1
|
Hummel G, Aagaard K. Arthropods to Eutherians: A Historical and Contemporary Comparison of Sparse Prenatal Microbial Communities Among Animalia Species. Am J Reprod Immunol 2024; 92:e13897. [PMID: 39140417 DOI: 10.1111/aji.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Since the advent of next-generation sequencing, investigators worldwide have sought to discern whether a functional and biologically or clinically relevant prenatal microbiome exists. One line of research has led to the hypothesis that microbial DNA detected in utero/in ovo or prior to birth/hatching is a result of contamination and does not belong to viable and functional microbes. Many of these preliminary evaluations have been conducted in humans, mice, and nonhuman primates due to sample and specimen availability. However, a comprehensive review of the literature across animal species suggests organisms that maintain an obligate relationship with microbes may act as better models for interrogating the selective pressures placed on vertical microbial transfer over traditional laboratory species. To date, studies in humans and viviparous laboratory species have failed to illustrate the clear presence and transfer of functional microbes in utero. Until a ground truth regarding the status and relevance of prenatal microbes can be ascertained, it is salient to conduct parallel investigations into the prevalence of a functional prenatal microbiome across the developmental lifespan of multiple organisms in the kingdom Animalia. This comprehensive understanding is necessary not only to determine the role of vertically transmitted microbes and their products in early human health but also to understand their full One Health impact. This review is among the first to compile such comprehensive primary conclusions from the original investigator's conclusions, and hence collectively illustrates that prenatal microbial transfer is supported by experimental evidence arising from over a long and rigorous scientific history encompassing a breadth of species from kingdom Animalia.
Collapse
Affiliation(s)
- Gwendolynn Hummel
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kjersti Aagaard
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
2
|
Dunbar A, Drigo B, Djordjevic SP, Donner E, Hoye BJ. Impacts of coprophagic foraging behaviour on the avian gut microbiome. Biol Rev Camb Philos Soc 2024; 99:582-597. [PMID: 38062990 DOI: 10.1111/brv.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.
Collapse
Affiliation(s)
- Alice Dunbar
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- UniSA STEM, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), University of South Australia, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
3
|
Bunker ME, Weiss SL. The reproductive microbiome and maternal transmission of microbiota via eggs in Sceloporus virgatus. FEMS Microbiol Ecol 2024; 100:fiae011. [PMID: 38308517 PMCID: PMC10873522 DOI: 10.1093/femsec/fiae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Maternal transmission of microbes occurs across the animal kingdom and is vital for offspring development and long-term health. The mechanisms of this transfer are most well-studied in humans and other mammals but are less well-understood in egg-laying animals, especially those with no parental care. Here, we investigate the transfer of maternal microbes in the oviparous phrynosomatid lizard, Sceloporus virgatus. We compared the microbiota of three maternal tissues-oviduct, cloaca, and intestine-to three offspring sample types: egg contents and eggshells on the day of oviposition, and hatchling intestinal tissue on the day of hatching. We found that maternal identity is an important factor in hatchling microbiome composition, indicating that maternal transmission is occurring. The maternal cloacal and oviductal communities contribute to offspring microbiota in all three sample types, with minimal microbes sourced from maternal intestines. This indicates that the maternal reproductive microbiome is more important for microbial inheritance than the gut microbiome, and the tissue-level variation of the adult S. virgatus microbiota must develop as the hatchling matures. Despite differences between adult and hatchling communities, offspring microbiota were primarily members of the Enterobacteriaceae and Yersiniaceae families (Phylum Proteobacteria), consistent with this and past studies of adult S. virgatus microbiomes.
Collapse
Affiliation(s)
- Marie E Bunker
- Department of Biology, University of Puget Sound, 1500 N. Warner Street, Tacoma, WA 98416, United States
| | - Stacey L Weiss
- Department of Biology, University of Puget Sound, 1500 N. Warner Street, Tacoma, WA 98416, United States
| |
Collapse
|
4
|
Ma H, Li Y, Han P, Zhang R, Yuan J, Sun Y, Li J, Chen J. Effects of Supplementing Drinking Water of Parental Pigeons with Enterococcus faecium and Bacillus subtilis on Antibody Levels and Microbiomes in Squabs. Animals (Basel) 2024; 14:178. [PMID: 38254347 PMCID: PMC10812638 DOI: 10.3390/ani14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Enterococcus faecium (E. faecium) and Bacillus subtilis (B. subtilis) are widely used as probiotics to improve performance in animal production, but there have been few reports of their impacts on pigeon milk. In this study, twenty-four pairs of parental pigeons were randomly divided into four groups, with six replicates, and each pair feeding three squabs. The control group drank normal water. The E. faecium group, B. subtilis group, and mixed group drank water supplemented with 3 × 106 CFU/mL E. faecium, 2 × 107 CFU/mL B. subtilis, and a mixture of these two probiotics, respectively. The experiment lasted 19 days. The results demonstrated that the IgA and IgG levels were significantly higher in the milk of Group D pigeons than in the other groups. At the phylum level, Fimicutes, Actinobacteria, and Bacteroidetes were the three main phyla identified. At the genus level, Lactobacillus, Bifidobacterium, Veillonella, and Enterococcus were the four main genera identified. In conclusion, drinking water supplemented with E. faecium and B. subtilis could improve immunoglobulin levels in pigeon milk, and this could increase the ability of squabs to resist disease. E. faecium and B. subtilis could be used as probiotics in the pigeon industry.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Pengmin Han
- Ningxia Xiaoming Agriculture and Animal Husbandry Limited Company, Yinchuan 750000, China;
| | - Ran Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| |
Collapse
|
5
|
Kpodo KR, Proszkowiec-Weglarz M. Physiological effects of in ovo delivery of bioactive substances in broiler chickens. Front Vet Sci 2023; 10:1124007. [PMID: 37008350 PMCID: PMC10060894 DOI: 10.3389/fvets.2023.1124007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The poultry industry has improved genetics, nutrition, and management practices, resulting in fast-growing chickens; however, disturbances during embryonic development may affect the entire production cycle and cause irreversible losses to broiler chicken producers. The most crucial time in the chicks' development appears to be the perinatal period, which encompasses the last few days of pre-hatch and the first few days of post-hatch. During this critical period, intestinal development occurs rapidly, and the chicks undergo a metabolic and physiological shift from the utilization of egg nutrients to exogenous feed. However, the nutrient reserve of the egg yolk may not be enough to sustain the late stage of embryonic development and provide energy for the hatching process. In addition, modern hatchery practices cause a delay in access to feed immediately post-hatch, and this can potentially affect the intestinal microbiome, health, development, and growth of the chickens. Development of the in ovo technology allowing for the delivery of bioactive substances into chicken embryos during their development represents a way to accommodate the perinatal period, late embryo development, and post-hatch growth. Many bioactive substances have been delivered through the in ovo technology, including carbohydrates, amino acids, hormones, prebiotics, probiotics and synbiotics, antibodies, immunostimulants, minerals, and microorganisms with a variety of physiological effects. In this review, we focused on the physiological effects of the in ovo delivery of these substances, including their effects on embryo development, gastrointestinal tract function and health, nutrient digestion, immune system development and function, bone development, overall growth performance, muscle development and meat quality, gastrointestinal tract microbiota development, heat stress response, pathogens exclusion, and birds metabolism, as well as transcriptome and proteome. We believe that this method is widely underestimated and underused by the poultry industry.
Collapse
|
6
|
Jin CL, He YA, Jiang SG, Wang XQ, Yan HC, Tan HZ, Gao CQ. Chemical Composition of Pigeon Crop Milk and Factors Affecting Its Production: A Review. Poult Sci 2023; 102:102681. [PMID: 37098298 PMCID: PMC10149254 DOI: 10.1016/j.psj.2023.102681] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Pigeons are important commercial poultry in addition to being ornamental birds. In 2021, more than 111 million pairs of breeding pigeons were kept in stock and 1.6 billion squabs were slaughtered for meat in China. However, in many countries, pigeons are not domestic birds; thus, it is necessary to elucidate the factors involved in their growth and feeding strategy due to their economic importance. Pigeons are altricial birds, so feedstuffs cannot be digested by squabs, which instead are fed a mediator named pigeon crop milk. During lactation, breeding pigeons (both female and male) ingest diets and generate crop milk to feed squabs. Thus, research on squab growth is more complex than that on chicken and other poultry. To date, research on the measurement of crop milk composition and estimation of the factors affecting its production has not ceased, and these results are worth reviewing to guide production. Moreover, some studies have focused on the formation mechanism of crop milk, reporting that the synthesis of crop milk is controlled by prolactin and insulin-activated pathways. Furthermore, the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) pathway, target of rapamycin (TOR) pathway and AMP-activated protein kinase (AMPK) pathway were also reported to be involved in crop milk synthesis. Therefore, this review focuses on the chemical composition of pigeon crop milk and factors affecting its production during lactation. This work explores novel mechanisms and provides a theoretical reference for improving production in the pigeon industry, including for racing, ornamental purposes, and production of meat products.
Collapse
|
7
|
Proszkowiec-Weglarz M, Miska KB, Ellestad LE, Schreier LL, Kahl S, Darwish N, Campos P, Shao J. Delayed access to feed early post-hatch affects the development and maturation of gastrointestinal tract microbiota in broiler chickens. BMC Microbiol 2022; 22:206. [PMID: 36002800 PMCID: PMC9404604 DOI: 10.1186/s12866-022-02619-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background The first two weeks of post-hatch (PH) growth in broilers (meat-type birds) are critical for gut development and microbiota colonization. In the current broiler production system, chicks may not receive feed and water for 24 to 72 h due to variations in hatching time and hatchery management. Post-hatch feed delay affects body weight, feed efficiency, mortality, and gut development. The goal of this study was to investigate changes in the microbiome in broiler chickens early PH and the effect of delayed access to feed on the microbiota. Results Chicks either received feed and water immediately after hatch or access to feed was delayed for 48 h to mimic commercial hatchery settings (treatment, TRT). Both groups were sampled (n = 6) at -48, 0, 4 h, and 1 (24 h), 2 (48 h), 3 (72 h), 4 (96 h), 6 (144 h), 8 (192 h), 10 (240 h), 12 (288 h) and 14 (336 h) days PH. Ileal (IL) and cecal (CE) epithelial scrapings (mucosal bacteria, M) and digesta (luminal bacteria, L) were collected for microbiota analysis. Microbiota was determined by sequencing the V3-V4 region of bacterial 16S rRNA and analyzed using QIIME2. The microbiota of early ileal and cecal samples were characterized by high abundance of unclassified bacteria. Among four bacterial populations (IL-L, IL-M, CE-L, CE-M), IL-M was the least affected by delayed access to feed early PH. Both alpha and beta diversities were affected by delayed access to feed PH in IL-L, CE-M and CE-L. However, the development effect was more pronounced. In all four bacterial populations, significant changes due to developmental effect (time relative to hatch) was observed in taxonomic composition, with transient changes of bacterial taxa during the first two weeks PH. Delayed access to feed has limited influence on bacterial composition with only a few genera and species affected in all four bacterial populations. Predicted function based on 16S rRNA was also affected by delayed access to feed PH with most changes in metabolic pathway richness observed in IL-L, CE-L and CE-M. Conclusions These results show transient changes in chicken microbiota biodiversity during the first two weeks PH and indicate that delayed access to feed affects microbiota development. Proper microbiota development could be an important factor in disease prevention and antibiotic use in broiler chickens. Moreover, significant differences in response to delayed access to feed PH between luminal and mucosal bacterial populations strongly suggests the need for separate analysis of these two populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02619-6.
Collapse
Affiliation(s)
- Monika Proszkowiec-Weglarz
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, 10300 Baltimore Avenue, B-200, Rm. 100B, BARC-East, Beltsville, MD, 20705, USA.
| | - Katarzyna B Miska
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, 10300 Baltimore Avenue, B-200, Rm. 100B, BARC-East, Beltsville, MD, 20705, USA
| | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Lori L Schreier
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, 10300 Baltimore Avenue, B-200, Rm. 100B, BARC-East, Beltsville, MD, 20705, USA
| | - Stanislaw Kahl
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, 10300 Baltimore Avenue, B-200, Rm. 100B, BARC-East, Beltsville, MD, 20705, USA
| | - Nadia Darwish
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, 10300 Baltimore Avenue, B-200, Rm. 100B, BARC-East, Beltsville, MD, 20705, USA.,United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Statistic Group, Beltsville, MD, 20705, USA
| | - Philip Campos
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, 10300 Baltimore Avenue, B-200, Rm. 100B, BARC-East, Beltsville, MD, 20705, USA.,United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Statistic Group, Beltsville, MD, 20705, USA
| | - Jonathan Shao
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Statistic Group, Beltsville, MD, 20705, USA
| |
Collapse
|
8
|
Carranco AS, Romo D, de Lourdes Torres M, Wilhelm K, Sommer S, Gillingham MAF. Egg microbiota is the starting point of hatchling gut microbiota in the endangered yellow-spotted Amazon river turtle. Mol Ecol 2022; 31:3917-3933. [PMID: 35621392 DOI: 10.1111/mec.16548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Establishment and development of gut microbiota during vertebrates' early life are likely to be important predictors of health and fitness. Host-parental and host-environment interactions are essential to these processes. In oviparous reptiles whose nests represent a source of the parent's microbial inocula, the relative role of host-selection and stochastic environmental factors during gut microbial assemblage remains unknown. We sampled eggs incubated in artificial nests as well as hatchlings and juveniles (up to 30 days old) of the yellow-spotted Amazon river turtle (Podocnemis unifilis) developing in tubs filled with river water. We examined the relative role of the internal egg microbiota and the abiotic environment on hatchling and juvenile turtle's cloacal microbiota assemblages during the first 30 days of development. A mean of 71% of ASVs in hatched eggs could be traced to the nest environmental microbiota and in turn a mean of 77% of hatchlings' cloacal ASVs were traced to hatched eggs. Between day 5 and 20 of juvenile turtle's development, the river water environment plays a key role in the establishment of the gut microbiota (accounting for a mean of 13%-34.6% of cloacal ASVs) and strongly influences shifts in microbial diversity and abundance. After day 20, shifts in gut microbiota composition were mainly driven by host-selection processes. Therefore, colonization by environmental microbiota is key in the initial stages of establishing the host's gut microbiota which is subsequently shaped by host-selection processes. Our study provides a novel quantitative understanding of the host-environment interactions during gut microbial assemblage of oviparous reptiles.
Collapse
Affiliation(s)
- Ana Sofia Carranco
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - David Romo
- Tiputini Biodiversity Station, Universidad San Francisco de Quito, Cumbaya-, Quito, Ecuador
| | - Maria de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito, Cumbaya-, Quito, Ecuador
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Mark A F Gillingham
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Biodiversity Research Institute (CSIC, Oviedo University, Principality of Asturias), Campus of Mieres, University of Oviedo, 33600, Mieres, Spain
| |
Collapse
|
9
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
10
|
MacLeod KJ, Kohl KD, Trevelline BK, Langkilde T. Context-dependent effects of glucocorticoids on the lizard gut microbiome. Mol Ecol 2021; 31:185-196. [PMID: 34661319 DOI: 10.1111/mec.16229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
The vertebrate gut microbiota (bacterial, archaeal and fungal communities of the gastrointestinal tract) can have profound effects on the physiological processes of their hosts. Although relatively stable, changes in microbiome structure and composition occur due to changes in the environment, including exposure to stressors and associated increases in glucocorticoid hormones. Although a growing number of studies have linked stressor exposure to microbiome changes, few studies have experimentally explored the specific influence of glucocorticoids on the microbiome in wild animals, or across ecologically important processes (e.g., reproductive stages). Here we tested the response of the gut microbiota of adult female Sceloporus undulatus across gestation to ecologically relevant elevations of a stress-relevant glucocorticoid hormone (CORT) in order to determine (i) how experimentally elevated CORT influenced microbiome characteristics, and (ii) whether this relationship was dependent on reproductive context (i.e., whether females were gravid or not, and, in those that were gravid, gestational stage). We show that the effects of CORT on gut microbiota are complex and depend on both gestational state and stage. CORT treatment altered microbial community membership and resulted in an increase in microbiome diversity in late-gestation females, and microbial community membership varied according to treatment. In nongravid females, CORT treatment decreased interindividual variation in microbial communities, but this effect was not observed in late-gestation females. Our results highlight the need for a more holistic understanding of the downstream physiological effects of glucocorticoids, as well as the importance of context (here, gestational state and stage) in interpreting stress effects in ecology.
Collapse
Affiliation(s)
- Kirsty J MacLeod
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Biology, Lund University, Lund, Sweden
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian K Trevelline
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
| | - Tracy Langkilde
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Velando A, Noguera JC, Aira M, Domínguez J. Gut microbiome and telomere length in gull hatchlings. Biol Lett 2021; 17:20210398. [PMID: 34637637 DOI: 10.1098/rsbl.2021.0398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In many animals, recent evidence indicates that the gut microbiome may be acquired during early development, with possible consequences on newborns' health. Thus, it has been hypothesized that a healthy microbiome protects telomeres and genomic integrity against cellular stress. However, the link between the early acquired microbiome and telomere dynamics has not hitherto been investigated. In birds, this link may also be potentially modulated by the transfer of maternal glucocorticoids, since these substances dysregulate microbiome composition during postnatal development. Here, we examined the effect of the interplay between the microbiome and stress hormones on the telomere length of yellow-legged gull hatchlings by using a field experiment in which we manipulated the corticosterone content in eggs. We found that the hatchling telomere length was related to microbiome composition, but this relationship was not affected by the corticosterone treatment. Hatchlings with a microbiome dominated by potential commensal bacteria (i.e. Catellicoccus and Cetobacterium) had larger telomeres, suggesting that an early establishment of the species-specific microbiome during development may have important consequences on offspring health and survival.
Collapse
Affiliation(s)
- Alberto Velando
- Grupo de Ecoloxía Animal (GEA), Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jose Carlos Noguera
- Grupo de Ecoloxía Animal (GEA), Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Manuel Aira
- Grupo de Ecoloxía Animal (GEA), Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
12
|
Ding J, Liao N, Zheng Y, Yang L, Zhou H, Xu K, Han C, Luo H, Qin C, Tang C, Wei L, Meng H. Corrigendum: The Composition and Function of Pigeon Milk Microbiota Transmitted From Parent Pigeons to Squabs. Front Microbiol 2021; 12:641828. [PMID: 33679678 PMCID: PMC7930902 DOI: 10.3389/fmicb.2021.641828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/02/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Liao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuming Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxiao Han
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huaixi Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Qin
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhong Tang
- Shanghai Xinrong Big Emperor Pigeon Breeding Professional Cooperation, Shanghai, China
| | - Longxing Wei
- Fengxian District Animal Disease Prevention and Control Center, Shanghai, China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Zou X, Liu G, Meng F, Hong L, Li Y, Lian Z, Yang Z, Luo C, Liu D. Exploring the Rumen and Cecum Microbial Community from Fetus to Adulthood in Goat. Animals (Basel) 2020; 10:ani10091639. [PMID: 32932976 PMCID: PMC7552217 DOI: 10.3390/ani10091639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The rumen and cecum are two important fermentation organs in ruminants. The acquisition and development of the neonatal microbiome, as well as the difference between these two organs, was important. We performed 16S rRNA gene sequencing to study the diversity, structure and composition of the goat microbial communities between the rumen and cecum from fetus to adulthood. The results revealed the microbial transmission routes from the mother to fetus, and also revealed the establishment and dynamic fluctuations of the gut microbiome from fetus to adulthood in goats. Abstract The present study aimed to investigate the colonization process of epithelial bacteria attached to the rumen and intestinal tract tissue during the development of goats after birth. However, this process from fetus to adulthood was very limited. In goats, the rumen and cecum are two important fermentation organs, and it is important to study the acquisition and development of the neonatal microbiome, as well as the difference between these two organs. To characterize the microbial establishment and dynamic changes in the rumen and cecum from fetus to adulthood, we performed 16S rRNA gene sequencing for 106 samples from 47 individuals of nine pregnant mother–fetus pairs and 16 kids from birth up to 6 months. The diversity, structure and composition of the microbial communities were distinct between the rumen and cecum after birth, while they were similar in the fetal period. The study showed a rapid loss and influx of microbes at birth, followed by slight selection after drinking colostrum, and then a strong selection after weaning, suggesting that the establishment and dynamic fluctuations of the gut microbiome undergoes three distinct phases of microbiome progression in life: a conserved phase (during late pregnancy in the fetus), a transitional phase (newborn until weaning), and a stable phase (from weaning to adulthood). The results supported the view that microbes exist in the fetus, and revealed the establishment and dynamic fluctuations of the gut microbiome from fetus to adulthood in goats.
Collapse
Affiliation(s)
- Xian Zou
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (X.Z.); (G.L.); (L.H.); (Y.L.); (Z.L.); (Z.Y.)
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences & State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China;
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (X.Z.); (G.L.); (L.H.); (Y.L.); (Z.L.); (Z.Y.)
| | - Fanming Meng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences & State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China;
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (X.Z.); (G.L.); (L.H.); (Y.L.); (Z.L.); (Z.Y.)
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (X.Z.); (G.L.); (L.H.); (Y.L.); (Z.L.); (Z.Y.)
| | - Zhiquan Lian
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (X.Z.); (G.L.); (L.H.); (Y.L.); (Z.L.); (Z.Y.)
| | - Zhenwei Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (X.Z.); (G.L.); (L.H.); (Y.L.); (Z.L.); (Z.Y.)
| | - Chenglong Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences & State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China;
- Correspondence: (C.L.); (D.L.); Tel.: +86-13427662693 (C.L.); +86-13640835778 (D.L.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (X.Z.); (G.L.); (L.H.); (Y.L.); (Z.L.); (Z.Y.)
- Correspondence: (C.L.); (D.L.); Tel.: +86-13427662693 (C.L.); +86-13640835778 (D.L.)
| |
Collapse
|
14
|
Ding J, Liao N, Zheng Y, Yang L, Zhou H, Xu K, Han C, Luo H, Qin C, Tang C, Wei L, Meng H. The Composition and Function of Pigeon Milk Microbiota Transmitted From Parent Pigeons to Squabs. Front Microbiol 2020; 11:1789. [PMID: 32849405 PMCID: PMC7417789 DOI: 10.3389/fmicb.2020.01789] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian neonates obtain antibodies, nutrients, and microbiota from breast milk that help them resist the complex growth environment. Similar to mammals' lactation behavior for their offspring, parent pigeons regurgitate pigeon milk (PM) from their crops to feed the squabs. Whether pigeon milk is as valuable as mammalian milk is not clear, especially in terms of microbiota. This study adopted 16S rRNA gene sequencing to investigate the microbial composition and function in pigeon milk. We found abundant microbiota in pigeon milk. The dominant genera in parent pigeons' milk were Lactobacillus, Enterococcus, Veillonella, and Bifidobacterium. An analysis of squab milk (SM) showed that Lactobacillus also accounted for a considerable proportion, followed by Bifidobacterium. Most of the squab milk microbial genera were also detected in parent pigeons. Microbial functional analysis showed that the squab milk microbes were more involved in the pathways of carbohydrate metabolism, amino acid metabolism, and energy metabolism. These findings indicated that microbiota play an important role in squabs and can be transmitted from parent pigeons to squabs by pigeon milk. The presence of plentiful probiotics in squabs also suggests that adding probiotics in artificial pigeon milk may promote the growth and development of squabs and improve the production performance of pigeons.
Collapse
Affiliation(s)
- Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Liao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuming Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxiao Han
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huaixi Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Qin
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhong Tang
- Shanghai Xinrong Big Emperor Pigeon Breeding Professional Cooperation, Shanghai, China
| | - Longxing Wei
- Fengxian District Animal Disease Prevention and Control Center, Shanghai, China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Campos-Cerda F, Bohannan BJM. The Nidobiome: A Framework for Understanding Microbiome Assembly in Neonates. Trends Ecol Evol 2020; 35:573-582. [PMID: 32360079 DOI: 10.1016/j.tree.2020.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
The importance of microbial associations to animals' development, physiology, and fitness is widely recognized. In most animals, these microbial associations must be developed anew with every generation, making microbiome assembly a critical ecological and evolutionary process. To fully understand neonate microbial colonization, we need to study the interacting effects of neonate, parents, nest, and external environment. We propose an integrative approach based on the concept of the 'nidobiome', a new unit of microbiome-host interactions, which brings together these key elements. We discuss the contribution of each element on microbial colonization at different stages of host development, and we provide a framework based on key developmental events to compare microbiome assembly across animal species.
Collapse
Affiliation(s)
- Felipe Campos-Cerda
- Institute of Ecology and Evolution, Biology Department, University of Oregon, Eugene, OR 97405, USA.
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, Biology Department, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|