1
|
Cárdenas-Castro AP, Sost MM, Gutiérrez-Sarmiento W, Ruíz-Valdiviezo VM, Mateos-Briz R, Sáyago-Ayerdi SG, Venema K. Analyzing the gut microbiota and microbial-associated metabolites of tomato-based sauces. Food Chem 2024; 460:140664. [PMID: 39116774 DOI: 10.1016/j.foodchem.2024.140664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Red Cooked Sauce (RCS) and Red Raw Sauce (RRS) are a mixture of natural crops that have a promising content of bioactive compounds (BC). The aim was to determine the effect of the indigestible fraction (IF) during the colonic fermentation in RCS and RRS by studying the two-way relationship between gut microbiota composition and microbial metabolites produced from BC fermented in the TNO in vitro dynamic model of the human colon (TIM-2). Total BC in undigested and predigested RRS, 957 and 715 mg/100 g DW, respectively, was significantly higher (p < 0.05) than in the RCS, 571 and 406 mg/100 g DW, respectively. Catenibacterium and Holdemanella increased during RCS fermentation, while 13 genera showed a clear positive correlation with most microbial phenolic metabolites. Our findings suggest that the mechanisms, pathways, and enzymes involved in producing microbial metabolites exhibited uniqueness among bacterial taxa, even within shared genus/family classifications.
Collapse
Affiliation(s)
- Alicia Paulina Cárdenas-Castro
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico
| | - Mônica Maurer Sost
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands
| | - Wilbert Gutiérrez-Sarmiento
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla-Gutiérrez, Departamento de Ingeniería Química y Bioquímica, Laboratory of Molecular Biology, Carretera Panamericana km 1080, CP 29050, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla-Gutiérrez, Departamento de Ingeniería Química y Bioquímica, Laboratory of Molecular Biology, Carretera Panamericana km 1080, CP 29050, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Raquel Mateos-Briz
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis, 10, 28040, Madrid, Spain
| | - Sonia Guadalupe Sáyago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175 Tepic, Nayarit, Mexico.
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, Villafloraweg 1, 5928 SZ Venlo, the Netherlands.
| |
Collapse
|
2
|
Herfindal AM, Nilsen M, Aspholm TE, Schultz GIG, Valeur J, Rudi K, Thoresen M, Lundin KEA, Henriksen C, Bøhn SK. Effects of fructan and gluten on gut microbiota in individuals with self-reported non-celiac gluten/wheat sensitivity-a randomised controlled crossover trial. BMC Med 2024; 22:358. [PMID: 39227818 PMCID: PMC11373345 DOI: 10.1186/s12916-024-03562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Individuals with non-celiac gluten/wheat sensitivity (NCGWS) experience improvement in gastrointestinal symptoms following a gluten-free diet. Although previous results have indicated that fructo-oligosaccharides (FOS), a type of short-chain fructans, were more likely to induce symptoms than gluten in self-reported NCGWS patients, the underlying mechanisms are unresolved. METHODS Our main objective was therefore to investigate whether FOS-fructans and gluten affect the composition and diversity of the faecal microbiota (16S rRNA gene sequencing), faecal metabolites of microbial fermentation (short-chain fatty acids [SCFA]; gas chromatography with flame ionization detector), and a faecal biomarker of gut inflammation (neutrophil gelatinase-associated lipocalin, also known as lipocalin 2, NGAL/LCN2; ELISA). In the randomised double-blind placebo-controlled crossover study, 59 participants with self-reported NCGWS underwent three different 7-day diet challenges with gluten (5.7 g/day), FOS-fructans (2.1 g/day), and placebo separately (three periods, six challenge sequences). RESULTS The relative abundances of certain bacterial taxa were affected differently by the diet challenges. After the FOS-fructan challenge, Fusicatenibacter increased, while Eubacterium (E.) coprostanoligenes group, Anaerotruncus, and unknown Ruminococcaceae genera decreased. The gluten challenge was primarily characterized by increased abundance of Eubacterium xylanophilum group. However, no differences were found for bacterial diversity (α-diversity), overall bacterial community structure (β-diversity), faecal metabolites (SCFA), or NGAL/LCN2. Furthermore, gastrointestinal symptoms in response to FOS-fructans were generally not linked to substantial shifts in the gut bacterial community. However, the reduction in E. coprostanoligenes group following the FOS-fructan challenge was associated with increased gastrointestinal pain. Finally, correlation analysis revealed that changes in gastrointestinal symptoms following the FOS-fructan and gluten challenges were linked to varying bacterial abundances at baseline. CONCLUSIONS In conclusion, while FOS-fructans induced more gastrointestinal symptoms than gluten in the NCGWS patients, we did not find that substantial shifts in the composition nor function of the faecal microbiota could explain these differences in the current study. However, our results indicate that individual variations in baseline bacterial composition/function may influence the gastrointestinal symptom response to both FOS-fructans and gluten. Additionally, the change in E. coprostanoligenes group, which was associated with increased symptoms, implies that attention should be given to these bacteria in future trials investigating the impact of dietary treatments on gastrointestinal symptoms. TRIAL REGISTRATION Clinicaltrials.gov as NCT02464150.
Collapse
Affiliation(s)
- Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Morten Nilsen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Trude E Aspholm
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | | | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway
| | - Magne Thoresen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut E A Lundin
- Disease Research Centre, Norwegian Coeliac, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Siv K Bøhn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
3
|
Spigaglia P. Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens 2024; 13:646. [PMID: 39204246 PMCID: PMC11357127 DOI: 10.3390/pathogens13080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea (AAD) in hospitals in the developed world. Both infected patients and asymptomatic colonized individuals represent important transmission sources of C. difficile. C. difficile infection (CDI) shows a large range of symptoms, from mild diarrhea to severe manifestations such as pseudomembranous colitis. Epidemiological changes in CDIs have been observed in the last two decades, with the emergence of highly virulent types and more numerous and severe CDI cases in the community. C. difficile interacts with the gut microbiota throughout its entire life cycle, and the C. difficile's role as colonizer or invader largely depends on alterations in the gut microbiota, which C. difficile itself can promote and maintain. The restoration of the gut microbiota to a healthy state is considered potentially effective for the prevention and treatment of CDI. Besides a fecal microbiota transplantation (FMT), many other approaches to re-establishing intestinal eubiosis are currently under investigation. This review aims to explore current data on C. difficile and gut microbiota changes in colonized individuals and infected patients with a consideration of the recent emergence of highly virulent C. difficile types, with an overview of the microbial interventions used to restore the human gut microbiota.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
4
|
van Rossen TM, van Beurden YH, Bogaards JA, Budding AE, Mulder CJJ, Vandenbroucke-Grauls CMJE. Fecal microbiota composition is a better predictor of recurrent Clostridioides difficile infection than clinical factors in a prospective, multicentre cohort study. BMC Infect Dis 2024; 24:687. [PMID: 38987677 PMCID: PMC11238444 DOI: 10.1186/s12879-024-09506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Clostridioides difficile infection (CDI) is the most common cause of antibiotic-associated diarrhoea. Fidaxomicin and fecal microbiota transplantation (FMT) are effective, but expensive therapies to treat recurrent CDI (reCDI). Our objective was to develop a prediction model for reCDI based on the gut microbiota composition and clinical characteristics, to identify patients who could benefit from early treatment with fidaxomicin or FMT. METHODS Multicentre, prospective, observational study in adult patients diagnosed with a primary episode of CDI. Fecal samples and clinical data were collected prior to, and after 5 days of CDI treatment. Follow-up duration was 8 weeks. Microbiota composition was analysed by IS-pro, a bacterial profiling technique based on phylum- and species-specific differences in the 16-23 S interspace regions of ribosomal DNA. Bayesian additive regression trees (BART) and adaptive group-regularized logistic ridge regression (AGRR) were used to construct prediction models for reCDI. RESULTS 209 patients were included, of which 25% developed reCDI. Variables related to microbiota composition provided better prediction of reCDI and were preferentially selected over clinical factors in joint prediction models. Bacteroidetes abundance and diversity after start of CDI treatment, and the increase in Proteobacteria diversity relative to baseline, were the most robust predictors of reCDI. The sensitivity and specificity of a BART model including these factors were 95% and 78%, but these dropped to 67% and 62% in out-of-sample prediction. CONCLUSION Early microbiota response to CDI treatment is a better predictor of reCDI than clinical prognostic factors, but not yet sufficient enough to predict reCDI in daily practice.
Collapse
Affiliation(s)
- Tessel M van Rossen
- Department of Medical Microbiology & Infection Control, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.
- Department of Gastroenterology & Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands.
| | - Yvette H van Beurden
- Department of Gastroenterology & Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes A Bogaards
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam, The Netherlands
| | | | - Chris J J Mulder
- Department of Gastroenterology & Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands
| | - Christina M J E Vandenbroucke-Grauls
- Department of Medical Microbiology & Infection Control, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Zhou Y, Guo L, Xiao T, Chen Y, Lv T, Wang Y, Zhang S, Cai H, Chi X, Kong X, Zhou K, Shen P, Xiao Y. Characterization and dynamics of intestinal microbiota in patients with Clostridioides difficile colonization and infection. Microbes Infect 2024:105373. [PMID: 38857786 DOI: 10.1016/j.micinf.2024.105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/17/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
Gut microbiota dysbiosis increases the susceptibility to Clostridioides difficile infection (CDI). In this study, we monitored C. difficile colonization (CDC) patients from no CDC status (CDN) to CDC status (CDCp) and CDI patients from asymptomatic status before CDI (PRECDI), CDI status (ONCDI), to asymptomatic status after CDI (POSTCDI). Based on metagenomic sequencing, we aimed to investigate the interaction pattern between gut microbiota and C. difficile. There was no significant difference of microbiota diversity between CDN and CDCp. In CDCp, Bacteroidetes and short-chain fatty acid (SCFA)-producing bacteria increased, with a positive correlation between SCFA-producing bacteria and C. difficile colonization. Compared with PRECDI, ONCDI and POSTCDI showed a significant decrease in microbiota diversity, particularly in Bacteroidetes and SCFA-producing bacteria, with a positive correlation between opportunistic pathogen and C. difficile. Fatty acid metabolism, and amino acid biosynthesis were enriched in CDN, CDCp, and PRECDI, while bile secretion was enriched in ONCDI and POSTCDI. Microbiota and metabolic pathways interaction networks in CDN and CDCp were more complex, particularly pathways in fatty acid and bile acid metabolism. Increasing of Bacteroidetes and SCFA-producing bacteria, affecting amino acid and fatty acid metabolism, is associated with colonization resistance to C. difficile and inhibiting the development of CDI.
Collapse
Affiliation(s)
- Yanzi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Rheumatology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310003, China; Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, and Second Clinical Medical College, Jinan University, Shenzhen 518000, China
| | - Lihua Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingting Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tao Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongliu Cai
- Department of Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaohui Chi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyang Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, and Second Clinical Medical College, Jinan University, Shenzhen 518000, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250022, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China.
| |
Collapse
|
6
|
Ke S, Villafuerte Gálvez JA, Sun Z, Cao Y, Pollock NR, Chen X, Kelly CP, Liu YY. Rational Design of Live Biotherapeutic Products for the Prevention of Clostridioides difficile Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591969. [PMID: 38746249 PMCID: PMC11092666 DOI: 10.1101/2024.04.30.591969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clostridioides difficile infection (CDI) is one of the leading causes of healthcare- and antibiotic-associated diarrhea. While fecal microbiota transplantation (FMT) has emerged as a promising therapy for recurrent CDI, its exact mechanisms of action and long-term safety are not fully understood. Defined consortia of clonal bacterial isolates, known as live biotherapeutic products (LBPs), have been proposed as an alternative therapeutic option. However, the rational design of LBPs remains challenging. Here, we employ a computational pipeline and three independent metagenomic datasets to systematically identify microbial strains that have the potential to inhibit CDI. We first constructed the CDI-related microbial genome catalog, comprising 3,741 non-redundant metagenome-assembled genomes (nrMAGs) at the strain level. We then identified multiple potential protective nrMAGs that can be candidates for the design of microbial consortia targeting CDI, including strains from Dorea formicigenerans, Oscillibacter welbionis, and Faecalibacterium prausnitzii. Importantly, some of these potential protective nrMAGs were found to play an important role in the success of FMT, and the majority of the top protective nrMAGs can be validated by various previously reported findings. Our results demonstrate a computational framework for the rational selection of microbial strains targeting CDI, paving the way for the computational design of microbial consortia against other enteric infections.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Javier A Villafuerte Gálvez
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Zheng Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yangchun Cao
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Nira R Pollock
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Ciarán P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
7
|
van Prehn J, Crobach MJT, Baktash A, Duszenko N, Kuijper EJ. Diagnostic Guidance for C. difficile Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:33-56. [PMID: 38175470 DOI: 10.1007/978-3-031-42108-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Diagnosis of Clostridioides difficile infection (CDI) can be challenging. First of all, there has been debate on which of the two reference assays, cell cytotoxicity neutralization assay (CCNA) or toxigenic culture (TC), should be considered the gold standard for CDI detection. Although the CCNA suffers most from suboptimal storage conditions and subsequent toxin degradation, TC is reported to falsely increase CDI detection rates as it cannot differentiate CDI patients from patients asymptomatically colonised by toxigenic C. difficile. Several rapid assays are available for CDI detection and fall into three broad categories: (1) enzyme immunoassays for glutamate dehydrogenase, (2) enzyme immunoassays or single-molecule array assays for toxins A/B and (3) nucleic acid amplification tests detecting toxin genes. All three categories have their own limitations, being suboptimal specificity and/or sensitivity or the inability to discern colonised patients from CDI patients. In light of these limitations, multi-step algorithmic testing has been advocated by international guidelines (IDSA/SHEA and ESCMID) in order to optimize diagnostic accuracy. As a result, a survey performed in 2018-2019 in Europe revealed that most of all hospital sites reported using more than one test to diagnose CDI. CDI incidence rates are also influenced by sample selection criteria, as several studies have shown that if not all unformed stool samples are tested for CDI, many cases may be missed due to an absence of clinical suspicion. Since methods for diagnosing CDI remain imperfect, there has been a growing interest in alternative testing strategies like faecal microbiota biomarkers, immune modulating interleukins, cytokines and imaging methods. At the moment, these alternative methods might play an adjunctive role, but they are not suitable to replace conventional CDI testing strategies.
Collapse
Affiliation(s)
- Joffrey van Prehn
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands.
- ESCMID Study Group for C. difficile (ESGCD) and Study Group for Host and Microbiota Interaction (ESGHAMI), Basel, Switzerland.
| | - Monique J T Crobach
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Amoe Baktash
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Nikolas Duszenko
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Centre for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, The Netherlands
- ESCMID Study Group for C. difficile (ESGCD) and Study Group for Host and Microbiota Interaction (ESGHAMI), Basel, Switzerland
| |
Collapse
|
8
|
Henderickx JG, Crobach MJ, Terveer EM, Smits WK, Kuijper EJ, Zwittink RD. Fungal and bacterial gut microbiota differ between Clostridioides difficile colonization and infection. MICROBIOME RESEARCH REPORTS 2023; 3:8. [PMID: 38455084 PMCID: PMC10917615 DOI: 10.20517/mrr.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 03/09/2024]
Abstract
Aim: The bacterial microbiota is well-recognized for its role in Clostridioides difficile colonization and infection, while fungi and yeasts remain understudied. The aim of this study was to analyze the predictive value of the mycobiota and its interactions with the bacterial microbiota in light of C. difficile colonization and infection. Methods: The mycobiota was profiled by ITS2 sequencing of fecal DNA from C. difficile infection (CDI) patients (n = 29), asymptomatically C. difficile colonization (CDC) patients (n = 38), and hospitalized controls with C. difficile negative stool culture (controls; n = 38). Previously published 16S rRNA gene sequencing data of the same cohort were used additionally for machine learning and fungal-bacterial network analysis. Results: CDI patients were characterized by a significantly higher abundance of Candida spp. (MD 0.270 ± 0.089, P = 0.002) and Candida albicans (MD 0.165 ± 0.082, P = 0.023) compared to controls. Additionally, they were deprived of Aspergillus spp. (MD -0.067 ± 0.026, P = 0.000) and Penicillium spp. (MD -0.118 ± 0.043, P = 0.000) compared to CDC patients. Network analysis revealed a positive association between several fungi and bacteria in CDI and CDC, although the analysis did not reveal a direct association between Clostridioides spp. and fungi. Furthermore, the microbiota machine learning model outperformed the models based on the mycobiota and the joint microbiota-mycobiota model. The microbiota classifier successfully distinguished CDI from CDC [Area Under the Receiver Operating Characteristic (AUROC) = 0.884] and CDI from controls (AUROC = 0.905). Blautia and Bifidobacterium were marker genera associated with CDC patients and controls. Conclusion: The gut mycobiota differs between CDI, CDC, and controls and may affect Clostridioides spp. through indirect interactions. The mycobiota data alone could not successfully discriminate CDC from controls or CDI patients and did not have additional predictive value to the bacterial microbiota data. The identification of bacterial marker genera associated with CDC and controls warrants further investigation.
Collapse
Affiliation(s)
- Jannie G.E. Henderickx
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Monique J.T. Crobach
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Elisabeth M. Terveer
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Ed J. Kuijper
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Romy D. Zwittink
- Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| |
Collapse
|
9
|
Bosnjak M, Karpe AV, Van TTH, Kotsanas D, Jenkin GA, Costello SP, Johanesen P, Moore RJ, Beale DJ, Srikhanta YN, Palombo EA, Larcombe S, Lyras D. Multi-omics analysis of hospital-acquired diarrhoeal patients reveals biomarkers of enterococcal proliferation and Clostridioides difficile infection. Nat Commun 2023; 14:7737. [PMID: 38007555 PMCID: PMC10676382 DOI: 10.1038/s41467-023-43671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023] Open
Abstract
Hospital-acquired diarrhoea (HAD) is common, and often associated with gut microbiota and metabolome dysbiosis following antibiotic administration. Clostridioides difficile is the most significant antibiotic-associated diarrhoeal (AAD) pathogen, but less is known about the microbiota and metabolome associated with AAD and C. difficile infection (CDI) with contrasting antibiotic treatment. We characterised faecal microbiota and metabolome for 169 HAD patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and gain insights into metabolic strategies C. difficile might use for gut colonisation. The specimen microbial community was analysed using 16 S rRNA gene amplicon sequencing, coupled with untargeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS), and short-chain fatty acid (SCFA) profiling using GC-MS. AAD and CDI patients were associated with a spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-antibiotic treatment. Notably, extended antibiotic treatment was associated with enterococcal proliferation (mostly vancomycin-resistant Enterococcus faecium) coupled with putative biomarkers of enterococcal tyrosine decarboxylation. We also uncovered unrecognised metabolome dynamics associated with concomitant enterococcal proliferation and CDI, including biomarkers of Stickland fermentation and amino acid competition that could distinguish CDI from non-CDI patients. Here we show, candidate metabolic biomarkers for diagnostic development with possible implications for CDI and vancomycin-resistant enterococci (VRE) treatment.
Collapse
Affiliation(s)
- Marijana Bosnjak
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Avinash V Karpe
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Despina Kotsanas
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Grant A Jenkin
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Samuel P Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Priscilla Johanesen
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah Larcombe
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
10
|
Nagarakanti S, Orenstein R. Treating Clostridioides difficile: Could Microbiota-based Live Biotherapeutic Products Provide the Answer? Infect Drug Resist 2023; 16:3137-3143. [PMID: 37235073 PMCID: PMC10208241 DOI: 10.2147/idr.s400570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a pressing health care issue due to the limited effectiveness of current treatments and high recurrence rates. Current available antibiotic options for CDI disrupt the fecal microbiome which predisposes recurrent CDI. Fecal microbiota transplantation (FMT) has improved the outcomes of recurrent CDI, but concerns surrounding the safety and standardization of the product persist. Microbiota-based live biotherapeutic products (LBPs), are emerging as potential alternatives to FMT for CDI treatment. This review explores the potential of LBPs as safe and effective therapy for CDI. While preclinical and early clinical studies have shown promising results, further research is necessary to determine the optimal composition and dosage of LBPs and to ensure their safety and efficacy in clinical practice. Overall, LBPs hold great promise as a novel therapy for CDI and warrant further investigation in other conditions related to disruption of the colonic microbiota.
Collapse
Affiliation(s)
| | - Robert Orenstein
- Division of Infectious Diseases, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
11
|
Lu Y, Li Z, Peng X. Regulatory effects of oral microbe on intestinal microbiota and the illness. Front Cell Infect Microbiol 2023; 13:1093967. [PMID: 36816583 PMCID: PMC9928999 DOI: 10.3389/fcimb.2023.1093967] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past decade, the association between oral health, intestinal microbiota, and systemic diseases has been further validated. Some oral microbial species have been isolated from pathological intestine mucosa or feces and identified as biomarkers for intestinal diseases. A small proportion of oral microbiome passes through or colonizes the lower gastrointestinal tract, even in healthy individuals. Opportunistic pathogens from the oral cavity may expand and participate in the occurrence and progression of intestinal diseases when the anatomical barrier is disrupted. These disruptors interact with the intestinal microbiota, disturbing indigenous microorganisms, and mucosal barriers through direct colonization, blood circulation, or derived metabolite pathways. While interacting with the host's immune system, oral-derived pathogens stimulate inflammation responses and guide the transition of the intestinal microenvironment from a healthy state to a pre-disease state. Therefore, the oral-gut microbiome axis sheds light on new clinical therapy options, and gastrointestinal tract ecology balance necessitates simultaneous consideration of both oral and gut microbiomes. This review summarizes possible routes of oral microbes entering the intestine and the effects of certain oral bacteria on intestinal microbiota and the host's immune responses.
Collapse
|
12
|
Vázquez-Cuesta S, Villar L, García NL, Fernández AI, Olmedo M, Alcalá L, Marín M, Muñoz P, Bouza E, Reigadas E. Characterization of the gut microbiome of patients with Clostridioides difficile infection, patients with non- C. difficile diarrhea, and C. difficile-colonized patients. Front Cell Infect Microbiol 2023; 13:1130701. [PMID: 37124040 PMCID: PMC10130453 DOI: 10.3389/fcimb.2023.1130701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Clostridioides difficile infection (CDI) is the main cause of nosocomial diarrhea in developed countries. A key challenge in CDI is the lack of objective methods to ensure more accurate diagnosis, especially when differentiating between true infection and colonization/diarrhea of other causes. The main objective of this study was to explore the role of the microbiome as a predictive biomarker of CDI. Methods Between 2018 and 2021, we prospectively included patients with CDI, recurrent CDI (R-CDI), non-CDI diarrhea (NO-CDI), colonization by C. difficile, and healthy individuals. Clinical data and fecal samples were collected. The microbiome was analyzed by sequencing the hypervariable V4 region of the 16S rRNA gene on an Illumina Miseq platform. The mothur bioinformatic pipeline was followed for pre-processing of raw data, and mothur and R were used for data analysis. Results During the study period, 753 samples from 657 patients were analyzed. Of these, 247 were from patients with CDI, 43 were from patients colonized with C. difficile, 63 were from healthy individuals, 324 were from NOCDI, and 76 were from R-CDI. We found significant differences across the groups in alpha and beta diversity and in taxonomic abundance. We identified various genera as the most significant biomarkers for CDI (Bacteroides, Proteus, Paraprevotella, Robinsoniella), R-CDI (Veillonella, Fusobacterium, Lactobacillus, Clostridium sensu stricto I), and colonization by C. difficile (Parabacteroides, Faecalicoccus, Flavonifractor, Clostridium XVIII). Discussion We observed differences in microbiome patterns between healthy individuals, colonized patients, CDI, R-CDI, and NOCDI diarrhea. We identified possible microbiome biomarkers that could prove useful in the diagnosis of true CDI infections. Further studies are warranted.
Collapse
Affiliation(s)
- Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Biochemistry and Molecular Biology Department, Faculty of Biology, Universidad Complutense de Madrid (UCM), Madrid, Spain
- *Correspondence: Silvia Vázquez-Cuesta,
| | - Laura Villar
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Nuria Lozano García
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ana I. Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Olmedo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis Alcalá
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
| | - Mercedes Marín
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias (CIBERES CB06/06/0058), Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Clostridioides difficile (ESGCD), Basel, Switzerland
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Clostridioides difficile (ESGCD), Basel, Switzerland
| |
Collapse
|
13
|
Mani J, Levy S, Angelova A, Hazrati S, Fassnacht R, Subramanian P, Richards T, Niederhuber JE, Maxwell GL, Hourigan SK. Epidemiological and microbiome associations of Clostridioides difficile carriage in infancy and early childhood. Gut Microbes 2023; 15:2203969. [PMID: 37096914 PMCID: PMC10132246 DOI: 10.1080/19490976.2023.2203969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
There has been an increase in the prevalence of Clostridioides difficile (C. diff) causing significant economic impact on the health care system. Although toxigenic C. diff carriage is recognized in infancy, there is limited data regarding its longitudinal trends, associated epidemiolocal risk factors and intestinal microbiome characteristics. The objectives of our longitudinal cohort study were to investigate temporal changes in the prevalence of toxigenic C.diff colonization in children up to 2 years, associated epidemiological and intestinal microbiome characteristics. Pregnant mothers were enrolled prenatally, and serial stool samples were collected from their children for 2 years. 2608 serial stool samples were collected from 817 children. 411/817 (50%) were males, and 738/817 (90%) were born full term. Toxigenic C.diff was detected in 7/569 (1%) of meconium samples, 116/624 (19%) of 2 m (month), 221/606 (37%) of 6 m, 227/574 (40%) of 12 m and 18/235 (8%) of 24 m samples. Infants receiving any breast milk at 6 m were less likely to be carriers at 2 m, 6 m and 12 m than those not receiving it. (p = 0.002 at 2 m, p < 0.0001 at 6 m, p = 0.022 at 12 m). There were no robust differences in the underlying alpha or beta diversity between those with and without toxigenic C. diff carriage at any timepoint, although small differences in the relative abundance of certain taxa were found. In this largest longitudinal cohort study to date, a high prevalence of toxigenic C. diff carrier state was noted. Toxigenic C. diff carrier state in children is most likely a transient component of the dynamic infant microbiome.
Collapse
Affiliation(s)
- Jyoti Mani
- Department of Pediatrics, Children’s National Medical Center, Washington, DC, USA
| | - Shira Levy
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Angelina Angelova
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Sahel Hazrati
- Women’s Service Line, Inova Health System, Falls Church, VA, USA
| | - Ryan Fassnacht
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
| | - Poorani Subramanian
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
| | - Tiana Richards
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
| | - John E. Niederhuber
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Suchitra K. Hourigan
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
- Inova Children’s Hospital, Inova Health System, Falls Church, VA, USA
| |
Collapse
|
14
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Couturier J, Lepage P, Jolivet S, Delannoy J, Mesa V, Ancel PY, Rozé JC, Butel MJ, Barbut F, Aires J. Gut Microbiota Diversity of Preterm Neonates Is Associated With Clostridioides Difficile Colonization. Front Cell Infect Microbiol 2022; 12:907323. [PMID: 35873148 PMCID: PMC9296818 DOI: 10.3389/fcimb.2022.907323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
In adults, Clostridioides difficile infections are associated with alterations of the intestinal bacterial populations. Although preterm neonates (PN) are frequently colonized by C. difficile, limited data are available regarding the relationship between C. difficile and the intestinal microbiota of this specific population. Therefore, we studied the intestinal microbiota of PN from two multicenter cohorts using high-throughput sequencing of the bacterial 16S rRNA gene. Our results showed that alpha diversity was significantly higher in children colonized by C. difficile than those without colonization. Beta diversity significantly differed between the groups. In multivariate analysis, C. difficile colonization was significantly associated with the absence of postnatal antibiotherapy and higher gestational age. Taxa belonging to the Lachnospiraceae, Enterobacteriaceae, Oscillospiraceae families and Veillonella sp. were positively associated with C. difficile colonization, whereas Bacteroidales and Bifidobacterium breve were negatively associated with C. difficile colonization. After adjustment for covariables, Clostridioides, Rothia, Bifidobacterium, Veillonella, Eisenbergiella genera and Enterobacterales were more abundant in the gut microbiota of colonized children. There was no significant association between C. difficile colonization and necrotizing enterocolitis in PN. Our results suggest that C. difficile colonization in PN is related to the establishment of physiological microbiota.
Collapse
Affiliation(s)
- Jeanne Couturier
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
- National Reference Laboratory for Clostridioides difficile, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
- *Correspondence: Jeanne Couturier,
| | - Patricia Lepage
- Paris-Saclay University, institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sarah Jolivet
- Infection Control Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Johanne Delannoy
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
| | - Victoria Mesa
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
| | - Pierre-Yves Ancel
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR 1153, Obstetrical, Perinatal and Pediatric Epidemiology Team (EPOPé), Center of Research in Epidemiology and Statistics (CRESS), Fédération hospitalo-universitaire (FHU) PREMA, Paris, France
- Unité de recherche clinique-Centre d'investigation clinique (URC-CIC) P1419, Hôpitaux universitaires Paris Centre (HUPC), Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Christophe Rozé
- Pediatric Intensive Care Unit, Mothers’ and children’s Hospital, Nantes Teaching Hospital, Nantes, France
| | - Marie-José Butel
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
| | - Frédéric Barbut
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
- National Reference Laboratory for Clostridioides difficile, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
- Infection Control Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Julio Aires
- Université de Paris, Institut national de la santé et de la recherche médicale (INSERM) UMR S-1139 3PHM, Fédération hospitalo-universitaire (FHU) PREMA, F-75006, Paris, France
| |
Collapse
|
16
|
Yu J, Hu Q, Liu J, Luo J, Liu L, Peng X. Metabolites of gut microbiota fermenting Poria cocos polysaccharide alleviates chronic nonbacterial prostatitis in rats. Int J Biol Macromol 2022; 209:1593-1604. [PMID: 35398386 DOI: 10.1016/j.ijbiomac.2022.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022]
Abstract
Chronic nonbacterial prostatitis (CNP) is a common urology disease. Our previous research found Poria cocos polysaccharides (PPs) alleviated CNP and suggested the effect was related to gut bacteria. We investigated the crucial bacteria and their metabolites responsible for the anti-CNP effect to discover possible mechanisms. The results showed that after the fermentation of PPs by human fecal microbiota, Parabacteroides, Fusicatenibacter, and Parasutterella were significantly enriched. Haloperidol glucuronide and 7-ketodeoxycholic acid generated by these bacteria could be responsible for the increased expression of Alox15 and Pla2g2f and the reduced expression of Cyp1a1 and Hsd17b7 in colon epithelium. The ratio of dihydrotestosterone to estradiol in serum was regulated, and CNP was alleviated. Our results suggested that Parabacteroides, Fusicatenibacter, and Parasutterella could be the essential bacteria in CNP alleviation and their metabolites of PPs 7-ketodeoxycholic acid and haloperidol glucuronide could be the signal molecules of the "gut-prostate axis".
Collapse
Affiliation(s)
- Juntong Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Qing Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Junsheng Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Melo-González F, Sepúlveda-Alfaro J, Schultz BM, Suazo ID, Boone DL, Kalergis AM, Bueno SM. Distal Consequences of Mucosal Infections in Intestinal and Lung Inflammation. Front Immunol 2022; 13:877533. [PMID: 35572549 PMCID: PMC9095905 DOI: 10.3389/fimmu.2022.877533] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious diseases are one of the leading causes of morbidity and mortality worldwide, affecting high-risk populations such as children and the elderly. Pathogens usually activate local immune responses at the site of infection, resulting in both protective and inflammatory responses, which may lead to local changes in the microbiota, metabolites, and the cytokine environment. Although some pathogens can disseminate and cause systemic disease, increasing evidence suggests that local infections can affect tissues not directly invaded. In particular, diseases occurring at distal mucosal barriers such as the lung and the intestine seem to be linked, as shown by epidemiological studies in humans. These mucosal barriers have bidirectional interactions based mainly on multiple signals derived from the microbiota, which has been termed as the gut-lung axis. However, the effects observed in such distal places are still incompletely understood. Most of the current research focuses on the systemic impact of changes in microbiota and bacterial metabolites during infection, which could further modulate immune responses at distal tissue sites. Here, we describe how the gut microbiota and associated metabolites play key roles in maintaining local homeostasis and preventing enteric infection by direct and indirect mechanisms. Subsequently, we discuss recent murine and human studies linking infectious diseases with changes occurring at distal mucosal barriers, with particular emphasis on bacterial and viral infections affecting the lung and the gastrointestinal tract. Further, we discuss the potential mechanisms by which pathogens may cause such effects, promoting either protection or susceptibility to secondary infection.
Collapse
Affiliation(s)
- Felipe Melo-González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M. Schultz
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora D. Suazo
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David L. Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, United States
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Chen Y, Lv T, Yan D, Zheng L, Zheng B, Wang J, Gu S, Li L. Disordered Intestinal Microbial Communities During Clostridioides difficile Colonization and Subsequent Infection of Hepatic Cirrhosis Patients in a Tertiary Care Hospital in China. Front Cell Infect Microbiol 2022; 12:825189. [PMID: 35433508 PMCID: PMC9010725 DOI: 10.3389/fcimb.2022.825189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with hepatic cirrhosis are more susceptible to Clostridioides difficile infection (CDI) and colonization with Clostridioides difficile (C. difficile). Asymptomatic C. difficile colonization is thought to predispose to subsequent CDI. However, the dynamic gut microbiota changes remain unclear. In this study, we used 16S rRNA gene sequencing to longitudinally monitor alterations in the intestinal microbiota of 22 hepatic cirrhosis patients with toxigenic C. difficile colonization at admission (pre-CDI) and developed CDI during hospitalization, subdivided into pre-CDI and CDI. 21 hospitalized cirrhotic patients without C. difficile colonization served as controls (HC). Compared with HC, pre-CDI and CDI samples had significantly decreased microbial richness and diversity, a significantly higher relative abundance of opportunistic pathogen Enterococcus, and a lower relative abundance of beneficial symbionts, such as Faecalibacterium, Dorea, and Roseburia. Three biomarkers showed high accuracy for distinguishing pre-CDI samples from HC with an area under the curve (AUC) up to 0.81. In conclusion, our study explored the changes of the gut microbiome before and after CDI. The gut microbial richness as well as diversity in CDI patients were notably reduced, relative to controls. Imbalance of the intestinal flora may be related to the risk for development of CDI. Identifying key members of the gut microbiota and illustrating their roles and mechanisms of action in CDI development are important avenues for future research.
Collapse
Affiliation(s)
- Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lisi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingxia Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Silan Gu,
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Bacterial Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
19
|
Tolonen AC, Beauchemin N, Bayne C, Li L, Tan J, Lee J, Meehan BM, Meisner J, Millet Y, LeBlanc G, Kottler R, Rapp E, Murphy C, Turnbaugh PJ, von Maltzahn G, Liu CM, van Hylckama Vlieg JET. Synthetic glycans control gut microbiome structure and mitigate colitis in mice. Nat Commun 2022; 13:1244. [PMID: 35273143 PMCID: PMC8913648 DOI: 10.1038/s41467-022-28856-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Relative abundances of bacterial species in the gut microbiome have been linked to many diseases. Species of gut bacteria are ecologically differentiated by their abilities to metabolize different glycans, making glycan delivery a powerful way to alter the microbiome to promote health. Here, we study the properties and therapeutic potential of chemically diverse synthetic glycans (SGs). Fermentation of SGs by gut microbiome cultures results in compound-specific shifts in taxonomic and metabolite profiles not observed with reference glycans, including prebiotics. Model enteric pathogens grow poorly on most SGs, potentially increasing their safety for at-risk populations. SGs increase survival, reduce weight loss, and improve clinical scores in mouse models of colitis. Synthetic glycans are thus a promising modality to improve health through selective changes to the gut microbiome.
Collapse
Affiliation(s)
| | - Nicholas Beauchemin
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Seres Therapeutics, Cambridge, MA, 02139, USA
| | | | - Lingyao Li
- Kaleido Biosciences, Lexington, MA, 02421, USA
| | - Jie Tan
- Kaleido Biosciences, Lexington, MA, 02421, USA
| | - Jackson Lee
- Kaleido Biosciences, Lexington, MA, 02421, USA
| | - Brian M Meehan
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Pareto Bio, Cambridge, MA, 02140, USA
| | | | - Yves Millet
- Kaleido Biosciences, Lexington, MA, 02421, USA
| | | | | | - Erdmann Rapp
- glyXera GmbH, 39120, Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Chris Murphy
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Bacainn Therapeutics, Inc and Morningside BioPharma Advisory, Concord, MA, 01742, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Geoffrey von Maltzahn
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Flagship Pioneering, Cambridge, MA, 02142, USA
| | - Christopher M Liu
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Exo Therapeutics, Watertown, MA, 02472, USA
| | | |
Collapse
|
20
|
Faecal carriage of Clostridioides difficile is low among veterinary healthcare workers in the Netherlands. Epidemiol Infect 2022; 150:e63. [PMID: 35296372 PMCID: PMC8931804 DOI: 10.1017/s0950268822000383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
Vasilescu IM, Chifiriuc MC, Pircalabioru GG, Filip R, Bolocan A, Lazăr V, Diţu LM, Bleotu C. Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Front Microbiol 2022; 12:651081. [PMID: 35126320 PMCID: PMC8810811 DOI: 10.3389/fmicb.2021.651081] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we focus on gut microbiota profiles in infants and adults colonized (CDC) or infected (CDI) with Clostridioides difficile. After a short update on CDI epidemiology and pathology, we present the gut dysbiosis profiles associated with CDI in adults and infants, as well as the role of dysbiosis in C. difficile spores germination and multiplication. Both molecular and culturomic studies agree on a significant decrease of gut microbiota diversity and resilience in CDI, depletion of Firmicutes, Bacteroidetes, and Actinobacteria phyla and a high abundance of Proteobacteria, associated with low butyrogenic and high lactic acid-bacteria levels. In symptomatic cases, microbiota deviations are associated with high levels of inflammatory markers, such as calprotectin. In infants, colonization with Bifidobacteria that trigger a local anti-inflammatory response and abundance of Ruminococcus, together with lack of receptors for clostridial toxins and immunological factors (e.g., C. difficile toxins neutralizing antibodies) might explain the lack of clinical symptoms. Gut dysbiosis amelioration through administration of “biotics” or non-toxigenic C. difficile preparations and fecal microbiota transplantation proved to be very useful for the management of CDI.
Collapse
Affiliation(s)
- Iulia-Magdalena Vasilescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- INBI “Prof. Dr. Matei Balş” – National Institute for Infectious Diseases, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- *Correspondence: Mariana-Carmen Chifiriuc,
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Regional County Emergency Hospital, Suceava, Romania
| | - Alexandra Bolocan
- Department of General Surgery, University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Diţu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Ştefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| |
Collapse
|
22
|
Zhang H, Mu X, Wang H, Wang H, Wang H, Li Y, Mu Y, Song J, Xia L. Lacticaseibacillus casei ATCC 393 Cannot Colonize the Gastrointestinal Tract of Crucian Carp. Microorganisms 2021; 9:microorganisms9122547. [PMID: 34946147 PMCID: PMC8708626 DOI: 10.3390/microorganisms9122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Lactic acid bacteria (LAB) are commonly applied to fish as a means of growth promotion and disease prevention. However, evidence regarding whether LAB colonize the gastrointestinal (GI) tract of fish remains sparse and controversial. Here, we investigated whether Lacticaseibacillus casei ATCC 393 (Lc) can colonize the GI tract of crucian carp. Sterile feed irradiated with 60Co was used to eliminate the influence of microbes, and 100% rearing water was renewed at 5-day intervals to reduce the fecal–oral circulation of microbes. The experiment lasted 47 days and was divided into three stages: the baseline period (21 days), the administration period (7 days: day −6 to 0) and the post-administration period (day 1 to 19). Control groups were fed a sterile basal diet during the whole experimental period, whereas treatment groups were fed with a mixed diet containing Lc (1 × 107 cfu/g) and spore of Geobacillus stearothermophilus (Gs, 1 × 107 cfu/g) during the administration period and a sterile basal diet during the baseline and post-administration periods. An improved and highly sensitive selective culture method (SCM) was employed in combination with a transit marker (a Gs spore) to monitor the elimination of Lc in the GI tract. The results showed that Lc (<2 cfu/gastrointestine) could not be detected in any of the fish sampled from the treatment group 7 days after the cessation of the mixed diet, whereas Gs could still be detected in seven out of nine fish at day 11 and could not be detected at all at day 15. Therefore, the elimination speed of Lc was faster than that of the transit marker. Furthermore, high-throughput sequencing analysis combined with SCM was used to reconfirm the elimination kinetics of Lc in the GI tract. The results show that the Lc in the crucian carp GI tract, despite being retained at low relative abundance from day 7 (0.11% ± 0.03%) to 21, was not viable. The experiments indicate that Lc ATCC 393 cannot colonize the GI tract of crucian carp, and the improved selective culture in combination with a transit marker represents a good method for studying LAB colonization of fish.
Collapse
Affiliation(s)
- Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Hongwei Wang
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Haibo Wang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Hui Wang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, China; (H.Z.); (X.M.); (H.W.); (H.W.); (Y.L.)
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Yingchun Mu
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing 100141, China
- Correspondence: (Y.M.); (J.S.); (L.X.)
| | - Jinlong Song
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture and Rural Affairs), Chinese Academy of Fishery Sciences, Beijing 100141, China
- Correspondence: (Y.M.); (J.S.); (L.X.)
| | - Lei Xia
- Chinese Academy of Fishery Sciences, Beijing 100141, China;
- Correspondence: (Y.M.); (J.S.); (L.X.)
| |
Collapse
|
23
|
Herrera G, Vega L, Patarroyo MA, Ramírez JD, Muñoz M. Gut microbiota composition in health-care facility-and community-onset diarrheic patients with Clostridioides difficile infection. Sci Rep 2021; 11:10849. [PMID: 34035404 PMCID: PMC8149855 DOI: 10.1038/s41598-021-90380-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
The role of gut microbiota in the establishment and development of Clostridioides difficile infection (CDI) has been widely discussed. Studies showed the impact of CDI on bacterial communities and the importance of some genera and species in recovering from and preventing infection. However, most studies have overlooked important components of the intestinal ecosystem, such as eukaryotes and archaea. We investigated the bacterial, archaea, and eukaryotic intestinal microbiota of patients with health-care-facility- or community-onset (HCFO and CO, respectively) diarrhea who were positive or negative for CDI. The CDI-positive groups (CO/+, HCFO/+) showed an increase in microorganisms belonging to Bacteroidetes, Firmicutes, Proteobacteria, Ascomycota, and Opalinata compared with the CDI-negative groups (CO/-, HCFO/-). Patients with intrahospital-acquired diarrhea (HCFO/+, HCFO/-) showed a marked decrease in bacteria beneficial to the intestine, and there was evidence of increased Archaea and Candida and Malassezia species compared with the CO groups (CO/+, CO/-). Characteristic microbiota biomarkers were established for each group. Finally, correlations between bacteria and eukaryotes indicated interactions among the different kingdoms making up the intestinal ecosystem. We showed the impact of CDI on microbiota and how it varies with where the infection is acquired, being intrahospital-acquired diarrhea one of the most influential factors in the modulation of bacterial, archaea, and eukaryotic populations. We also highlight interactions between the different kingdoms of the intestinal ecosystem, which need to be evaluated to improve our understanding of CDI pathophysiology.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, 110231, Bogotá D.C., Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
24
|
Tortajada-Girbés M, Rivas A, Hernández M, González A, Ferrús MA, Pina-Pérez MC. Alimentary and Pharmaceutical Approach to Natural Antimicrobials against Clostridioides difficile Gastrointestinal Infection. Foods 2021; 10:foods10051124. [PMID: 34069413 PMCID: PMC8159093 DOI: 10.3390/foods10051124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023] Open
Abstract
Incidence of Clostridioides difficile infection (CDI) has been increasing in recent decades due to different factors, namely (i) extended use of broad-spectrum antibiotics, (ii) transmission within asymptomatic and susceptible patients, and (iii) unbalanced gastrointestinal microbiome and collateral diseases that favor C. difficile gastrointestinal domination and toxin production. Although antibiotic therapies have resulted in successful control of CDI in the last 20 years, the development of novel strategies is urged in order to combat the capability of C. difficile to generate and acquire resistance to conventional treatments and its consequent proliferation. In this regard, vegetable and marine bioactives have emerged as alternative and effective molecules to fight against this concerning pathogen. The present review examines the effectiveness of natural antimicrobials from vegetable and algae origin that have been used experimentally in in vitro and in vivo settings to prevent and combat CDI. The aim of the present work is to contribute to accurately describe the prospective use of emerging antimicrobials as future nutraceuticals and preventive therapies, namely (i) as dietary supplement to prevent CDI and reduce CDI recurrence by means of microbiota modulation and (ii) administering them complementarily to other treatments requiring antibiotics to prevent C. difficile gut invasion and infection progression.
Collapse
Affiliation(s)
- Miguel Tortajada-Girbés
- Department of Pediatrics, University Dr. Peset Hospital, Avda, de Gaspar Aguilar, 90, 46017 Valencia, Spain;
| | - Alejandro Rivas
- Departmento Tecnología de Alimentos, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Manuel Hernández
- Departmento Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.H.); (A.G.); (M.A.F.)
| | - Ana González
- Departmento Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.H.); (A.G.); (M.A.F.)
| | - Maria A. Ferrús
- Departmento Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.H.); (A.G.); (M.A.F.)
| | - Maria C. Pina-Pérez
- Departmento Microbiologia y Ecología, Facultad Ciencias Biológicas, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Spain
- Correspondence:
| |
Collapse
|
25
|
Editorial for the Special Issue: Clostridium difficile. Microorganisms 2021; 9:microorganisms9020368. [PMID: 33673344 PMCID: PMC7918445 DOI: 10.3390/microorganisms9020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium difficile (reclassified as Clostridioides difficile [...].
Collapse
|
26
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
27
|
Gazzola A, Panelli S, Corbella M, Merla C, Comandatore F, De Silvestri A, Piralla A, Zuccaro V, Bandi C, Marone P, Cambieri P. Microbiota in Clostridioides difficile-Associated Diarrhea: Comparison in Recurrent and Non-Recurrent Infections. Biomedicines 2020; 8:biomedicines8090335. [PMID: 32911854 PMCID: PMC7554755 DOI: 10.3390/biomedicines8090335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 01/20/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea, especially in hospitalized elderly patients, representing a global public health concern. Clinical presentations vary from mild diarrhea to severe pseudomembranous colitis that may progress to toxic megacolon or intestinal perforation. Antibiotic therapy is recognized as a risk factor and exacerbates dysbiosis of the intestinal microbiota, whose role in CDI is increasingly acknowledged. A clinically challenging complication is the development of recurrent disease (rCDI). In this study, using amplicon metagenomics, we compared the fecal microbiota of CDI and rCDI patients (sampled at initial and recurrent episode) and of non-infected controls. We also investigated whether CDI severity relates to specific microbiota compositions. rCDI patients showed a significantly decreased bacterial diversity as compared to controls (p < 0.01). The taxonomic composition presented significant shifts: both CDI and rCDI patients displayed significantly increased frequencies of Firmicutes, Peptostreptococcaceae, Clostridium XI, Clostridium XVIII, and Enterococcaceae. Porphyromonadaceae and, within it, Parabacteroides displayed opposite behaviors in CDI and rCDI, appearing discriminant between the two. Finally, the second episode of rCDI was characterized by significant shifts of unclassified Clostridiales, Escherichia/Shigella and Veillonella. No peculiar taxa composition correlated with the severity of infection, likely reflecting the role of host-related factors in determining severity.
Collapse
Affiliation(s)
- Alessandra Gazzola
- Infectious Diseases Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (V.Z.)
- Department of Veterinary Medicine, University of Milano, 20133 Milan, Italy
| | - Simona Panelli
- Department of Biomedical and Clinical Sciences “L. Sacco” and Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milan, Italy;
- Correspondence:
| | - Marta Corbella
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.C.); (C.M.); (A.P.); (P.M.); (P.C.)
| | - Cristina Merla
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.C.); (C.M.); (A.P.); (P.M.); (P.C.)
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences “L. Sacco” and Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milan, Italy;
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometry Unit, Fondazione IRCCS Policlinico san Matteo, 27100 Pavia, Italy;
| | - Antonio Piralla
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.C.); (C.M.); (A.P.); (P.M.); (P.C.)
| | - Valentina Zuccaro
- Infectious Diseases Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (V.Z.)
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milano, 20157 Milan, Italy;
| | - Piero Marone
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.C.); (C.M.); (A.P.); (P.M.); (P.C.)
| | - Patrizia Cambieri
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.C.); (C.M.); (A.P.); (P.M.); (P.C.)
| |
Collapse
|
28
|
Han SH, Yi J, Kim JH, Moon HW. Investigation of Intestinal Microbiota and Fecal Calprotectin in Non-Toxigenic and Toxigenic Clostridioides difficile Colonization and Infection. Microorganisms 2020; 8:microorganisms8060882. [PMID: 32545219 PMCID: PMC7356005 DOI: 10.3390/microorganisms8060882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
In this study, we aimed to evaluate the composition of the intestinal microbiota and level of fecal calprotectin in Clostridioides difficile-colonized patients. We included 102 C. difficile non-colonized (group I), 93 C. difficile colonized subjects (group II), and 89 diarrhea patients with C. difficile (group III). Chao1 index for alpha diversity and principal coordinate analysis was performed for beta diversity using QIIME. The mean relative abundance in each group was compared at the phylum and genus levels. Fecal calprotectin was measured using EliA calprotectin (Thermo Fisher Scientific). Group II showed significantly lower levels of Sutterella, Blautia, Ruminococcus, Faecalibacterium, Bilophila, and Ruminococcaceae and higher levels of Enterobacteriaceae compared to group I (p = 0.012, 0.003, 0.002, 0.001, 0.027, 0.022, and 0.036, respectively). Toxigenic C. difficile colonized subjects showed significantly lower levels of Prevotella, Phascolarctobacterium, Succinivibrio, Blautia, and higher levels of Bacteroides. The level of fecal calprotectin in group III was significantly higher than those in group I and group II (p < 0.001 for both). These data could be valuable in understanding C. difficile colonization process and the microbiota and inflammatory markers could be further studied to differentiate colonization from CDI.
Collapse
Affiliation(s)
- Sung-Hee Han
- BioCore Co. Ltd., Biotechnology, Yongin 64844, Korea;
| | - Joowon Yi
- Samkwang Medical Laboratories, Seoul 06742, Korea;
| | - Ji-Hoon Kim
- Advanced BioVision Inc., Incheon 21999, Korea;
| | - Hee-Won Moon
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-2030-5583; Fax: +82-2-2030-5587
| |
Collapse
|