Flavobacterium covae to Persist within Commercial Catfish Pond Sediments under Laboratory Conditions. Pathogens 2023; 12:871. [PMID: 37513718 PMCID: PMC10385248 DOI: 10.3390/pathogens12070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Two prevalent bacterial diseases in catfish aquaculture are enteric septicemia of catfish and columnaris disease caused by Edwardsiella ictaluri and Flavobacterium covae, respectively. Chronic and recurring outbreaks of these bacterial pathogens result in significant economic losses for producers annually. Determining if these pathogens can persist within sediments of commercial ponds is paramount. Experimental persistence trials (PT) were conducted to evaluate the persistence of E. ictaluri and F. covae in pond sediments. Twelve test chambers containing 120 g of sterilized sediment from four commercial catfish ponds were inoculated with either E. ictaluri (S97-773) or F. covae (ALG-00-530) and filled with 8 L of disinfected water. At 1, 2, 4-, 6-, 8-, and 15-days post-inoculation, 1 g of sediment was removed, and colony-forming units (CFU) were enumerated on selective media using 6 × 6 drop plate methods. E. ictaluri population peaked on Day 3 at 6.4 ± 0.5 log10 CFU g-1. Correlation analysis revealed no correlation between the sediment physicochemical parameters and E. ictaluri log10 CFU g-1. However, no viable F. covae colonies were recovered after two PT attempts. Future studies to improve understanding of E. ictaluri pathogenesis and persistence, and potential F. covae persistence in pond bottom sediments are needed.
Collapse
Affiliation(s)
- James T Tuttle
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Luke A Roy
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Hisham A Abdelrahman
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Benjamin H Beck
- Aquatic Animal Health Research Unit, US Department of Agriculture, Agricultural Research Service, Auburn, AL 36832, USA
| | - Anita M Kelly
- Alabama Fish Farming Center, Greensboro, AL 36744, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
37
|
Wang Z, Jiang Z, Xu H, Jiao X, Li Q. Prevalence and molecular characterization of mcr-1-positive foodborne ST34-Salmonella isolates in China. Microbiol Res 2023; 274:127441. [PMID: 37356255 DOI: 10.1016/j.micres.2023.127441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) and S. 4,[5],12:i:- have become the most common serovars associated with human salmonellosis worldwide. Moreover, the emergence of mcr-carrying S. Typhimurium and S. 4,[5],12:i:- with multidrug resistance (MDR) patterns has posed a threat to public health. In this study, we retrospectively screened 2009-2022 laboratory-preserved strains for the presence of mcr genes. We obtained 16 mcr-1-positive S. Typhimurium and S. 4,[5],12:i:- strains with MDR that belonged to sequence type 34 (ST34). Whole-genome sequencing analysis revealed that the mcr-1 was located on the IncI2 or IncHI2 plasmids. The ISApl1 element downstream of mcr-1 was present in all pig-derived strains. Conjugation experiments confirmed that nine mcr-1-carrying IncHI2 plasmids could not be transferred to Escherichia coli due to loss of the conjugation region. Finally, core genome single nucleotide polymorphism (cgSNP) analyses of the 16 mcr-1-carrying strains and 77 mcr-carrying ST34-Salmonella genome sequences from the NCBI and ENA databases showed that five out of eight clusters contained strains from pig and pig products, revealing pigs and pig products as key reservoirs of mcr-1-positive ST34-Salmonella strains. The transmission of mcr-carrying ST34 Salmonella strains to humans via the pig food chain is a potential cause for public health concern in controlling human salmonellosis.
Collapse
Affiliation(s)
- Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Zhongyi Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong 226007, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| |
Collapse
|
38
|
Cahill N, Hooban B, Fitzhenry K, Joyce A, O'Connor L, Miliotis G, McDonagh F, Burke L, Chueiri A, Farrell ML, Bray JE, Delappe N, Brennan W, Prendergast D, Gutierrez M, Burgess C, Cormican M, Morris D. First reported detection of the mobile colistin resistance genes, mcr-8 and mcr-9, in the Irish environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162649. [PMID: 36906027 DOI: 10.1016/j.scitotenv.2023.162649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The emergence and dissemination of mobile colistin resistance (mcr) genes across the globe poses a significant threat to public health, as colistin remains one of the last line treatment options for multi-drug resistant infections. Environmental samples (157 water and 157 wastewater) were collected in Ireland between 2018 and 2020. Samples collected were assessed for the presence of antimicrobial resistant bacteria using Brilliance ESBL, Brilliance CRE, mSuperCARBA and McConkey agar containing a ciprofloxacin disc. All water and integrated constructed wetland influent and effluent samples were filtered and enriched in buffered peptone water prior to culture, while wastewater samples were cultured directly. Isolates collected were identified via MALDI-TOF, were tested for susceptibility to 16 antimicrobials, including colistin, and subsequently underwent whole genome sequencing. Overall, eight mcr positive Enterobacterales (one mcr-8 and seven mcr-9) were recovered from six samples (freshwater (n = 2), healthcare facility wastewater (n = 2), wastewater treatment plant influent (n = 1) and integrated constructed wetland influent (piggery farm waste) (n = 1)). While the mcr-8 positive K. pneumoniae displayed resistance to colistin, all seven mcr-9 harbouring Enterobacterales remained susceptible. All isolates demonstrated multi-drug resistance and through whole genome sequencing analysis, were found to harbour a wide variety of antimicrobial resistance genes i.e., 30 ± 4.1 (10-61), including the carbapenemases, blaOXA-48 (n = 2) and blaNDM-1 (n = 1), which were harboured by three of the isolates. The mcr genes were located on IncHI2, IncFIIK and IncI1-like plasmids. The findings of this study highlight potential sources and reservoirs of mcr genes in the environment and illustrate the need for further research to gain a better understanding of the role the environment plays in the persistence and dissemination of antimicrobial resistance.
Collapse
Affiliation(s)
- Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland.
| | - Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Aoife Joyce
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O'Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Alexandra Chueiri
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Maeve Louise Farrell
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - James E Bray
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Niall Delappe
- National Carbapenemase-Producing Enterobacterales Reference Laboratory, National Salmonella, Shigella and Listeria Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Wendy Brennan
- National Carbapenemase-Producing Enterobacterales Reference Laboratory, National Salmonella, Shigella and Listeria Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Deirdre Prendergast
- Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland
| | | | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland; National Carbapenemase-Producing Enterobacterales Reference Laboratory, National Salmonella, Shigella and Listeria Reference Laboratory, University Hospital Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland; Centre for One Health, Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
39
|
Nordhoff K, Scharlach M, Effelsberg N, Knorr C, Rocker D, Claussen K, Egelkamp R, Mellmann AC, Moss A, Müller I, Roth SA, Werckenthin C, Wöhlke A, Ehlers J, Köck R. Epidemiology and zoonotic transmission of mcr-positive and carbapenemase-producing Enterobacterales on German turkey farms. Front Microbiol 2023; 14:1183984. [PMID: 37346748 PMCID: PMC10280733 DOI: 10.3389/fmicb.2023.1183984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction The emergence of carbapenem-resistant bacteria causing serious infections may lead to more frequent use of previously abandoned antibiotics like colistin. However, mobile colistin resistance genes (mcr) can jeopardise its effectiveness in both human and veterinary medicine. In Germany, turkeys have been identified as the food-producing animal most likely to harbour mcr-positive colistin-resistant Enterobacterales (mcr-Col-E). Therefore, the aim of the present study was to assess the prevalence of both mcr-Col-E and carbapenemase-producing Enterobacterales (CPE) in German turkey herds and humans in contact with these herds. Methods In 2018 and 2019, 175 environmental (boot swabs of turkey faeces) and 46 human stool samples were analysed using a combination of enrichment-based culture, PCR, core genome multilocus sequence typing (cgMLST) and plasmid typing. Results mcr-Col-E were detected in 123 of the 175 turkey farms in this study (70.3%). mcr-Col-E isolates were Escherichia coli (98.4%) and Klebsiella spp. (1.6%). Herds that had been treated with colistin were more likely to harbour mcr-Col-E, with 82.2% compared to 66.2% in untreated herds (p = 0.0298). Prevalence also depended on husbandry, with 7.1% mcr-Col-E in organic farms compared to 74.5% in conventional ones (p < 0.001). In addition, four of the 46 (8.7%) human participants were colonised with mcr-Col-E. mcr-Col-E isolates from stables had minimum inhibitory concentrations (MICs) from 4 to ≥ 32 mg/l, human isolates ranged from 4 to 8 mg/l. cgMLST showed no clonal transmission of isolates. For one farm, plasmid typing revealed great similarities between plasmids from an environmental and a human sample. No CPE were found in turkey herds or humans. Discussion These findings confirm that mcr-Col-E-prevalence is high in turkey farms, but no evidence of direct zoonotic transmission of clonal mcr-Col-E strains was found. However, the results indicate that plasmids may be transmitted between E. coli isolates from animals and humans.
Collapse
Affiliation(s)
- Katja Nordhoff
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
- Perioperative Inflammation and Infection, Department of Human Medicine, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | | | | | - Carolin Knorr
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Dagmar Rocker
- Public Health Agency of Lower Saxony (NLGA), Hanover, Germany
| | - Katja Claussen
- Public Health Agency of Lower Saxony (NLGA), Hanover, Germany
| | | | | | - Andreas Moss
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Ilona Müller
- Public Health Agency of Lower Saxony (NLGA), Hanover, Germany
| | | | - Christiane Werckenthin
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Anne Wöhlke
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Joachim Ehlers
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Oldenburg, Germany
| | - Robin Köck
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- Hygiene and Environmental Medicine, University Medicine Essen, Essen, Germany
| |
Collapse
|
40
|
A snapshot survey of antimicrobial resistance in food-animals in low and middle-income countries. One Health 2023; 16:100489. [PMID: 36683959 PMCID: PMC9850425 DOI: 10.1016/j.onehlt.2023.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial resistance remains a threat to global public health. Low-and middle-income countries carry a greater burden of resistance because of higher rates of infection as well as, potentially, location-specific risk factors. Food animals occupy a critical crossover point for the spread of antimicrobial resistance to humans and the environment. However, this domain remains poorly surveilled outside high-income settings. We used point surveillance from 191 studies reporting phenotypic AMR in food animals across 38 African, Middle Eastern, Asian and South and Central American countries to depict antimicrobial resistance trend in food animals. By computing Multiple Antibiotic Resistance indices and finding an overall mean of 0.34 ± 0.16, which is above the 0.2 index associated with multidrug resistance and high risk, we show that multidrug resistance in bacteria from food animal sources is worryingly high. MAR indexes from food animals were overall higher than those previously computed from aquaculture but, unlike aquaculture-computed MAR indices, did not track closely with those of human-associated bacteria in the same countries. Food animals are an important reservoir for rising antimicrobial resistance in bacteria, and hence improved surveillance in this sector is highly recommended.
Collapse
|
41
|
Vereecke N, Van Hoorde S, Sperling D, Theuns S, Devriendt B, Cox E. Virotyping and genetic antimicrobial susceptibility testing of porcine ETEC/STEC strains and associated plasmid types. Front Microbiol 2023; 14:1139312. [PMID: 37143544 PMCID: PMC10151945 DOI: 10.3389/fmicb.2023.1139312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Enterotoxigenic Escherichia coli (ETEC) infections are the most common cause of secretory diarrhea in suckling and post-weaning piglets. For the latter, Shiga toxin-producing Escherichia coli (STEC) also cause edema disease. This pathogen leads to significant economic losses. ETEC/STEC strains can be distinguished from general E. coli by the presence of different host colonization factors (e.g., F4 and F18 fimbriae) and various toxins (e.g., LT, Stx2e, STa, STb, EAST-1). Increased resistance against a wide variety of antimicrobial drugs, such as paromomycin, trimethoprim, and tetracyclines, has been observed. Nowadays, diagnosing an ETEC/STEC infection requires culture-dependent antimicrobial susceptibility testing (AST) and multiplex PCRs, which are costly and time-consuming. Methods Here, nanopore sequencing was used on 94 field isolates to assess the predictive power, using the meta R package to determine sensitivity and specificity and associated credibility intervals of genotypes associated with virulence and AMR. Results Genetic markers associated with resistance for amoxicillin (plasmid-encoded TEM genes), cephalosporins (ampC promoter mutations), colistin (mcr genes), aminoglycosides (aac(3) and aph(3) genes), florfenicol (floR), tetracyclines (tet genes), and trimethoprim-sulfa (dfrA genes) could explain most acquired resistance phenotypes. Most of the genes were plasmid-encoded, of which some collocated on a multi-resistance plasmid (12 genes against 4 antimicrobial classes). For fluoroquinolones, AMR was addressed by point mutations within the ParC and GyrA proteins and the qnrS1 gene. In addition, long-read data allowed to study the genetic landscape of virulence- and AMR-carrying plasmids, highlighting a complex interplay of multi-replicon plasmids with varying host ranges. Conclusion Our results showed promising sensitivity and specificity for the detection of all common virulence factors and most resistance genotypes. The use of the identified genetic hallmarks will contribute to the simultaneous identification, pathotyping, and genetic AST within a single diagnostic test. This will revolutionize future quicker and more cost-efficient (meta)genomics-driven diagnostics in veterinary medicine and contribute to epidemiological studies, monitoring, tailored vaccination, and management.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Sander Van Hoorde
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Sebastiaan Theuns
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
42
|
Umair M, Hassan B, Farzana R, Ali Q, Sands K, Mathias J, Afegbua S, Haque MN, Walsh TR, Mohsin M. International manufacturing and trade in colistin, its implications in colistin resistance and One Health global policies: a microbiological, economic, and anthropological study. THE LANCET. MICROBE 2023; 4:e264-e276. [PMID: 36931291 DOI: 10.1016/s2666-5247(22)00387-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 03/16/2023]
Abstract
BACKGROUND The emergence of colistin-resistant Enterobacterales is a global public health concern, yet colistin is still widely used in animals that are used for food as treatment, metaphylaxis, prophylaxis, and growth promotion. Herein, we investigate the effect of colistin-resistant Enterobacterales in Pakistan, global trade of colistin, colistin use at the farm level, and relevant socioeconomic factors. METHODS We conducted a microbiological, economic, and anthropological study of colistin-resistant Escherichia coli in humans, animals, and the environment and international trade and knowledge of colistin in Pakistan, Bangladesh, Nigeria, China, India, and Viet Nam. We collected backyard poultry cloacal swabs, commercial broiler cloacal swabs, cattle and buffalo rectal swabs, human rectal swabs, wild bird droppings, cattle and buffalo meat, sewage water, poultry flies, chicken meat, and canal water from 131 sites across Faisalabad, Pakistan, to be tested for mcr-1-positive and mcr-3-positive Escherichia coli. We recruited new patients admitted to Allied Hospital, Faisalabad, Pakistan, with abdominal pain and diarrhoea for rectal swabs. Patients with dysentery and those who were already on antibiotic treatment were excluded. Data for colistin trade between 2017 and 2020, including importation, manufacturing, and usage, were accessed from online databases and government sources in Pakistan, Bangladesh, and Nigeria. We recruited participants from poultry farms and veterinary drug stores in Pakistan and Nigeria to be interviewed using a structured questionnaire. International manufacturing, import, and export data; value analysis; and trade routes of colistin pharmaceutical raw material (PRM), feed additive, and finished pharmaceutical products (FPPs) were accessed from 2017-21 export data sets. FINDINGS We collected 1131 samples between May 12, 2018, and July 1, 2019: backyard poultry cloacal swabs (n=100), commercial broiler cloacal swabs (n=102), cattle and buffalo rectal swabs (n=188), human rectal swabs (n=200), wild bird droppings (n=100), cattle and buffalo meat (n=100), sewage water (n=90), poultry flies (n=100), chicken meat (n=100), and canal water (n=51). We recruited 200 inpatients at Allied Hospital, Faisalabad, Pakistan, between Nov 15, 2018, and Dec 14, 2018, for rectal swabs. We recruited 21 participants between Jan 1, 2020, and Dec 31, 2020, from poultry farms and drug stores in Pakistan and Nigeria to be interviewed. 75 (7%) of 1131 samples contained mcr-1-positive E coli, including wild bird droppings (25 [25%] of 100), commercial broiler cloacal swabs (17 [17%] of 100), backyard poultry cloacal swabs (one [1%] of 100), chicken meat (13 [13%] of 100), cattle and buffalo meat (two [2%] of 100), poultry flies (eight [8%] of 100), sewage water (six [7%] of 90), and human rectal swabs (three [2%] of 200). During 2017-20, Pakistan imported 275·5 tonnes (68·9 tonnes per year, 95% CI 41·2-96·6) of colistin as PRM, all sourced from China, 701·9 tonnes (175·5 tonnes per year, 140·9-210·1) of colistin as feed additives from China and Viet Nam, and 63·0 tonnes (15·8 tonnes per year, 10·4-21·1) of colistin as FPPs from various countries in Asia and Europe. For Bangladesh and Nigeria, colistin PRM and FPPs were imported from China and Europe. Colistin knowledge and usage practices in Pakistan and Nigeria were unsatisfactory in terms of understanding of the effects on human medicine and usage other than for treatment purposes. China is the major manufacturer of PRM and feed additive colistin and exported a total of 2664·8 tonnes (666·2 tonnes per year, 95% CI 262·1 to 1070·2) of PRM and 2570·2 tonnes (642·6 tonnes per year, -89·4 to 1374·5) of feed additive in 1330 shipments during 2018-21 to 21 countries. INTERPRETATION Regardless of 193 countries signing the UN agreement to tackle antimicrobial resistance, trading of colistin as PRM, FPPs, and feed additive or growth promoter in low-income and middle-income countries continues unabated. Robust national and international laws are urgently required to mitigate the international trade of this antimicrobial listed on WHO Critically Important Antimicrobials for Human Medicine. FUNDING Pakistan Agricultural Research Council and INEOS Oxford Institute for Antimicrobial Research TRANSLATION: For the Urdu translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Muhammad Umair
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan; INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Brekhna Hassan
- School of Medicine, Department of Medical Microbiology, Institute of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Refath Farzana
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Qasim Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan; Department of Virology, National Institutes of Health, Islamabad, Pakistan
| | - Kirsty Sands
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK; School of Medicine, Department of Medical Microbiology, Institute of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Jordan Mathias
- School of Medicine, Department of Medical Microbiology, Institute of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Seniyat Afegbua
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | - Timothy R Walsh
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
43
|
Liu YY, Zhu XQ, Nang SC, Xun H, Lv L, Yang J, Liu JH. Greater Invasion and Persistence of mcr-1-Bearing Plasmids in Escherichia coli than in Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0322322. [PMID: 36975832 PMCID: PMC10100767 DOI: 10.1128/spectrum.03223-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of the plasmid-borne polymyxin resistance gene mcr-1 threatens the clinical utility of last-line polymyxins. Although mcr-1 has disseminated to various Enterobacterales species, the prevalence of mcr-1 is the highest among Escherichia coli isolates while remaining low in Klebsiella pneumoniae. The reason for such a difference in prevalence has not been investigated. In this study, we examined and compared the biological characteristics of various mcr-1 plasmids in these two bacterial species. Although mcr-1-bearing plasmids were stably maintained in both E. coli and K. pneumoniae, the former presented itself to be superior by demonstrating a fitness advantage while carrying the plasmid. The inter- and intraspecies transferability efficiencies were evaluated for common mcr-1-harboring plasmids (IncX4, IncI2, IncHI2, IncP, and IncF types) with native E. coli and K. pneumoniae strains as donors. Here, we found that the conjugation frequencies of mcr-1 plasmids were significantly higher in E. coli than in K. pneumoniae, regardless of the donor species and Inc types of the mcr-1 plasmids. Plasmid invasion experiments revealed that mcr-1 plasmids displayed greater invasiveness and stability in E. coli than in K. pneumoniae. Moreover, K. pneumoniae carrying mcr-1 plasmids showed a competitive disadvantage when cocultured with E. coli. These findings indicate that mcr-1 plasmids could spread more easily among E. coli than among K. pneumoniae isolates and that mcr-1 plasmid-carrying E. coli has a competitive advantage over K. pneumoniae, leading to E. coli being the main mcr-1 reservoir. IMPORTANCE As infections caused by multidrug-resistant "superbugs" are increasing globally, polymyxins are often the only viable therapeutic option. Alarmingly, the wide spread of the plasmid-mediated polymyxin resistance gene mcr-1 is restricting the clinical utility of this last-line treatment option. With this, there is an urgent need to investigate the factors contributing to the spread and persistence of mcr-1-bearing plasmids in the bacterial community. Our research highlights that the higher prevalence of mcr-1 in E. coli than in K. pneumoniae is attributed to the greater transferability and persistence of mcr-1-bearing plasmid in the former species. By gaining these important insights into the persistence of mcr-1 in different bacterial species, we will be able to formulate effective strategies to curb the spread of mcr-1 and prolong the clinical life span of polymyxins.
Collapse
Affiliation(s)
- Yi-Yun Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Qing Zhu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Sue C. Nang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Haoliang Xun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Luchao Lv
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jun Yang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian-Hua Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
44
|
Hanpaibool C, Ngamwongsatit N, Ounjai P, Yotphan S, Wolschann P, Mulholland AJ, Spencer J, Rungrotmongkol T. Pyrazolones Potentiate Colistin Activity against MCR-1-Producing Resistant Bacteria: Computational and Microbiological Study. ACS OMEGA 2023; 8:8366-8376. [PMID: 36910942 PMCID: PMC9996792 DOI: 10.1021/acsomega.2c07165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The polymyxin colistin is a last line antibiotic for extensively resistant Gram-negative bacteria. Colistin binding to lipid A disrupts the Gram-negative outer membrane, but mobile colistin resistance (mcr) gene family members confer resistance by catalyzing phosphoethanolamine (PEA) transfer onto lipid A, neutralizing its negative charge to reduce colistin interactions. Multiple mcr isoforms have been identified in clinical and environmental isolates, with mcr-1 being the most widespread and mcr-3 being common in South and East Asia. Preliminary screening revealed that treatment with pyrazolones significantly reduced mcr-1, but not mcr-3, mediated colistin resistance. Molecular dynamics (MD) simulations of the catalytic domains of MCR-1 and a homology model of MCR-3, in different protonation states of active site residues H395/H380 and H478/H463, indicate that the MCR-1 active site has greater water accessibility than MCR-3, but that this is less influenced by changes in protonation. MD-optimized structures of MCR-1 and MCR-3 were used in virtual screening of 20 pyrazolone derivatives. Docking of these into the MCR-1/MCR-3 active sites identifies common residues likely to be involved in protein-ligand interactions, specifically the catalytic threonine (MCR-1 T285, MCR-3 T277) site of PEA addition, as well as differential interactions with adjacent amino acids. Minimal inhibitory concentration assays showed that the pyrazolone with the lowest predicted binding energy (ST3f) restores colistin susceptibility of mcr-1, but not mcr-3, expressing Escherichia coli. Thus, simulations indicate differences in the active site structure between MCR-1 and MCR-3 that may give rise to differences in pyrazolone binding and so relate to differential effects upon producer E. coli. This work identifies pyrazolones as able to restore colistin susceptibility of mcr-1-producing bacteria, laying the foundation for further investigations of their activity as phosphoethanolamine transferase inhibitors as well as of their differential activity toward mcr isoforms.
Collapse
Affiliation(s)
- Chonnikan Hanpaibool
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Natharin Ngamwongsatit
- Department
of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Laboratory
of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Puey Ounjai
- Department
of Biology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
- Center
of Excellence on Environmental Health and Toxicology, Office of Higher
Education Commission, Ministry of Education, Bangkok 10400, Thailand
| | - Sirilata Yotphan
- Center of
Excellence for Innovation in Chemistry (PERCH-CIC), Department of
Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Peter Wolschann
- Institute
of Theoretical Chemistry, University of
Vienna, Vienna 1090, Austria
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10400, Thailand
| |
Collapse
|
45
|
Tang B, Guan C, Lin H, Liu C, Yang H, Zhao G, Yue M. Emergence of co-existence of mcr-1 and bla NDM-5 in Escherichia fergusonii. Int J Antimicrob Agents 2023; 61:106742. [PMID: 36736926 DOI: 10.1016/j.ijantimicag.2023.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chunjiu Guan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Yue
- Hainan Institute, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, National Medical Centre for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
46
|
Thaotumpitak V, Sripradite J, Atwill ER, Jeamsripong S. Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. PeerJ 2023; 11:e14896. [PMID: 36855429 PMCID: PMC9968459 DOI: 10.7717/peerj.14896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Background Tilapia is a primary aquaculture fish in Thailand, but little is known about the occurrence of antimicrobial resistance (AMR) in Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae colonizing healthy tilapia intended for human consumption and the co-occurrence of these AMR bacteria in the cultivation water. Methods This study determined the phenotype and genotype of AMR, extended-spectrum β-lactamase (ESBL) production, and virulence factors of A. hydrophila, Salmonella spp., and V. cholerae isolated from hybrid red tilapia and cultivation water in Thailand. Standard culture methods such as USFDA's BAM or ISO procedures were used for the original isolation, with all isolates confirmed by biochemical tests, serotyping, and species-specific gene detection based on PCR. Results A total of 278 isolates consisting of 15 A. hydrophila, 188 Salmonella spp., and 75 V. cholerae isolates were retrieved from a previous study. All isolates of A. hydrophila and Salmonella isolates were resistance to at least one antimicrobial, with 26.7% and 72.3% of the isolates being multidrug resistant (MDR), respectively. All A. hydrophila isolates were resistant to ampicillin (100%), followed by oxytetracycline (26.7%), tetracycline (26.7%), trimethoprim (26.7%), and oxolinic acid (20.0%). The predominant resistance genes in A. hydrophila were mcr-3 (20.0%), followed by 13.3% of isolates having floR, qnrS, sul1, sul2, and dfrA1. Salmonella isolates also exhibited a high prevalence of resistance to ampicillin (79.3%), oxolinic acid (75.5%), oxytetracycline (71.8%), chloramphenicol (62.8%), and florfenicol (55.3%). The most common resistance genes in these Salmonella isolates were qnrS (65.4%), tetA (64.9%), bla TEM (63.8%), and floR (55.9%). All V. cholerae isolates were susceptible to all antimicrobials tested, while the most common resistance gene was sul1 (12.0%). One isolate of A. hydrophila was positive for int1, while all isolates of Salmonella and V. cholerae isolates were negative for integrons and int SXT. None of the bacterial isolates in this study were producing ESBL. The occurrence of mcr-3 (20.0%) in these isolates from tilapia aquaculture may signify a serious occupational and consumer health risk given that colistin is a last resort antimicrobial for treatment of Gram-negative bacteria infections. Conclusions Findings from this study on AMR bacteria in hybrid red tilapia suggest that aquaculture as practiced in Thailand can select for ubiquitous AMR pathogens, mobile genetic elements, and an emerging reservoir of mcr and colistin-resistant bacteria. Resistant and pathogenic bacteria, such as resistance to ampicillin and tetracycline, or MDR Salmonella circulating in aquaculture, together highlight the public health concerns and foodborne risks of zoonotic pathogens in humans from cultured freshwater fish.
Collapse
Affiliation(s)
- Varangkana Thaotumpitak
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jarukorn Sripradite
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, United States of America
| | - Saharuetai Jeamsripong
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
47
|
Genomic Characteristics and Phylogenetic Analyses of a Multiple Drug-Resistant Klebsiella pneumoniae Harboring Plasmid-Mediated MCR-1 Isolated from Tai'an City, China. Pathogens 2023; 12:pathogens12020221. [PMID: 36839493 PMCID: PMC9963795 DOI: 10.3390/pathogens12020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a clinically common opportunistic pathogen that causes pneumonia and upper respiratory tract infection in humans as well as community-and hospital-acquired infections, posing significant threats to public health. Moreover, the insertion of a plasmid carrying the mobile colistin resistance (MCR) genes brings obstacles to the clinical treatment of K. pneumoniae infection. In this study, a strain of colistin-resistant K. pneumoniae (CRKP) was isolated from sputum samples of a patient who was admitted to a tertiary hospital in Tai'an city, China, and tested for drug sensitivity. The results showed that KPTA-2108 was multidrug-resistant (MDR), being resistant to 21 of 26 selected antibiotics, such as cefazolin, amikacin, tigecycline and colistin but sensitive to carbapenems via antibiotic resistance assays. The chromosome and plasmid sequences of the isolated strain KPTA-2108 were obtained using whole-genome sequencing technology and then were analyzed deeply using bioinformatics methods. The whole-genome sequencing analysis showed that the length of KPTA-2108 was 5,306,347 bp and carried four plasmids, pMJ4-1, pMJ4-2, pMJ4-3, and pMJ4-4-MCR. The plasmid pMJ4-4-MCR contained 30,124 bp and was found to be an IncX4 type. It was the smallest plasmid in the KPTA-2108 strain and carried only one resistance gene MCR-1. Successful conjugation tests demonstrated that pMJ4-4-MCR carrying MCR-1 could be horizontally transmitted through conjugation between bacteria. In conclusion, the acquisition and genome-wide characterization of a clinical MDR strain of CRKP may provide a scientific basis for the treatment of K. pneumoniae infection and epidemiological data for the surveillance of CRKP.
Collapse
|
48
|
Shi J, Zhu H, Liu C, Xie H, Li C, Cao X, Shen H. Epidemiological and genomic characteristics of global mcr-positive Escherichia coli isolates. Front Microbiol 2023; 13:1105401. [PMID: 36741897 PMCID: PMC9889832 DOI: 10.3389/fmicb.2022.1105401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Objective The worldwide dissemination of colistin-resistant Escherichia coli (E. coli) endangers public health. This study aimed to better understand the global genomic epidemiology of E. coli isolates carrying mobilized colistin resistance (mcr) genes, providing information to assist in infection and prevention. Methods Escherichia coli genomes were downloaded from NCBI, and mcr was detected using BLASTP. Per software was used to extract information on hosts, resources, collection data, and countries of origin from GenBank. Sequence types (STs), prevalence of plasmids, antimicrobial resistance genes (ARG), and virulence factors (VF) in these genomes were analyzed. Statistical analyses were performed to assess the relationships between mcr, ARGs, plasmids, and STs. Results In total, 778 mcr-positive isolates were identified. Four mcr variants were detected, with mcr-1 (86.1%) being the most widespread, followed by mcr-9 (5.7%), mcr-5 (4.4%), and mcr-3 (3.0%). Multiple ARGs were identified, with bla CTX-M (53.3%), fosA (28.8%), qnr (26.1%), bla NDM (19.8%), and aac (6')-Ib-cr (14.5%) being the most common. Overall, 239 distinct STs were identified, of which ST10 (13.8%) was the most prevalent. A total of 113 different VFs were found, terC (99.9%) and gad (83.0%) were most frequently detected. Twenty types of plasmids were identified; IncFIB (64.1%), IncX (42.3%), and IncX (42.3%) were the most common replicons. IncI2 and IncX4 were frequently detected in mcr-1-positive isolates, whereas IncFII, IncI1-I, and IncHI2 were dominant plasmids in mcr-3, mcr-5, and mcr-9-positive isolates, respectively. A higher frequency of ARGs and VFs was observed among ST156 and ST131 isolates. Conclusion Our data indicated that more than half of the mcr-positive E. coli strains carried endemic ARGs and VFs. ST10 and ST156 isolates deserved further attention, given the rapid transmission of ST10 and the convergence of ARGs and VFs in ST156.
Collapse
Affiliation(s)
- Jiping Shi
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuchu Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,*Correspondence: Xiaoli Cao,
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,Han Shen,
| |
Collapse
|
49
|
Calero-Cáceres W, Rodríguez K, Medina A, Medina J, Ortuño-Gutiérrez N, Sunyoto T, Dias CAG, Bastidas-Caldes C, Ramírez MS, Harries AD. Genomic insights of mcr-1 harboring Escherichia coli by geographical region and a One-Health perspective. Front Microbiol 2023; 13:1032753. [PMID: 36726572 PMCID: PMC9884825 DOI: 10.3389/fmicb.2022.1032753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
The importance of the One Health concept in attempting to deal with the increasing levels of multidrug-resistant bacteria in both human and animal health is a challenge for the scientific community, policymakers, and the industry. The discovery of the plasmid-borne mobile colistin resistance (mcr) in 2015 poses a significant threat because of the ability of these plasmids to move between different bacterial species through horizontal gene transfer. In light of these findings, the World Health Organization (WHO) recommends that countries implement surveillance strategies to detect the presence of plasmid-mediated colistin-resistant microorganisms and take suitable measures to control and prevent their dissemination. Seven years later, ten different variants of the mcr gene (mcr-1 to mcr-10) have been detected worldwide in bacteria isolated from humans, animals, foods, the environment, and farms. However, the possible transmission mechanisms of the mcr gene among isolates from different geographical origins and sources are largely unknown. This article presents an analysis of whole-genome sequences of Escherichia coli that harbor mcr-1 gene from different origins (human, animal, food, or environment) and geographical location, to identify specific patterns related to virulence genes, plasmid content and antibiotic resistance genes, as well as their phylogeny and their distribution with their origin. In general, E. coli isolates that harbor mcr-1 showed a wide plethora of ARGs. Regarding the plasmid content, the highest concentration of plasmids was found in animal samples. In turn, Asia was the continent that led with the largest diversity and occurrence of these plasmids. Finally, about virulence genes, terC, gad, and traT represent the most frequent virulence genes detected. These findings highlight the relevance of analyzing the environmental settings as an integrative part of the surveillance programs to understand the origins and dissemination of antimicrobial resistance.
Collapse
Affiliation(s)
- William Calero-Cáceres
- UTA RAM One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador,Bacteriophage Research Association, Ambato, Ecuador,*Correspondence: William Calero-Cáceres,
| | | | - Anabell Medina
- UTA RAM One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Jennifer Medina
- UTA RAM One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | | | - Temmy Sunyoto
- MSFOCB Luxembourg Operational Research (LuxOR) Unit, Luxembourg, Luxembourg
| | - Cícero Armídio Gomes Dias
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Carlos Bastidas-Caldes
- One Health Research Group, Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas (FICA), Universidad de las Américas (UDLA), Quito, Ecuador
| | - Maria Soledad Ramírez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Anthony David Harries
- International Union Against Tuberculosis and Lung Disease, Paris, France,London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
50
|
Doijad SP, Gisch N, Frantz R, Kumbhar BV, Falgenhauer J, Imirzalioglu C, Falgenhauer L, Mischnik A, Rupp J, Behnke M, Buhl M, Eisenbeis S, Gastmeier P, Gölz H, Häcker GA, Käding N, Kern WV, Kola A, Kramme E, Peter S, Rohde AM, Seifert H, Tacconelli E, Vehreschild MJGT, Walker SV, Zweigner J, Schwudke D, Chakraborty T, Thoma N, Weber A, Vavra M, Schuster S, Peyerl-Hoffmann G, Hamprecht A, Proske S, Stelzer Y, Wille J, Lenke D, Bader B, Dinkelacker A, Hölzl F, Kunstle L, Chakraborty T. Resolving colistin resistance and heteroresistance in Enterobacter species. Nat Commun 2023; 14:140. [PMID: 36627272 PMCID: PMC9832134 DOI: 10.1038/s41467-022-35717-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Species within the Enterobacter cloacae complex (ECC) include globally important nosocomial pathogens. A three-year study of ECC in Germany identified Enterobacter xiangfangensis as the most common species (65.5%) detected, a result replicated by examining a global pool of 3246 isolates. Antibiotic resistance profiling revealed widespread resistance and heteroresistance to the antibiotic colistin and detected the mobile colistin resistance (mcr)-9 gene in 19.2% of all isolates. We show that resistance and heteroresistance properties depend on the chromosomal arnBCADTEF gene cassette whose products catalyze transfer of L-Ara4N to lipid A. Using comparative genomics, mutational analysis, and quantitative lipid A profiling we demonstrate that intrinsic lipid A modification levels are genospecies-dependent and governed by allelic variations in phoPQ and mgrB, that encode a two-component sensor-activator system and specific inhibitor peptide. By generating phoPQ chimeras and combining them with mgrB alleles, we show that interactions at the pH-sensing interface of the sensory histidine kinase phoQ dictate arnBCADTEF expression levels. To minimize therapeutic failures, we developed an assay that accurately detects colistin resistance levels for any ECC isolate.
Collapse
Affiliation(s)
- Swapnil Prakash Doijad
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Renate Frantz
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle, Mumbai, India
| | - Jane Falgenhauer
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Can Imirzalioglu
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Linda Falgenhauer
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany.,Institute of Hygiene and Environmental Medicine, Justus Liebig University, Gießen, Germany
| | - Alexander Mischnik
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Michael Behnke
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Michael Buhl
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology and Hygiene, Tübingen University, Tübingen, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, Nürnberg, Germany
| | - Simone Eisenbeis
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany
| | - Petra Gastmeier
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Hanna Gölz
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Georg Alexander Häcker
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Nadja Käding
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Winfried V Kern
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine and University Hospital and Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Axel Kola
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Evelyn Kramme
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Silke Peter
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology and Hygiene, Tübingen University, Tübingen, Germany
| | - Anna M Rohde
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evelina Tacconelli
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany
| | - Maria J G T Vehreschild
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Sarah V Walker
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janine Zweigner
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dominik Schwudke
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Site: Research Center Borstel, Borstel, Germany
| | | | - Trinad Chakraborty
- German Center for Infection Research (DZIF), Braunschweig, Germany. .,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|