1
|
Hick E, Suárez M, Rey A, Mantecón L, Fernández N, Solís G, Gueimonde M, Arboleya S. Personalized Nutrition with Banked Human Milk for Early Gut Microbiota Development: In Pursuit of the Perfect Match. Nutrients 2024; 16:1976. [PMID: 38999725 PMCID: PMC11243202 DOI: 10.3390/nu16131976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The correct initial colonization and establishment of the gut microbiota during the early stages of life is a key step, with long-lasting consequences throughout the entire lifespan of the individual. This process is affected by several perinatal factors; among them, feeding mode is known to have a critical role. Breastfeeding is the optimal nutrition for neonates; however, it is not always possible, especially in cases of prematurity or early pathology. In such cases, most commonly babies are fed with infant formulas in spite of the official nutritional and health international organizations' recommendation on the use of donated human milk through milk banks for these cases. However, donated human milk still does not totally match maternal milk in terms of infant growth and gut microbiota development. The present review summarizes the practices of milk banks and hospitals regarding donated human milk, its safety and quality, and the health outcomes in infants fed with donated human milk. Additionally, we explore different alternatives to customize pasteurized donated human milk with the aim of finding the perfect match between each baby and banked milk for promoting the establishment of a beneficial gut microbiota from the early stages of life.
Collapse
Affiliation(s)
- Emilia Hick
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Marta Suárez
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandra Rey
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Laura Mantecón
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nuria Fernández
- Pediatrics Service, University Hospital of Cabueñes (CAB-SESPA), 33394 Gijón, Spain
| | - Gonzalo Solís
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
2
|
Kashyap V, Choudhari SG. Unlocking the Potential: A Systematic Literature Review on the Impact of Donor Human Milk on Infant Health Outcomes. Cureus 2024; 16:e57440. [PMID: 38699095 PMCID: PMC11064102 DOI: 10.7759/cureus.57440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Human mother milk is considered the most healthy and best source of nutrition for both premature and full-term infants, as it possesses many health benefits and is associated with its consumption. Some of the mothers are not able to produce an adequate quantity of milk to meet the required needs of the infants, particularly in cases involving premature births or facing challenges in breastfeeding. Especially for the most vulnerable premature infants, donor human milk (DHM) provides a helpful bridge for effective breastfeeding. Even with the advancement in baby formulas, no other dietary source can match the bioactive matrix of benefits found in human breast milk. This literature review discusses the risks associated with prematurity and explores the use of DHM in the care of premature infants. It helps prevent substantial preterm complications, especially necrotizing enterocolitis, bronchopulmonary dysplasia, and late-onset sepsis, which are more commonly seen in infants who are given formulated milk made from cow's milk. It gives insights into the benefits of DHM, such as immunological and nutritional benefits, which is a basic infant's need. When medical distress prevents mothers from producing enough breast milk for their infants, pasteurized human donor breast milk should be made accessible as an alternative feeding option to ensure infants remain healthy and nourished. A systematic literature search was conducted using PubMed and Google Scholar databases and other sources. A total of 104 articles were searched, of which 35 were included after identification, filters were applied, eligibility was checked, and references out of scope were excluded. Human milk banking should be incorporated into programs encouraging breastfeeding, highlighting lactation in mothers and only using DHM when required.
Collapse
Affiliation(s)
- Vijiya Kashyap
- Department of Community Medicine, Jawaharlal Nehru Medical College, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sonali G Choudhari
- Department of Community Medicine, Jawaharlal Nehru Medical College, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Patangia DV, Grimaud G, O'Shea CA, Ryan CA, Dempsey E, Stanton C, Ross RP. Early life exposure of infants to benzylpenicillin and gentamicin is associated with a persistent amplification of the gut resistome. MICROBIOME 2024; 12:19. [PMID: 38310316 PMCID: PMC10837951 DOI: 10.1186/s40168-023-01732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/24/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Infant gut microbiota is highly malleable, but the long-term longitudinal impact of antibiotic exposure in early life, together with the mode of delivery on infant gut microbiota and resistome, is not extensively studied. METHODS Two hundred and eight samples from 45 infants collected from birth until 2 years of age over five time points (week 1, 4, 8, 24, year 2) were analysed. Based on shotgun metagenomics, the gut microbial composition and resistome profile were compared in the early life of infants divided into three groups: vaginal delivery/no-antibiotic in the first 4 days of life, C-section/no-antibiotic in the first 4 days of life, and C-section/antibiotic exposed in first 4 days of life. Gentamycin and benzylpenicillin were the most commonly administered antibiotics during this cohort's first week of life. RESULTS Newborn gut microbial composition differed in all three groups, with higher diversity and stable composition seen at 2 years of age, compared to week 1. An increase in microbial diversity from week 1 to week 4 only in the C-section/antibiotic-exposed group reflects the effect of antibiotic use in the first 4 days of life, with a gradual increase thereafter. Overall, a relative abundance of Actinobacteria and Bacteroides was significantly higher in vaginal delivery/no-antibiotic while Proteobacteria was higher in C-section/antibiotic-exposed infants. Strains from species belonging to Bifidobacterium and Bacteroidetes were generally persistent colonisers, with Bifidobacterium breve and Bifidobacterium bifidum species being the major persistent colonisers in all three groups. Bacteroides persistence was dominant in the vaginal delivery/no-antibiotic group, with species Bacteroides ovatus and Phocaeicola vulgatus found to be persistent colonisers in the no-antibiotic groups. Most strains carrying antibiotic-resistance genes belonged to phyla Proteobacteria and Firmicutes, with the C-section/antibiotic-exposed group presenting a higher frequency of antibiotic-resistance genes (ARGs). CONCLUSION These data show that antibiotic exposure has an immediate and persistent effect on the gut microbiome in early life. As such, the two antibiotics used in the study selected for strains (mainly Proteobacteria) which were multiple drug-resistant (MDR), presumably a reflection of their evolutionary lineage of historical exposures-leading to what can be an extensive and diverse resistome. Video Abstract.
Collapse
Affiliation(s)
- Dhrati V Patangia
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ghjuvan Grimaud
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | | | - C A Ryan
- APC Microbiome Ireland, Cork, Ireland
| | - Eugene Dempsey
- APC Microbiome Ireland, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- Infant Research Centre, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy Co., Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
| |
Collapse
|
4
|
Bosco A, Piu C, Picciau ME, Pintus R, Fanos V, Dessì A. Metabolomics in NEC: An Updated Review. Metabolites 2023; 14:14. [PMID: 38248817 PMCID: PMC10821135 DOI: 10.3390/metabo14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Necrotizing enterocolitis (NEC) represents the most common and lethal acute gastrointestinal emergency of newborns, mainly affecting those born prematurely. It can lead to severe long-term sequelae and the mortality rate is approximately 25%. Furthermore, the diagnosis is difficult, especially in the early stages, due to multifactorial pathogenesis and complex clinical pictures with mild and non-specific symptoms. In addition, the existing tests have poor diagnostic value. Thus, the scientific community has been focusing its attention on the identification of non-invasive biomarkers capable of prediction, early diagnosis and discriminating NEC from other intestinal diseases in order to intervene early and block the progression of the pathology. In this regard, the use of "omics" technologies, especially metabolomics and microbiomics, could be a fundamental synergistic strategy to study the pathophysiology of NEC. In addition, a deeper knowledge of the microbiota-host cross-talk can clarify the metabolic pathways potentially involved in the pathology, allowing for the identification of specific biomarkers. In this article, the authors analyze the state-of-the-art concerning the application of metabolomics and microbiota analysis to investigate this pathology and discuss the future possibility of the metabolomic fingerprint of patients for diagnostic purposes.
Collapse
Affiliation(s)
| | | | | | | | | | - Angelica Dessì
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, 09124 Cagliari, Italy; (A.B.); (C.P.); (M.E.P.); (R.P.); (V.F.)
| |
Collapse
|
5
|
Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life (Basel) 2023; 13:life13020561. [PMID: 36836917 PMCID: PMC9959300 DOI: 10.3390/life13020561] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Short chain fatty acids (SCFAs), the principle end-products produced by the anaerobic gut microbial fermentation of complex carbohydrates (CHO) in the colon perform beneficial roles in metabolic health. Butyrate, acetate and propionate are the main SCFA metabolites, which maintain gut homeostasis and host immune responses, enhance gut barrier integrity and reduce gut inflammation via a range of epigenetic modifications in DNA/histone methylation underlying these effects. The infant gut microbiota composition is characterized by higher abundances of SCFA-producing bacteria. A large number of in vitro/vivo studies have demonstrated the therapeutic implications of SCFA-producing bacteria in infant inflammatory diseases, such as obesity and asthma, but the application of gut microbiota and its metabolite SCFAs to necrotizing enterocolitis (NEC), an acute inflammatory necrosis of the distal small intestine/colon affecting premature newborns, is scarce. Indeed, the beneficial health effects attributed to SCFAs and SCFA-producing bacteria in neonatal NEC are still to be understood. Thus, this literature review aims to summarize the available evidence on the therapeutic potential of gut microbiota and its metabolite SCFAs in neonatal NEC using the PubMed/MEDLINE database.
Collapse
|
6
|
Sadeghpour Heravi F, Hu H. Bifidobacterium: Host-Microbiome Interaction and Mechanism of Action in Preventing Common Gut-Microbiota-Associated Complications in Preterm Infants: A Narrative Review. Nutrients 2023; 15:709. [PMID: 36771414 PMCID: PMC9919561 DOI: 10.3390/nu15030709] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The development and health of infants are intertwined with the protective and regulatory functions of different microorganisms in the gut known as the gut microbiota. Preterm infants born with an imbalanced gut microbiota are at substantial risk of several diseases including inflammatory intestinal diseases, necrotizing enterocolitis, late-onset sepsis, neurodevelopmental disorders, and allergies which can potentially persist throughout adulthood. In this review, we have evaluated the role of Bifidobacterium as commonly used probiotics in the development of gut microbiota and prevention of common diseases in preterm infants which is not fully understood yet. The application of Bifidobacterium as a therapeutical approach in the re-programming of the gut microbiota in preterm infants, the mechanisms of host-microbiome interaction, and the mechanism of action of this bacterium have also been investigated, aiming to provide new insights and opportunities in microbiome-targeted interventions in personalized medicine.
Collapse
Affiliation(s)
| | - Honghua Hu
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321016, China
| |
Collapse
|
7
|
Association between diet and fecal microbiota along the first year of life. Food Res Int 2022; 162:111994. [DOI: 10.1016/j.foodres.2022.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
|
8
|
Randomized, Double-Blind, Placebo-Controlled Study to Assess the Effect of Two Probiotics on the Preterms' Gut Microbiota. J Pediatr Gastroenterol Nutr 2022; 74:e153-e159. [PMID: 35221319 DOI: 10.1097/mpg.0000000000003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE To evaluate the effect of a new probiotic strain combination, Ligilactobacillus salivarius subsp infantis PS11603 and Bifidobacterium longum PS10402, on gut bacterial colonization of preterm infants. METHODS A randomized, double-blind, placebo-controlled study was conducted in preterm infants from 28 weeks + 0days to 30 weeks + 6days of gestation. Thirty preterm infants were randomly selected after birth to receive either probiotics or placebo. Stool samples were collected before product intake and then sequentially during the first weeks of their admission. Classical microbiological, metagenomics and multiplex immunological analyses were performed to assess the bacterial and immune profile of the samples. RESULTS Twenty-seven infants completed the study (14 vs 13, probiotic and placebo groups). A higher number of participants were colonized by Lactobacilli in the probiotic group than in the placebo group (93% vs 46%; P = 0.013). Similar results were obtained when analysing bifidobacterial colonization (100% vs 69%; P = 0.041). Earlier colonization was observed in the probiotics group versus the placebo group, specifically 5 weeks for Lactobacillus and 1 week for Bifidobacterium. Although no effect was observed in the faecal immunological profile, a decreasing trend could be observed in Th17 response during the first week of probiotic treatment. None of the adverse events (AEs) registered were related to product intake. CONCLUSION Probiotic supplementation with L salivarius PS11603 and B longum subsp. infantis PS10402 enhanced an earlier colonization of Lactobacillus and Bifidobacterium in preterm infants' guts in 5 and 1 week, respectively. A higher number of infants were colonized by Lactobacilli with the probiotics' intake at the end of the study.
Collapse
|
9
|
García-González I, Corona-Cervantes K, Hernández-Quiroz F, Villalobos-Flores LE, Galván-Rodríguez F, Romano MC, Miranda-Brito C, Piña-Escobedo A, Borquez-Arreortúa FG, Rangel-Calvillo MN, García-Mena J. The Influence of Holder Pasteurization on the Diversity of the Human Milk Bacterial Microbiota Using High-Throughput DNA Sequencing. J Hum Lact 2022; 38:118-130. [PMID: 33906488 DOI: 10.1177/08903344211011946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Human milk is the best food for infants; however, when breastfeeding is not possible, pasteurized milk from human milk banks is the best alternative. Little has been reported about variations in the bacterial microbiota composition of human milk after pasteurization. RESEARCH AIM To characterize and compare the bacterial microbiota composition and diversity within human milk among Mexican mothers before and after the Holder pasteurization process. METHODS A cross-sectional, observational, and comparative design was used. The effect of the pasteurization process on the bacterial composition and diversity of human milk samples of donors (N = 42) from a public milk bank was assessed before and after pasteurization by high throughput deoxyribonucleic acid sequencing of V3-16S rRNA gene libraries. Sequencing data were examined using the Quantitative Insights into Microbial Ecology software and Phyloseq in R environment. RESULTS A varied community of bacteria was found in both raw and pasteurized human milk. The bacterial diversity of the milk samples was increased by the pasteurization, where some thermoduric bacteria of the phyla Proteobacteria, Firmicutes, and Actinobacteria were more abundant. The source tracker analysis indicated that at most 1.0% of bacteria may have come from another source, showing the safety of the process used to treat milk samples. CONCLUSION The pasteurization process increased the bacterial diversity. We selected taxa capable of surviving the process, which could proliferate after the treatment without being a risk for infants.
Collapse
Affiliation(s)
- Igrid García-González
- 42576 Departamento de Genética y Biología Molecular, Cinvestav-Unidad Zacatenco. Ciudad de México, México
| | - Karina Corona-Cervantes
- 42576 Departamento de Genética y Biología Molecular, Cinvestav-Unidad Zacatenco. Ciudad de México, México
| | - Fernando Hernández-Quiroz
- 42576 Departamento de Genética y Biología Molecular, Cinvestav-Unidad Zacatenco. Ciudad de México, México
| | | | | | - Marta Catalina Romano
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-Unidad Zacatenco. Ciudad de México, México
| | - Carolina Miranda-Brito
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-Unidad Zacatenco. Ciudad de México, México
| | - Alberto Piña-Escobedo
- 42576 Departamento de Genética y Biología Molecular, Cinvestav-Unidad Zacatenco. Ciudad de México, México
| | | | | | - Jaime García-Mena
- 42576 Departamento de Genética y Biología Molecular, Cinvestav-Unidad Zacatenco. Ciudad de México, México
| |
Collapse
|
10
|
Nogacka AM, Arboleya S, Nikpoor N, Auger J, Salazar N, Cuesta I, Alvarez-Buylla JR, Mantecón L, Solís G, Gueimonde M, Tompkins TA, de los Reyes-Gavilán CG. In Vitro Probiotic Modulation of the Intestinal Microbiota and 2′Fucosyllactose Consumption in Fecal Cultures from Infants at Two Months of Age. Microorganisms 2022; 10:microorganisms10020318. [PMID: 35208773 PMCID: PMC8876326 DOI: 10.3390/microorganisms10020318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/17/2023] Open
Abstract
2′-fucosyllactose (2′FL) is one of the most abundant oligosaccharides in human milk, with benefits on neonatal health. Previous results point to the inability of the fecal microbiota from some infants to ferment 2′FL. We evaluated a probiotic formulation, including the strains Lactobacillus helveticus Rosell®-52 (R0052), Bifidobacterium longum subsp. infantis Rosell®-33 (R0033), and Bifidobacterium bifidum Rosell®-71 (R0071), individually or in an 80:10:10 combination on the microbiota and 2′FL degradation. Independent batch fermentations were performed with feces from six full-term infant donors of two months of age (three breastfed and three formula-fed) with added probiotic formulation or the constituent strains in the presence of 2′FL. Microbiota composition was analyzed by 16S rRNA gene sequencing. Gas accumulation, pH decrease and 2′FL consumption, and levels of different metabolites were determined by chromatography. B. bifidum R0071 was the sole microorganism promoting a partial increase of 2′FL degradation during fermentation in fecal cultures of 2′FL slow-degrading donors. However, major changes in microbiota composition and metabolic activity occurred with L. helveticus R0052 or the probiotic formulation in cultures of slow degraders. Further studies are needed to decipher the role of the host intestinal microbiota in the efficacy of these strains.
Collapse
Affiliation(s)
- Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Correspondence: (A.M.N.); (C.G.d.l.R.-G.); Tel.: +34-985-89-21-31 (A.M.N.)
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
| | - Naghmeh Nikpoor
- Rosell Institute for Microbiome and Probiotics, Montreal, QC H4P 2R2, Canada; (N.N.); (J.A.); (T.A.T.)
| | - Jeremie Auger
- Rosell Institute for Microbiome and Probiotics, Montreal, QC H4P 2R2, Canada; (N.N.); (J.A.); (T.A.T.)
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
| | - Isabel Cuesta
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
| | - Jorge R. Alvarez-Buylla
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
| | - Laura Mantecón
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Asturias, Spain
| | - Gonzalo Solís
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
| | - Thomas A. Tompkins
- Rosell Institute for Microbiome and Probiotics, Montreal, QC H4P 2R2, Canada; (N.N.); (J.A.); (T.A.T.)
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain; (S.A.); (N.S.); (I.C.); (J.R.A.-B.); (M.G.)
- Institute of Health Research of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; (L.M.); (G.S.)
- Correspondence: (A.M.N.); (C.G.d.l.R.-G.); Tel.: +34-985-89-21-31 (A.M.N.)
| |
Collapse
|
11
|
Effect of Intrapartum Antibiotics Prophylaxis on the Bifidobacterial Establishment within the Neonatal Gut. Microorganisms 2021; 9:microorganisms9091867. [PMID: 34576761 PMCID: PMC8471514 DOI: 10.3390/microorganisms9091867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are important disruptors of the intestinal microbiota establishment, linked to immune and metabolic alterations. The intrapartum antibiotics prophylaxis (IAP) is a common clinical practice that is present in more than 30% of labours, and is known to negatively affect the gut microbiota composition. However, little is known about how it affects to Bifidobacterium (sub)species level, which is one of the most important intestinal microbial genera early in life. This study presents qualitative and quantitative analyses of the bifidobacterial (sub)species populations in faecal samples, collected at 2, 10, 30 and 90 days of life, from 43 healthy full-term babies, sixteen of them delivered after IAP use. This study uses both 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing and q-PCR techniques for the analyses of the relative proportions and absolute levels, respectively, of the bifidobacterial populations. Our results show that the bifidobacterial populations establishment is affected by the IAP at both quantitative and qualitative levels. This practice can promote higher bifidobacterial diversity and several changes at a compositional level. This study underlines specific targets for developing gut microbiota-based products for favouring a proper bifidobacterial microbiota development when IAP is required.
Collapse
|
12
|
Saturio S, Nogacka AM, Suárez M, Fernández N, Mantecón L, Mancabelli L, Milani C, Ventura M, de los Reyes-Gavilán CG, Solís G, Arboleya S, Gueimonde M. Early-Life Development of the Bifidobacterial Community in the Infant Gut. Int J Mol Sci 2021; 22:ijms22073382. [PMID: 33806135 PMCID: PMC8036440 DOI: 10.3390/ijms22073382] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomic studies have shown that different factors, such as gestational age, delivery mode, or feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their impact on the specific bifidobacterial populations is not yet well understood. Here we studied the impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species were determined by q-PCR. Our results showed that the bifidobacterial population establishment is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative and quantitative changes. These data underline the need for understanding the impact of perinatal factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial populations such as Bifidobacterium. The data obtained provide indications for the selection of the species best suited for the development of bifidobacteria-based products for different groups of neonates and will help to develop rational strategies for favoring a healthy early microbiota development when this process is challenged.
Collapse
Affiliation(s)
- Silvia Saturio
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Marta Suárez
- Pediatrics Service, Hospital Universitario Central de Asturias, SESPA, 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nuria Fernández
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Pediatrics Service, Hospital de Cabueñes, SESPA, 33203 Gijón, Spain
| | - Laura Mantecón
- Pediatrics Service, Hospital Universitario Central de Asturias, SESPA, 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy; (L.M.); (C.M.); (M.V.)
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy; (L.M.); (C.M.); (M.V.)
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy; (L.M.); (C.M.); (M.V.)
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Gonzalo Solís
- Pediatrics Service, Hospital Universitario Central de Asturias, SESPA, 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Correspondence: (S.A.); (M.G.); Tel.: +34-985-892-131 (S.A. & M.G.)
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain; (S.S.); (A.M.N.); (C.G.d.l.R.-G.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Correspondence: (S.A.); (M.G.); Tel.: +34-985-892-131 (S.A. & M.G.)
| |
Collapse
|
13
|
Nogacka AM, de Los Reyes-Gavilán CG, Arboleya S, Ruas-Madiedo P, Martínez-Faedo C, Suarez A, He F, Harata G, Endo A, Salazar N, Gueimonde M. In vitro Selection of Probiotics for Microbiota Modulation in Normal-Weight and Severely Obese Individuals: Focus on Gas Production and Interaction With Intestinal Epithelial Cells. Front Microbiol 2021; 12:630572. [PMID: 33633711 PMCID: PMC7899977 DOI: 10.3389/fmicb.2021.630572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
The intestinal microbiota plays important roles in the maintenance of health. Strategies aiming at its modulation, such as probiotics, have received a deal of attention. Several strains have been studied in different in vitro models; however, the correlation of results obtained with the in vivo data has been limited. This questions the usefulness of such in vitro selection models, traditionally relying on over-simplified tests, not considering the influence of the accompanying microbiota or focusing on microbiota composition without considering functional traits. Here we assess the potential of six Bifidobacterium, Lactobacillus and Lacticaseibacillus strains in an in vitro model to determine their impact on the microbiota not just in terms of composition but also of functionality. Moreover, we compared the responses obtained in two different population groups: normal-weight and severely obese subjects. Fecal cultures were conducted to evaluate the impact of the strains on specific intestinal microbial groups, on the production of short-chain fatty acids, and on two functional responses: the production of gas and the interaction with human intestinal epithelial cells. The response to the different probiotics differed between both human groups. The addition of the probiotic strains did not induce major changes on the microbiota composition, with significant increases detected almost exclusively for the species added. Higher levels of gas production were observed in cultures from normal-weight subjects than in the obese population, with some strains being able to significantly reduce gas production in the latter group. Moreover, in obese subjects all the Bifidobacterium strains tested and Lacticaseibacillus rhamnosus GG were able to modify the response of the intestinal cells, restoring values similar to those obtained with the microbiotas of normal-weight subjects. Our results underline the need for the screening and selection of probiotics in a target-population specific manner by using appropriate in vitro models before enrolling in clinical intervention trials.
Collapse
Affiliation(s)
- Alicja Maria Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Ceferino Martínez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain.,Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Adolfo Suarez
- Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain.,Digestive Service, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Fang He
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Japan
| | - Akihito Endo
- Department of Food and Cosmetic Science, Tokyo University of Agriculture, Abashiri, Japan
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Diet, Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
14
|
Special Issue "Bifidobacteria: Insights from Ecology to Genomics of a Key Microbial Group of the Mammalian Gut Microbiota". Microorganisms 2020; 8:microorganisms8111660. [PMID: 33120914 PMCID: PMC7693948 DOI: 10.3390/microorganisms8111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
|