1
|
Tang P, Ni Y, Li J, Lu Q, Liu C, Guo J. The Complete Mitochondrial Genome of Paeonia lactiflora Pall. (Saxifragales: Paeoniaceae): Evidence of Gene Transfer from Chloroplast to Mitochondrial Genome. Genes (Basel) 2024; 15:239. [PMID: 38397228 PMCID: PMC10888214 DOI: 10.3390/genes15020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate this matter, we sequenced and characterized the mitochondrial genome (mitogenome) of P. lactiflora. Similar to the chloroplast genome (cpgenome), the mitogenome of P. lactiflora extends across 181,688 base pairs (bp). Its unique quadripartite structure results from a pair of extensive inverted repeats, each measuring 25,680 bp in length. The annotated mitogenome includes 27 protein-coding genes, 37 tRNAs, 8 rRNAs, and two pseudogenes (rpl5, rpl16). Phylogenetic analysis was performed to identify phylogenetic trees consistent with Paeonia species phylogeny in the APG Ⅳ system. Moreover, a total of 12 MTPT events were identified and 32 RNA editing sites were detected during mitogenome analysis of P. lactiflora. Our research successfully compiled and annotated the mitogenome of P. lactiflora. The study provides valuable insights regarding the taxonomic classification and molecular evolution within the Paeoniaceae family.
Collapse
Affiliation(s)
- Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Yang Ni
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jingling Li
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Qianqi Lu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Wei F, Pan B, Diao J, Wang Y, Sheng Y, Gao S. The micronuclear histone H3 clipping in the unicellular eukaryote Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:584-594. [PMID: 37078088 PMCID: PMC10077241 DOI: 10.1007/s42995-022-00151-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 05/02/2023]
Abstract
Clipping of the histone H3 N-terminal tail has been implicated in multiple fundamental biological processes for a growing list of eukaryotes. H3 clipping, serving as an irreversible process to permanently remove some post-translational modifications (PTMs), may lead to noticeable changes in chromatin dynamics or gene expression. The eukaryotic model organism Tetrahymena thermophila is among the first few eukaryotes that exhibits H3 clipping activity, wherein the first six amino acids of H3 are cleaved off during vegetative growth. Clipping only occurs in the transcriptionally silent micronucleus of the binucleated T. thermophila, thus offering a unique opportunity to reveal the role of H3 clipping in epigenetic regulation. However, the physiological functions of the truncated H3 and its protease(s) for clipping remain elusive. Here, we review the major findings of H3 clipping in T. thermophila and highlight its association with histone modifications and cell cycle regulation. We also summarize the functions and mechanisms of H3 clipping in other eukaryotes, focusing on the high diversity in terms of protease families and cleavage sites. Finally, we predict several protease candidates in T. thermophila and provide insights for future studies. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00151-0.
Collapse
Affiliation(s)
- Fan Wei
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Bo Pan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinghan Diao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yuanyuan Wang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yalan Sheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
3
|
Wu T, Wang Z, Lu B, Lei J, Al‐Rasheid KA, Sheng Y. New contribution to the peritrichous genus
Ophrydium
(Protista, Ciliophora) with notes on the morphology, taxonomy and phylogeny of a well‐known species
Ophrydium crassicaule
Penard, 1922. J Eukaryot Microbiol 2022; 69:e12900. [DOI: 10.1111/jeu.12900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong Wu
- Guangdong Key Laboratory of Subtropical Biodiversity and Biomonitoring School of Life Sciences South China Normal University Guangzhou 510631 China
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao 266003 China
| | - Zhe Wang
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao 266003 China
| | - Borong Lu
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao 266003 China
| | - Jingtao Lei
- Weishan Fishery Development Service Center Jining 277600 China
| | | | - Yalan Sheng
- Guangdong Key Laboratory of Subtropical Biodiversity and Biomonitoring School of Life Sciences South China Normal University Guangzhou 510631 China
| |
Collapse
|
4
|
Fan Y, Jin Y, Ding M, Tang Y, Cheng J, Zhang K, Zhou M. The Complete Chloroplast Genome Sequences of Eight Fagopyrum Species: Insights Into Genome Evolution and Phylogenetic Relationships. FRONTIERS IN PLANT SCIENCE 2021; 12:799904. [PMID: 34975990 PMCID: PMC8715082 DOI: 10.3389/fpls.2021.799904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 05/09/2023]
Abstract
Buckwheat (Fagopyrum genus, Polygonaceae), is an annual or perennial, herbaceous or semi-shrub dicotyledonous plant. There are mainly three cultivated buckwheat species, common buckwheat (Fagopyrum esculentum) is widely cultivated in Asia, Europe, and America, while Tartary buckwheat (F. tataricum) and F. cymosum (also known as F. dibotrys) are mainly cultivated in China. The genus Fagopyrum is taxonomically confusing due to the complex phenotypes of different Fagopyrum species. In this study, the chloroplast (cp) genomes of three Fagopyrum species, F. longistylum, F. leptopodum, F. urophyllum, were sequenced, and five published cp genomes of Fagopyrum were retrieved for comparative analyses. We determined the sequence differentiation, repeated sequences of the cp genomes, and the phylogeny of Fagopyrum species. The eight cp genomes ranged, gene number, gene order, and GC content were presented. Most of variations of Fagopyrum species cp genomes existed in the LSC and SSC regions. Among eight Fagopyrum chloroplast genomes, six variable regions (ndhF-rpl32, trnS-trnG, trnC, trnE-trnT, psbD, and trnV) were detected as promising DNA barcodes. In addition, a total of 66 different SSR (simple sequence repeats) types were found in the eight Fagopyrum species, ranging from 8 to 16 bp. Interestingly, many SSRs showed significant differences especially in some photosystem genes, which provided valuable information for understanding the differences in light adaptation among different Fagopyrum species. Genus Fagopyrum has shown a typical branch that is distinguished from the Rumex, Rheum, and Reynoutria, which supports the unique taxonomic status in Fagopyrum among the Polygonaceae. In addition, phylogenetic analysis based on the cp genomes strongly supported the division of eight Fagopyrum species into two independent evolutionary directions, suggesting that the separation of cymosum group and urophyllum group may be earlier than the flower type differentiation in Fagopyrum plants. The results of the chloroplast-based phylogenetic tree were further supported by the matK and Internal Transcribed Spacer (ITS) sequences of 17 Fagopyrum species, which may help to further anchor the taxonomic status of other members in the urophyllum group in Fagopyrum. This study provides valuable information and high-quality cp genomes for identifying species and evolutionary analysis for future Fagopyrum research.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya’nan Jin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Inner Mongolia MINZU University, Tongliao, China
| | - Mengqi Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Tang
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Li C, Chen X, Zheng W, Doak TG, Fan G, Song W, Yan Y. Chromosome organization and gene expansion in the highly fragmented genome of the ciliate Strombidium stylifer. J Genet Genomics 2021; 48:908-916. [PMID: 34452852 DOI: 10.1016/j.jgg.2021.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/01/2023]
Abstract
Chromosomes are well-organized carriers of genetic information in eukaryotes and are usually quite long, carrying hundreds and thousands of genes. Intriguingly, a clade of single-celled ciliates, Spirotrichea, feature nanochromosomes-also called "gene-sized chromosomes". These chromosomes predominantly carry only one gene, flanked by short telomere sequences. However, the organization and copy number variation of the chromosomes in these highly fragmented genomes remain unexplored in many groups of Spirotrichea, including the marine Strombidium. Using deep genome sequencing, we assembled the macronuclear genome of Strombidium stylifer into more than 18,000 nanochromosomes (~2.4 Kb long on average). Our results show that S. stylifer occupies an intermediate position during the evolutionary history of Strombidium lineage and experienced significant expansions in several gene families related to guanyl ribonucleotide binding. Based on the nucleotide distribution bias analysis and conserved motifs search in non-genic regions, we found that the subtelomeric regions have a conserved adenine-thymine (AT)-rich sequence motif. We also found that the copy number of nanochromosomes lacks precise regulation. This work sheds light on the unique features of chromosome structure in eukaryotes with highly fragmented genomes and reveals that a rather specialized evolutionary strategy at the genomic level has resulted in great diversity within the ciliated lineages.
Collapse
Affiliation(s)
- Chao Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiao Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Weibo Zheng
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47405, USA
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
New contribution to epigenetic studies: Isolation of micronuclei with high purity and DNA integrity in the model ciliated protist, Tetrahymena thermophila. Eur J Protistol 2021; 80:125804. [PMID: 34062315 DOI: 10.1016/j.ejop.2021.125804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 10/24/2022]
Abstract
The ciliated protist Tetrahymena thermophila is a well-known model organism with typical nuclear dimorphism containing a somatic macronucleus (MAC) and a germline micronucleus (MIC). The presence in the same cell compartment of two nuclei with distinctly different structural and functional properties provides an ideal model system to explore mechanisms of genome maintenance. Although methods for the isolation of MIC have been available for many years, cross-contamination and DNA degradation remain unresolved. Here, we describe a reliable and quick method to isolate MIC with high purity and DNA integrity in T. thermophila. Different factors are examined to optimize the MIC purification. The MAC contamination ratio in purified MIC is about 0.19% and DNA integrity of purified MIC is maintained. We also establish a more accurate method to detect the contamination rate of nuclei including microscopic observation and PCR detection. This study will facilitate further epigenetic research in Tetrahymena.
Collapse
|