1
|
Erven I, Abraham E, Hermanns T, Baumann U, Hofmann K. A widely distributed family of eukaryotic and bacterial deubiquitinases related to herpesviral large tegument proteins. Nat Commun 2022; 13:7643. [PMID: 36496440 PMCID: PMC9741609 DOI: 10.1038/s41467-022-35244-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Distinct families of eukaryotic deubiquitinases (DUBs) are regulators of ubiquitin signaling. Here, we report on the presence of an additional DUB class broadly distributed in eukaryotes and several bacteria. The only described members of this family are the large tegument proteins of herpesviruses, which are attached to the outside of the viral capsid. By using a bioinformatics screen, we have identified distant homologs of this VTD (Viral tegument-like DUB) family in vertebrate transposons, fungi, insects, nematodes, cnidaria, protists and bacteria. While some VTD activities resemble viral tegument DUBs in that they favor K48-linked ubiquitin chains, other members are highly specific for K6- or K63-linked ubiquitin chains. The crystal structures of K48- and K6-specific members reveal considerable differences in ubiquitin recognition. The VTD family likely evolved from non-DUB proteases and spread through transposons, many of which became 'domesticated', giving rise to the Drosophila male sterile (3)76Ca gene and several nematode genes with male-specific expression.
Collapse
Affiliation(s)
- Ilka Erven
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| | - Elena Abraham
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, D-50674 Cologne, Germany
| | - Thomas Hermanns
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| | - Ulrich Baumann
- grid.6190.e0000 0000 8580 3777Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, D-50674 Cologne, Germany
| | - Kay Hofmann
- grid.6190.e0000 0000 8580 3777Institute for Genetics, University of Cologne, Zülpicher Straße 47a, D-50674 Cologne, Germany
| |
Collapse
|
2
|
Comizzoli P, Power ML, Bornbusch SL, Muletz-Wolz CR. Interactions between reproductive biology and microbiomes in wild animal species. Anim Microbiome 2021; 3:87. [PMID: 34949226 PMCID: PMC8697499 DOI: 10.1186/s42523-021-00156-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
Many parts of the animal body harbor microbial communities, known as animal-associated microbiomes, that affect the regulation of physiological functions. Studies in human and animal models have demonstrated that the reproductive biology and such microbiomes also interact. However, this concept is poorly studied in wild animal species and little is known about the implications to fertility, parental/offspring health, and survival in natural habitats. The objective of this review is to (1) specify the interactions between animals' reproductive biology, including reproductive signaling, pregnancy, and offspring development, and their microbiomes, with an emphasis on wild species and (2) identify important research gaps as well as areas for further studies. While microbiomes present in the reproductive tract play the most direct role, other bodily microbiomes may also contribute to facilitating reproduction. In fish, amphibians, reptiles, birds, and mammals, endogenous processes related to the host physiology and behavior (visual and olfactory reproductive signals, copulation) can both influence and be influenced by the structure and function of microbial communities. In addition, exposures to maternal microbiomes in mammals (through vagina, skin, and milk) shape the offspring microbiomes, which, in turn, affects health later in life. Importantly, for all wild animal species, host-associated microbiomes are also influenced by environmental variations. There is still limited literature on wild animals compared to the large body of research on model species and humans. However, the few studies in wild species clearly highlight the necessity of increased research in rare and endangered animals to optimize conservation efforts in situ and ex situ. Thus, the link between microbiomes and reproduction is an emerging and critical component in wild animal conservation.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Michael L. Power
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Sally L. Bornbusch
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Carly R. Muletz-Wolz
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| |
Collapse
|
3
|
Dagleish MP, Flockhart AF, Baily JL, Hall AJ, Simpson TI, Longbottom D. Presence of DNA from Chlamydia-like organisms in the nasal cavities of grey seal pups (Halichoerus grypus) and three different substrates present in a breeding colony. BMC Vet Res 2021; 17:328. [PMID: 34645426 PMCID: PMC8515689 DOI: 10.1186/s12917-021-03032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Background Chlamydia-like organisms (CLO) have been found to be present in many environmental niches, including human sewage and agricultural run-off, as well as in a number of aquatic species worldwide. Therefore, monitoring their presence in sentinel wildlife species may be useful in assessing the wider health of marine food webs in response to habitat loss, pollution and disease. We used nasal swabs from live (n = 42) and dead (n = 50) pre-weaned grey seal pups and samples of differing natal substrates (n = 8) from an off-shore island devoid of livestock and permanent human habitation to determine if CLO DNA is present in these mammals and to identify possible sources. Results We recovered CLO DNA from 32/92 (34.7%) nasal swabs from both live (n = 17) and dead (n = 15) seal pups that clustered most closely with currently recognised species belonging to three chlamydial families: Parachlamydiaceae (n = 22), Rhabdochlamydiaceae (n = 6), and Simkaniaceae (n = 3). All DNA positive sediment samples (n = 7) clustered with the Rhabdochlamydiaceae. No difference was found in rates of recovery of CLO DNA in live versus dead pups suggesting the organisms are commensal but their potential as opportunistic secondary pathogens could not be determined. Conclusion This is the first report of CLO DNA being found in marine mammals. This identification warrants further investigation in other seal populations around the coast of the UK and in other areas of the world to determine if this finding is unique or more common than shown by this data. Further investigation would also be warranted to determine if they are present as purely commensal organisms or whether they could also be opportunistic pathogens in seals, as well as to investigate possible sources of origin, including whether they originated as a result of anthropogenic impacts, including human waste and agricultural run-off.
Collapse
Affiliation(s)
- Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Allen F Flockhart
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK.,Present address: School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, UK
| | - Johanna L Baily
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK.,Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK.,Present address: Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - T Ian Simpson
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, UK.,Present address: School of Informatics, University of Edinburgh, Crichton Street, Edinburgh, UK
| | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK.
| |
Collapse
|
4
|
Chowdhury UF, Saba AA, Sufi AS, Khan AM, Sharmin I, Sultana A, Islam MO. Subtractive proteomics approach to Unravel the druggable proteins of the emerging pathogen Waddlia chondrophila and drug repositioning on its MurB protein. Heliyon 2021; 7:e07320. [PMID: 34195427 PMCID: PMC8239728 DOI: 10.1016/j.heliyon.2021.e07320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 12/04/2022] Open
Abstract
Waddlia chondrophila is an emerging pathogen that has been implicated in numerous unpropitious pregnancy events in humans and ruminants. Taking into account its association with abortigenic events, possible modes of transmission, and future risk, immediate clinical measures are required to prevent widespread damage caused by this organism and hence this study. Here, a subtractive proteomics approach was employed to identify druggable proteins of W. chondrophila. Considering the essential genes, antibiotic resistance proteins, and virulence factors, 676 unique important proteins were initially identified for this bacterium. Afterward, NCBI BLASTp performed against human proteome identified 223 proteins that were further pushed into KEGG Automatic Annotation Server (KAAS) for automatic annotation. Using the information from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 14 Waddlia specific metabolic pathways were identified with respect to humans. Analyzing the data from KAAS and KEGG databases, forty-eight metabolic pathway-dependent, and seventy metabolic pathway independent proteins were identified. Standalone BLAST search against DrugBank FDA approved drug targets revealed eight proteins that are finally considered druggable proteins. Prediction of three-dimensional structures was done for the eight proteins through homology modeling and the Ramachandran plot model showed six models as a valid prediction. Finally, virtual screening against MurB protein was performed using FDA approved drugs to employ the drug repositioning strategy. Three drugs showed promising docking results that can be used for therapeutic purposes against W. chondrophila following the clinical validation of the study.
Collapse
Affiliation(s)
| | - Abdullah Al Saba
- Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Abu Sufian Sufi
- Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Akib Mahmud Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ishrat Sharmin
- Sarkari Karmachari Hospital, Fulbaria, Dhaka, Bangladesh
| | - Aziza Sultana
- Sarkari Karmachari Hospital, Fulbaria, Dhaka, Bangladesh
| | - Md Ohedul Islam
- Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| |
Collapse
|
5
|
Screening of Chlamydia trachomatis and Waddlia chondrophila Antibodies in Women with Tubal Factor Infertility. Microorganisms 2020; 8:microorganisms8060918. [PMID: 32560559 PMCID: PMC7355871 DOI: 10.3390/microorganisms8060918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
Waddlia chondrophila is an emerging intracellular pathogen belonging to the order of Chlamydiales, and was previously associated with adverse pregnancy outcomes, as well as tubal factor infertility (TFI). In this study, we investigate the link between both W. chondrophila and Chlamydia trachomatis IgG seropositivity and TFI. Antibodies against both bacteria were measured in 890 serum samples of women visiting a fertility clinic. After a hysterosalpingography and/or laparoscopy, they were classified as either TFI-negative (TFI−) or TFI-positive (TFI+). The total seroprevalence was 13.4% for C. trachomatis and 38.8% for W. chondrophila. C. trachomatis antibodies were present significantly more often in the TFI+ group than in the TFI− group, while for W. chondrophila no difference could be observed. In conclusion, our study confirms the association between C. trachomatis seropositivity and TFI, but no association was found between W. chondrophila seropositivity and TFI. The high percentage of W. chondrophila seropositivity in all women attending a fertility clinic does, however, demonstrate the need for further research on this Chlamydia-like bacterium and its possible role in infertility.
Collapse
|