1
|
Gross M, Dunthorn M, Mauvisseau Q, Stoeck T. Using digital PCR to predict ciliate abundance from ribosomal RNA gene copy numbers. Environ Microbiol 2024; 26:e16619. [PMID: 38649189 DOI: 10.1111/1462-2920.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Abstract
Ciliates play a key role in most ecosystems. Their abundance in natural samples is crucial for answering many ecological questions. Traditional methods of quantifying individual species, which rely on microscopy, are often labour-intensive, time-consuming and can be highly biassed. As a result, we investigated the potential of digital polymerase chain reaction (dPCR) for quantifying ciliates. A significant challenge in this process is the high variation in the copy number of the taxonomic marker gene (ribosomal RNA [rRNA]). We first quantified the rRNA gene copy numbers (GCN) of the model ciliate, Paramecium tetraurelia, during different stages of the cell cycle and growth phases. The per-cell rRNA GCN varied between approximately 11,000 and 130,000, averaging around 50,000 copies per cell. Despite these variations in per-cell rRNA GCN, we found a highly significant correlation between GCN and cell numbers. This is likely due to the coexistence of different cellular stages in an uncontrolled (environmental) ciliate population. Thanks to the high sensitivity of dPCR, we were able to detect the target gene in a sample that contained only a single cell. The dPCR approach presented here is a valuable addition to the molecular toolbox in protistan ecology. It may guide future studies in quantifying and monitoring the abundance of targeted (even rare) ciliates in natural samples.
Collapse
Affiliation(s)
- Megan Gross
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Thorsten Stoeck
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
2
|
Zhang Y, Li H, Wang Y, Nie M, Zhang K, Pan J, Zhang Y, Ye Z, Zufall RA, Lynch M, Long H. Mitogenomic architecture and evolution of the soil ciliates Colpoda. mSystems 2024; 9:e0116123. [PMID: 38259100 PMCID: PMC10878089 DOI: 10.1128/msystems.01161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Colpoda are cosmopolitan unicellular eukaryotes primarily inhabiting soil and benefiting plant growth, but they remain one of the least understood taxa in genetics and genomics within the realm of ciliated protozoa. Here, we investigate the architecture of de novo assembled mitogenomes of six Colpoda species, using long-read sequencing and involving 36 newly isolated natural strains in total. The mitogenome sizes span from 43 to 63 kbp and typically contain 28-33 protein-coding genes. They possess a linear structure with variable telomeres and central repeats, with one Colpoda elliotti strain isolated from Tibet harboring the longest telomeres among all studied ciliates. Phylogenomic analyses reveal that Colpoda species started to diverge more than 326 million years ago, eventually evolving into two distinct groups. Collinearity analyses also reveal significant genomic divergences and a lack of long collinear blocks. One of the most notable features is the exceptionally high level of gene rearrangements between mitochondrial genomes of different Colpoda species, dominated by gene loss events. Population-level mitogenomic analysis on natural strains also demonstrates high sequence divergence, regardless of geographic distance, but the gene order remains highly conserved within species, offering a new species identification criterion for Colpoda species. Furthermore, we identified underlying heteroplasmic sites in the majority of strains of three Colpoda species, albeit without a discernible recombination signal to account for this heteroplasmy. This comprehensive study systematically unveils the mitogenomic structure and evolution of these ancient and ecologically significant Colpoda ciliates, thus laying the groundwork for a deeper understanding of the evolution of unicellular eukaryotes.IMPORTANCEColpoda, one of the most widespread ciliated protozoa in soil, are poorly understood in regard to their genetics and evolution. Our research revealed extreme mitochondrial gene rearrangements dominated by gene loss events, potentially leading to the streamlining of Colpoda mitogenomes. Surprisingly, while interspecific rearrangements abound, our population-level mitogenomic study revealed a conserved gene order within species, offering a potential new identification criterion. Phylogenomic analysis traced their lineage over 326 million years, revealing two distinct groups. Substantial genomic divergence might be associated with the lack of extended collinear blocks and relaxed purifying selection. This study systematically reveals Colpoda ciliate mitogenome structures and evolution, providing insights into the survival and evolution of these vital soil microorganisms.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| | - Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Mu Nie
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Kexin Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| |
Collapse
|
3
|
Liu L, Jiang M, Zhou C, Li B, Song Y, Pan X. Further insights into the phylogeny of facultative parasitic ciliates associated with tetrahymenosis (Ciliophora, Oligohymenophorea) based on multigene data. Ecol Evol 2023; 13:e10504. [PMID: 37680958 PMCID: PMC10480068 DOI: 10.1002/ece3.10504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Tetrahymenosis, caused by about 10 Tetrahymena species, is an emerging problem inflicting a significant economic loss on the aquaculture industry worldwide. However, in the order Tetrahymenida, there are many unresolved evolutionary relationships among taxa. Here we report 21 new sequences, including SSU-rRNA, ITS1-5.8S-ITS2 rRNA and LSU-rRNA, genes of 10 facultative parasitic Tetrahymena associated with tetrahymenosis, and conduct phylogenetic analyses based on each individual gene and a three-gene concatenated dataset. The main findings are: (1) All the parasitic and facultative parasitic species cluster in borealis group. (2) With the addition of new sequences, Tetrahymena is still divided into three groups, namely the "borealis group", the "australis group," and the "paravorax group." (3) the cluster pattern of all the newly sequenced facultative parasitic Tetrahymena species shows that members of the "borealis" group may be more susceptible to parasitism. (4) phylogeny based on concatenated genes show that T. pyriformis, T. setosa, and T. leucophrys have close relationship.
Collapse
Affiliation(s)
- Lihui Liu
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Mingyue Jiang
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Chunyu Zhou
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Bailin Li
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Yumeng Song
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| | - Xuming Pan
- Key Laboratory of Biodiversity of Aquatic OrganismsHarbin Normal UniversityHarbinChina
| |
Collapse
|
4
|
Zhang T, Shao C, Zhang T, Song W, Vd’ačný P, Al-Farraj SA, Wang Y. Multi-Gene Phylogeny of the Ciliate Genus Trachelostyla (Ciliophora, Hypotrichia), With Integrative Description of Two Species, Trachelostyla multinucleata Spec. nov. and T. pediculiformis (Cohn, 1866). Front Microbiol 2022; 12:775570. [PMID: 35178037 PMCID: PMC8844511 DOI: 10.3389/fmicb.2021.775570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Many hypotrich genera, including Trachelostyla, are taxonomically challenging and in a need of integrative revision. Using morphological data, molecular phylogenetic analyses, and internal transcribed spacer 2 (ITS2) secondary structures, we attempt to cast more light on species relationships within the genus Trachelostyla. The present multifaceted approach reveals that (1) a large-sized species with numerous macronuclear nodules, isolated from sandy littoral sediments in southern China, is new to science and is endowed here with a name, T. multinucleata spec. nov.; (2) two other Chinese populations previously identified as T. pediculiformis represent undescribed species; and (3) multigene phylogeny is more robust than single-gene trees, recovering the monophyly of the genus Trachelostyla with high bootstrap frequency. Additionally, ITS2 secondary structures and the presence of compensatory base changes in helices A and B indicate the presence of four distinct taxa within the molecularly studied members of the genus Trachelostyla. Molecular data are more suitable for delimitation of Trachelostyla species than morphological characters as interspecific pairwise genetic distances of small subunit (18S) rDNA, ITS1-5.8S-ITS2, and large subunit (28S) rDNA sequences do not overlap, whereas ranges of multiple morphometric features might transcend species boundaries.
Collapse
Affiliation(s)
- Tengyue Zhang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Chen Shao
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Tengteng Zhang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Weibo Song
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peter Vd’ačný
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Saleh A. Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yurui Wang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
5
|
Ma M, Li Y, Maurer-Alcalá XX, Wang Y, Yan Y. Deciphering phylogenetic relationships in class Karyorelictea (Protista, Ciliophora) based on updated multi-gene information with establishment of a new order Wilbertomorphida n. ord. Mol Phylogenet Evol 2022; 169:107406. [PMID: 35031457 DOI: 10.1016/j.ympev.2022.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/07/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
Abstract
The class Karyorelictea, a unique assemblage of ciliates, is a key group in deciphering ciliate evolution history. However, the systematic relationships among members of this class remain poorly understood. Here we newly obtained eight small subunit (SSU) rDNA, 24 large subunit (LSU) rDNA, and 25 ITS1-5.8S-ITS2 sequences (covering 25 species, 10 genera and 4 out of 6 families) to analyze the phylogenetic relationships within Karyorelictea. Our results indicate that: (1) considering its unique morphology and early branching position in the SSU rDNA-based tree, the family Wilbertomorphidae represents a new taxon at order level, hence the new order Wilbertomorphida n. ord. is established; (2) all five families with available molecular information are monophyletic, as expected, and the orders Loxodida and Protostomatida show a closer relationship than with Protoheterotrichida; (3) in Trachelocercidae, the compound circumoral kineties is believed to be a plesiomorphic feature while the single circumoral kinety is synapomorphic; and (4) the freshwater genus Loxodes could be derived from the marine Remanella and both share most morphological features. Taken together, these muti-gene analyses provide further insights into the phylogeny of the diverse clades in Karyorelictea.
Collapse
Affiliation(s)
- Mingzhen Ma
- Laboratory of Protozoology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuqing Li
- Laboratory of Protozoology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xyrus X Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Yurui Wang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Ying Yan
- Laboratory of Protozoology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Milivojević T, Rahman SN, Raposo D, Siccha M, Kucera M, Morard R. High variability in SSU rDNA gene copy number among planktonic foraminifera revealed by single-cell qPCR. ISME COMMUNICATIONS 2021; 1:63. [PMID: 36750661 PMCID: PMC9723665 DOI: 10.1038/s43705-021-00067-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023]
Abstract
Metabarcoding has become the workhorse of community ecology. Sequencing a taxonomically informative DNA fragment from environmental samples gives fast access to community composition across taxonomic groups, but it relies on the assumption that the number of sequences for each taxon correlates with its abundance in the sampled community. However, gene copy number varies among and within taxa, and the extent of this variability must therefore be considered when interpreting community composition data derived from environmental sequencing. Here we measured with single-cell qPCR the SSU rDNA gene copy number of 139 specimens of five species of planktonic foraminifera. We found that the average gene copy number varied between of ~4000 to ~50,000 gene copies between species, and individuals of the same species can carry between ~300 to more than 350,000 gene copies. This variability cannot be explained by differences in cell size and considering all plausible sources of bias, we conclude that this variability likely reflects dynamic genomic processes acting during the life cycle. We used the observed variability to model its impact on metabarcoding and found that the application of a correcting factor at species level may correct the derived relative abundances, provided sufficiently large populations have been sampled.
Collapse
Affiliation(s)
- Tamara Milivojević
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shirin Nurshan Rahman
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Débora Raposo
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Raphaël Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
7
|
Li T, Pan X, Lu B, Miao M, Liu M. Taxonomy and molecular phylogeny of a new freshwater ciliate Frontonia apoacuminata sp. nov. (Protista, Ciliophora, Oligohymenophorea) from Qingdao, PR China. Int J Syst Evol Microbiol 2021; 71. [PMID: 34694984 DOI: 10.1099/ijsem.0.005071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The morphology and ciliature of a new freshwater ciliate, Frontonia apoacuminata sp. nov., isolated from an artificial pond in Qingdao, PR China, were investigated using live observation and silver staining methods. The main features separating F. apoacuminata sp. nov. from its congeners are as follows: a broad elliptical body that is slightly pointed at the posterior end, four ophryokineties, one or two spherical micronuclei of a 'compact' type, a dorsally positioned contractile vacuole, and peniculi 1-3 each with five kinetosome rows though the left-most two rows in peniculus 3 are extremely shortened (with only two or three kinetosomes each). Additionally, an improved diagnosis of F. acuminata is provided. Phylogenetic analyses based on the small subunit ribosomal RNA (SSU rRNA) gene show that F. apoacuminata sp. nov. clusters with F. atra, F. minuta, F. acuminata and F. terricola. These five species group with Disematostoma, Marituja and Stokesia rather than with other Frontonia species, causing polyphyly of the genus Frontonia.
Collapse
Affiliation(s)
- Tao Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.,College of Fisheries and Key Laboratory of Mariculture of the Education Ministry of China, Ocean University of China, Qingdao, PR China
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, PR China
| | - Borong Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.,College of Fisheries and Key Laboratory of Mariculture of the Education Ministry of China, Ocean University of China, Qingdao, PR China
| | - Miao Miao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingjian Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.,College of Fisheries and Key Laboratory of Mariculture of the Education Ministry of China, Ocean University of China, Qingdao, PR China
| |
Collapse
|
8
|
Taxonomy and Phylogeny of Three Species of Dysteria (Ciliophora, Phyllopharyngea) Including the Description of Dysteria ozakii nom. nov. Protist 2021; 172:125831. [PMID: 34592569 DOI: 10.1016/j.protis.2021.125831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
In the last two decades, cyrtophorian ciliates have been revealed to demonstrate a high species diversity. But this group remains difficult to study, mainly because of their low abundance and relatively few taxonomically informative morphological characters. As a contribution to the taxonomy of cyrtophorians, here we investigate three Dysteria species based on their live morphology, ciliary pattern, and molecular phylogeny. Dysteria ozakii nom. nov. can be recognized by its elongate body shape and four right kineties, including three frontoventral kineties. A neotype has to be fixed for the species as no type materials were deposited. The other two species, D. brasiliensis Faria et al., 1922 and D. compressa (Gourret & Roeser, 1886) Kahl, 1931, are redescribed and supplementary information for each is supplied. Phylogenetic analyses based on small-subunit (SSU) rRNA gene sequences support the validity of the species. In addition, four species of bacterial epibionts were observed on the surface of the three Dysteria spp. The identities of these bacterial species are discussed based on the newly obtained 16S rRNA gene sequences.
Collapse
|
9
|
Song W, Xu D, Chen X, Warren A, Shin MK, Song W, Li L. Overview of the Diversity, Phylogeny and Biogeography of Strombidiid Oligotrich Ciliates (Protista, Ciliophora), With a Brief Revision and a Key to the Known Genera. Front Microbiol 2021; 12:700940. [PMID: 34603227 PMCID: PMC8481829 DOI: 10.3389/fmicb.2021.700940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Strombidiids are common free-living ciliates that have colonized coastal and open oceanic waters across the world. In recent years, numerous new taxa and gene sequences of strombidiids have been reported, revealing a large diversity of both their morphologic and genetic features. Here, we compare the taxonomic characters of all genera in the family Strombidiidae, provide a key to their identification, and investigate their molecular phylogeny. In addition, we analyze their regional distribution based on faunal data accumulated in China and attempt to infer their global distribution based on SSU rRNA gene sequence data. The current work revises the systematics of strombidiids based on morphologic, phylogenetic, and biogeographic evidence and provides a genus-level review of marine strombidiids.
Collapse
Affiliation(s)
- Wen Song
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Mann Kyoon Shin
- Department of Biological Science, University of Ulsan, Ulsan, South Korea
| | - Weibo Song
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| |
Collapse
|
10
|
Wu T, Wang Z, Duan L, El-Serehy H, Al-Farraj SA, Warren A, Liu Y, Wang C, Lu B. The Morphology, Taxonomy, and Phylogenetic Analyses of Five Freshwater Colonial Peritrich Ciliates (Alveolata, Ciliophora), Including the Descriptions of Two New Species. Front Microbiol 2021; 12:718821. [PMID: 34484160 PMCID: PMC8415720 DOI: 10.3389/fmicb.2021.718821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The morphology and phylogeny of two new sessilid species, Zoothamnium weishanicum n. sp. and Epicarchesium sinense n. sp., two insufficiently known species, Zoothamnium arbusculaEhrenberg, 1831 and Zoothamnium hentscheliKahl, 1935, and a well-known species, Carchesium polypinum (Linnaeus, 1767) Ehrenberg, 1838, collected from freshwater habitats of China, were investigated. Zoothamnium weishanicum n. sp. is characterized by its inverted bell-shaped zooids, double-layered peristomial lip, alternately branched stalk, and two different-length rows in infundibular polykinety 3 (P3). Epicarchesium sinense n. sp. is recognized by its asymmetric-pyriform zooids, single-layered peristomial lip, conspicuous cortical blisters on the pellicle, dichotomously branched stalk, and P3 containing one short inner row and two long outer rows. Based on previous and newly obtained data of the three known species, improved diagnoses and redescriptions are provided including, for the first time, data on the infraciliature of Z. arbuscula and Z. hentscheli. In addition, we analyzed the phylogeny of each species based on SSU rDNA sequence data.
Collapse
Affiliation(s)
- Tong Wu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,College of Fisheries, Ocean University of China, Qingdao, China
| | - Zhe Wang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,College of Fisheries, Ocean University of China, Qingdao, China
| | - Lili Duan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hamed El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Yujie Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Chundi Wang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,College of Fisheries, Ocean University of China, Qingdao, China.,Marine College, Shandong University, Weihai, China
| | - Borong Lu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,College of Fisheries, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Wang R, Bai Y, Hu T, Xu D, Suzuki T, Hu X. Integrative taxonomy and molecular phylogeny of three poorly known tintinnine ciliates, with the establishment of a new genus (Protista; Ciliophora; Oligotrichea). BMC Ecol Evol 2021; 21:115. [PMID: 34187356 PMCID: PMC8243829 DOI: 10.1186/s12862-021-01831-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The taxonomic classification of the suborder Tintinnina Kofoid & Campbell, 1929, a species-rich group of planktonic ciliated protistans with a characteristic lorica, has long been ambiguous largely due to the lack of cytological and molecular data for most species. Tintinnopsis is the largest, most widespread, and most taxonomically complex genus within this group with about 170 species occurring in nearshore waters. Previous molecular phylogenetic studies have revealed that Tintinnopsis is polyphyletic. RESULTS Here we document the live morphology, infraciliature, gene sequences, and habitat characteristics of three poorly known tintinnine species, viz. Tintinnopsis karajacensis Brandt, 1896, Tintinnopsis gracilis Kofoid & Campbell, 1929, and Tintinnopsis tocantinensis Kofoid & Campbell, 1929, isolated from the coastal waters of China. Based on a unique cytological feature (i.e., an elongated ciliary tuft with densely arranged kinetids) in the former two species, Antetintinnopsis gen. nov. is erected with Antetintinnopsis hemispiralis (Yin, 1956) comb. nov. (original combination: Tintinnopsis hemispiralis Yin, 1956) designated as the type species. Moreover, A. karajacensis (Brandt, 1896) comb. nov. (original combination: Tintinnopsis karajacensis Brandt, 1896) and A. gracilis (Kofoid & Campbell, 1929) comb. nov. (original combination: Tintinnopsis gracilis Kofoid & Campbell, 1929) are placed in a highly supported clade that branches separately from Tintinnopsis clades in phylogenetic trees based on SSU rDNA and LSU rDNA sequence data, thus supporting the establishment of the new genus. One other species is assigned to Antetintinnopsis gen. nov., namely A. subacuta (Jörgensen, 1899) comb. nov. (original combination Tintinnopsis subacuta Jörgensen, 1899). CONCLUSIONS The findings of the phylogenetic analyses support the assertion that cytological characters are taxonomically informative for tintinnines. This study also contributes to the broadening of our understanding of the tintinnine biodiversity and evolution.
Collapse
Affiliation(s)
- Rui Wang
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Faculty of Fisheries, Nagasaki University, 1‑14 Bunkyo-machi, Nagasaki, 852‑8521, Japan
| | - Yang Bai
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Tao Hu
- Laboratory of Protozoology, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, South China Normal University, Guangzhou, 510631, China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Toshikazu Suzuki
- Faculty of Fisheries, Nagasaki University, 1‑14 Bunkyo-machi, Nagasaki, 852‑8521, Japan
| | - Xiaozhong Hu
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
12
|
New contribution to epigenetic studies: Isolation of micronuclei with high purity and DNA integrity in the model ciliated protist, Tetrahymena thermophila. Eur J Protistol 2021; 80:125804. [PMID: 34062315 DOI: 10.1016/j.ejop.2021.125804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 10/24/2022]
Abstract
The ciliated protist Tetrahymena thermophila is a well-known model organism with typical nuclear dimorphism containing a somatic macronucleus (MAC) and a germline micronucleus (MIC). The presence in the same cell compartment of two nuclei with distinctly different structural and functional properties provides an ideal model system to explore mechanisms of genome maintenance. Although methods for the isolation of MIC have been available for many years, cross-contamination and DNA degradation remain unresolved. Here, we describe a reliable and quick method to isolate MIC with high purity and DNA integrity in T. thermophila. Different factors are examined to optimize the MIC purification. The MAC contamination ratio in purified MIC is about 0.19% and DNA integrity of purified MIC is maintained. We also establish a more accurate method to detect the contamination rate of nuclei including microscopic observation and PCR detection. This study will facilitate further epigenetic research in Tetrahymena.
Collapse
|
13
|
Zhang T, Li C, Zhang X, Wang C, Roger AJ, Gao F. Characterization and Comparative Analyses of Mitochondrial Genomes in Single-Celled Eukaryotes to Shed Light on the Diversity and Evolution of Linear Molecular Architecture. Int J Mol Sci 2021; 22:ijms22052546. [PMID: 33802618 PMCID: PMC7961746 DOI: 10.3390/ijms22052546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Determination and comparisons of complete mitochondrial genomes (mitogenomes) are important to understand the origin and evolution of mitochondria. Mitogenomes of unicellular protists are particularly informative in this regard because they are gene-rich and display high structural diversity. Ciliates are a highly diverse assemblage of protists and their mitogenomes (linear structure with high A+T content in general) were amongst the first from protists to be characterized and have provided important insights into mitogenome evolution. Here, we report novel mitogenome sequences from three representatives (Strombidium sp., Strombidium cf. sulcatum, and Halteria grandinella) in two dominant ciliate lineages. Comparative and phylogenetic analyses of newly sequenced and previously published ciliate mitogenomes were performed and revealed a number of important insights. We found that the mitogenomes of these three species are linear molecules capped with telomeric repeats that differ greatly among known species. The genomes studied here are highly syntenic, but larger in size and more gene-rich than those of other groups. They also all share an AT-rich tandem repeat region which may serve as the replication origin and modulate initiation of bidirectional transcription. More generally we identified a split version of ccmf, a cytochrome c maturation-related gene that might be a derived character uniting taxa in the subclasses Hypotrichia and Euplotia. Finally, our mitogenome comparisons and phylogenetic analyses support to reclassify Halteria grandinella from the subclass Oligotrichia to the subclass Hypotrichia. These results add to the growing literature on the unique features of ciliate mitogenomes, shedding light on the diversity and evolution of their linear molecular architecture.
Collapse
Affiliation(s)
- Tengteng Zhang
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
- Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Chao Li
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
| | - Xue Zhang
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
| | - Chundi Wang
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
| | - Andrew J. Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity and College of Fisheries, Ocean University of China, Qingdao 266003, China; (T.Z.); (C.L.); (X.Z.); (C.W.)
- Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266033, China
- Correspondence:
| |
Collapse
|
14
|
Cell-division pattern and phylogenetic analyses of a new ciliate genus Parasincirra n. g. (Protista, Ciliophora, Hypotrichia), with a report of a new soil species, P. sinica n. sp. from northwest China. BMC Ecol Evol 2021; 21:21. [PMID: 33568067 PMCID: PMC7877024 DOI: 10.1186/s12862-020-01730-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/01/2020] [Indexed: 11/10/2022] Open
Abstract
Background Ciliated protists, a huge assemblage of unicellular eukaryotes, are extremely diverse and play important ecological roles in most habitats where there is sufficient moisture for their survivals. Even though there is a growing recognition that these organisms are associated with many ecological or environmental processes, their biodiversity is poorly understood and many biotopes (e.g. soils in desert areas of Asia) remain largely unknown. Here we document an undescribed form found in sludge soil in a halt-desert inland of China. Investigations of its morphology, morphogenesis and molecular phylogeny indicate that it represents a new genus and new species, Parasincirra sinica n. g., n. sp. Results The new, monotypic genus Parasincirra n. g. is defined by having three frontal cirri, an amphisiellid median cirral row about the same length as the adoral zone, one short frontoventral cirral row, cirrus III/2 and transverse cirri present, buccal and caudal cirri absent, one right and one left marginal row and three dorsal kineties. The main morphogenetic features of the new taxon are: (1) frontoventral-transverse cirral anlagen II to VI are formed in a primary mode; (2) the amphisiellid median cirral row is formed by anlagen V and VI, while the frontoventral row is generated from anlage IV; (3) cirral streaks IV to VI generate one transverse cirrus each; (4) frontoventral-transverse cirral anlage II generates one or two cirri, although the posterior one (when formed) will be absorbed in late stages, that is, no buccal cirrus is formed; (5) the posterior part of the parental adoral zone of membranelles is renewed; (6) dorsal morphogenesis follows a typical Gonostomum-pattern; and (7) the macronuclear nodules fuse to form a single mass. The investigation of its molecular phylogeny inferred from Bayesian inference and Maximum likelihood analyses based on small subunit ribosomal DNA (SSU rDNA) sequence data, failed to reveal its exact systematic position, although species of related genera are generally assigned to the family Amphisiellidae Jankowski, 1979. Morphological and morphogenetic differences between the new taxon and Uroleptoides Wenzel, 1953, Parabistichella Jiang et al., 2013, and other amphisiellids clearly support the validity of Parasincirra as a new genus. The monophyly of the family Amphisiellidae is rejected by the AU test in this study. Conclusions The critical character of the family Amphisiellidae, i.e., the amphisiellid median cirral row, might result from convergent evolution in different taxa. Amphisiellidae are not monophyletic.
Collapse
|
15
|
Lian C, Wang Y, Jiang J, Yuan Q, Al-Farraj SA, El-Serehy HA, Song W, Stoeck T, Shao C. Systematic positions and taxonomy of two new ciliates found in China: Euplotes tuffraui sp. nov. and E. shii sp. nov. (Alveolata, Ciliophora, Euplotida). SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2020.1865472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Chunyu Lian
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
- Institute of Evolution & Marine Biodiversity, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Yurui Wang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Jiamei Jiang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Qingxiang Yuan
- Institute of Evolution & Marine Biodiversity, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Saleh A. Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hamed A. El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Chen Shao
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| |
Collapse
|
16
|
Jiang L, Wang C, Zhuang W, Li S, Hu X. Taxonomy, phylogeny, and geographical distribution of the little-known Helicoprorodon multinucleatum Dragesco, 1960 (Ciliophora, Haptorida) and key to species within the genus. Eur J Protistol 2021; 78:125769. [PMID: 33549969 DOI: 10.1016/j.ejop.2021.125769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022]
Abstract
A little-known haptorid ciliate, Helicoprorodon multinucleatum Dragesco, 1960, was found in a sandy beach at Qingdao, China. Its morphology was studied based on microscopic observations of live and protargol-stained specimens and morphometrics, and the phylogeny was analyzed using SSU rRNA gene sequences. Helicoprorodon multinucleatum is characterized by the combination of the following features: (i) a very narrowly worm-like body with a size of about 300-1500 μm × 30-60 μm in vivo, and two circles of horn-like protuberances around the head; (ii) 50-160 spherical macronuclear nodules scattered throughout the body; (iii) rod-shaped, 10-50 μm long extrusomes gathered into several bunches, which are randomly distributed beneath pellicle; and (iv) 42-88 somatic kineties, including four oralized kineties and two dorsal brush rows. Phylogenetic analyses reveal that both the family Helicoprorodontidae and the genus Helicoprorodon might be monophyletic. In addition, we provide an illustrated key to the species and the geographical distribution of the genus Helicoprorodon.
Collapse
Affiliation(s)
- Limin Jiang
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Congcong Wang
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wenbao Zhuang
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Song Li
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaozhong Hu
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
17
|
Further insights into the phylogeny of peniculid ciliates (Ciliophora, Oligohymenophorea) based on multigene data. Mol Phylogenet Evol 2020; 154:107003. [PMID: 33137410 DOI: 10.1016/j.ympev.2020.107003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
Peniculids comprise a large order of ciliated protists in Class Oligohymenophorea having many unresolved evolutionary relationships. Herein, we report 27 new sequences, including 18S rRNA, ITS1-5.8S- ITS2 rRNA, 28S rRNA and the mitochondrial cox1 genes of eight peniculids. We conducted phylogenetic analyses based on each these markers and on a four-gene concatenated data set (18S rRNA, ITS1-5.8S- ITS2 rRNA, 28S rRNA, and cox1 gene). The main findings are: 1) subclass Peniculia and family Parameciidae are monophyletic, with genus Frontonia remaining non-monophyletic; 2) Urocentrids have traditionally been regarded as a family, multi-gene analyses support the rank of Urocentrida and consistently recovers this order as sister to Peniculida, and Urocentrida and Peniculida comprise subclass Peniculia in agreement with Lynn's (2008) classification; 3) discrepancies between multiple-gene phylogenies, and conflicts with morphologic data regarding genus Frontonia necessitate expansion and revision of species diagnoses and we propose consideration of Group III of Frontonia (including F. didieri, F. ocularis, F. anatolica, F. pusilla and F. elegans) as incertae sedis in Peniculida; 4) multi-gene analyses of Parameciidae support five previously established subgenera. Paramecium buetschlii is placed in subgenus Chloroparamecium, and P. chlorelligerum into subgenus Viridoparamecium.
Collapse
|
18
|
New contributions to the phylogeny of the ciliate class Heterotrichea (Protista, Ciliophora): analyses at family-genus level and new evolutionary hypotheses. SCIENCE CHINA-LIFE SCIENCES 2020; 64:606-620. [PMID: 33068287 DOI: 10.1007/s11427-020-1817-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/06/2020] [Indexed: 01/15/2023]
Abstract
Heterotrichous ciliates play an important role in aquatic ecosystem energy flow processes and many are model organisms for research in cytology, regenerative biology, and toxicology. In the present study, we combine both morphological and molecular data to infer phylogenetic relationships at family-genus level and propose new evolutionary hypotheses for the class Heterotrichea. The main results include: (1) 96 new ribosomal DNA sequences from 36 populations, representing eight families and 13 genera, including three poorly annotated genera, Folliculinopsis, Ampullofolliculina and Linostomella; (2) the earliest-branching families are Spirostomidae in single-gene trees and Peritromidae in the concatenated tree, but the family Peritromidae probably represents the basal lineage based on its possession of many "primitive" morphological characters; (3) some findings in molecular trees are not supported by morphological evidence, such as the family Blepharismidae is one of the most recent branches and the relationship between Fabreidae and Folliculinidae is very close; (4) the systematic positions of Condylostomatidae, Climacostomidae, and Gruberiidae remain uncertain based either on morphological or molecular data; and (5) the monophyly of each genus included in the present study is supported by the molecular phylogenetic trees, except for Blepharisma in the SSU rDNA tree and Folliculina in the ITS1-5.8S-ITS2 tree.
Collapse
|
19
|
Zhu C, Bass D, Wang Y, Shen Z, Song W, Yi Z. Environmental Parameters and Substrate Type Drive Microeukaryotic Community Structure During Short-Term Experimental Colonization in Subtropical Eutrophic Freshwaters. Front Microbiol 2020; 11:555795. [PMID: 33072015 PMCID: PMC7541896 DOI: 10.3389/fmicb.2020.555795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Microeukaryotes are key components of aquatic ecosystems and play crucial roles in aquatic food webs. However, influencing factors and potential assembly mechanisms for microeukaryotic community on biofilms are rarely studied. Here, those of microeukaryotic biofilms in subtropical eutrophic freshwaters were investigated for the first time based on 2,585 operational taxonomic units (OTUs) from 41 samples, across different environmental conditions and substrate types. Following conclusions were drawn: (1) Environmental parameters were more important than substrate types in structuring microeukaryotic community of biofilms in subtropical eutrophic freshwaters. (2) In the fluctuating river, there was a higher diversity of OTUs and less predictability of community composition than in the stable lake. Sessile species were more likely to be enriched on smooth surfaces of glass slides, while both free-swimming and attached organisms occurred within holes inside PFUs (polyurethane foam units). (3) Both species sorting and neutral process were mechanisms for assembly of microeukaryotic biofilms, but their importance varied depending on different habitats and substrates. (4) The effect of species sorting was slightly higher than the neutral process in river biofilms due to stronger environmental filtering. Species sorting was a stronger force structuring communities on glass slides than PFUs with more niche availability. Our study sheds light on assembly mechanisms for microeukaryotic community on different habitat and substrate types, showing that the resulting communities are determined by both sets of variables, in this case primarily habitat type. The balance of neutral process and species sorting differed between habitats, but the high alpha diversity of microeukaryotes in both led to similar sets of lifecycle traits being selected for in each case.
Collapse
Affiliation(s)
- Changyu Zhu
- Institute of Evolution and Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Yutao Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China.,Dongli Planting and Farming Industrial Co., Ltd., Lianzhou, China
| | - Zhuo Shen
- Institute of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Weibo Song
- Institute of Evolution and Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenzhen Yi
- Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
20
|
Zhang Q, Xu J, Warren A, Yang R, Shen Z, Yi Z. Assessing the utility of Hsp90 gene for inferring evolutionary relationships within the ciliate subclass Hypotricha (Protista, Ciliophora). BMC Evol Biol 2020; 20:86. [PMID: 32677880 PMCID: PMC7364784 DOI: 10.1186/s12862-020-01653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although phylogenomic analyses are increasingly used to reveal evolutionary relationships among ciliates, relatively few nuclear protein-coding gene markers have been tested for their suitability as candidates for inferring phylogenies within this group. In this study, we investigate the utility of the heat-shock protein 90 gene (Hsp90) as a marker for inferring phylogenetic relationships among hypotrich ciliates. RESULTS A total of 87 novel Hsp90 gene sequences of 10 hypotrich species were generated. Of these, 85 were distinct sequences. Phylogenetic analyses based on these data showed that: (1) the Hsp90 gene amino acid trees are comparable to the small subunit rDNA tree for recovering phylogenetic relationships at the rank of class, but lack sufficient phylogenetic signal for inferring evolutionary relationships at the genus level; (2) Hsp90 gene paralogs are recent and therefore unlikely to pose a significant problem for recovering hypotrich clades; (3) definitions of some hypotrich orders and families need to be revised as their monophylies are not supported by various gene markers; (4) The order Sporadotrichida is paraphyletic, but the monophyly of the "core" Urostylida is supported; (5) both the subfamily Oxytrichinae and the genus Urosoma seem to be non-monophyletic, but monophyly of Urosoma is not rejected by AU tests. CONCLUSIONS Our results for the first time demonstrate that the Hsp90 gene is comparable to SSU rDNA for recovering phylogenetic relationships at the rank of class, and its paralogs are unlikely to pose a significant problem for recovering hypotrich clades. This study shows the value of careful gene marker selection for phylogenomic analyses of ciliates.
Collapse
Affiliation(s)
- Qi Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Ran Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhuo Shen
- Institute of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China. .,Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|