1
|
Whiteley LE, Rieckh G, Diggle FL, Alaga ZM, Nachbaur EH, Nachbaur WT, Whiteley M. Use of commercial or indigenous yeast impacts the S. cerevisiae transcriptome during wine fermentation. Microbiol Spectr 2024; 12:e0119424. [PMID: 39287451 PMCID: PMC11537062 DOI: 10.1128/spectrum.01194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Grapes have been cultivated for wine production for millennia. Wine production involves a complex biochemical process where sugars in grape must are converted into alcohol and other compounds by microbial fermentation, primarily by the yeast Saccharomyces cerevisiae. Commercially available S. cerevisiae strains are often used in winemaking, but indigenous (native) strains are gaining attention for their potential to contribute unique flavors. Recent advancements in high-throughput DNA sequencing have revolutionized our understanding of microbial communities during wine fermentation. Indeed, transcriptomic analysis of S. cerevisiae during wine fermentation has revealed a core gene expression program and provided insights into how this yeast adapts to fermentation conditions. Here, we assessed how the age of vines impacts the grape fungal microbiome and used transcriptomics to characterize microbial functions in grape must fermented with commercial and native S. cerevisiae. We discovered that ~130-year-old Zinfandel vines harbor higher fungal loads on their grapes compared to 20-year-old Zinfandel vines, but fungal diversity is similar. Additionally, a comparison of inoculated and uninoculated fermentations showed distinct fungal dynamics, with uninoculated fermentations harboring the yeasts Metschnikowia and Pichia. Transcriptomic analysis revealed significant differences in gene expression between fermentations inoculated and not inoculated with a commercial S. cerevisiae strain. Genes related to metabolism, stress response, and cell adhesion were differentially expressed, indicating varied functionality of S. cerevisiae in these fermentations. These findings provide insights into S. cerevisiae function during fermentation and highlight the potential for indigenous yeast to contribute to wine diversity. IMPORTANCE Understanding microbial functions during wine fermentation, particularly the role of Saccharomyces cerevisiae, is crucial for enhancing wine quality. While commercially available S. cerevisiae strains are commonly used, indigenous strains can offer unique flavors, potentially reflecting vineyard terroir. By leveraging high-throughput DNA sequencing and transcriptomic analysis, we explored the impact of vine age on the grape mycobiome and characterized microbial functions during grape fermentation. Our findings revealed that older vines harbor higher fungal loads, but fungal diversity remains similar across vine ages. Additionally, uninoculated fermentations exhibited diverse fungal dynamics, including the beneficial wine yeasts Metschnikowia and Pichia. Transcriptomic analysis uncovered significant differences in S. cerevisiae gene expression between inoculated and uninoculated fermentations, highlighting the potential of indigenous yeast to enhance wine diversity and inform winemaking practices.
Collapse
Affiliation(s)
- Lauren E. Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Georg Rieckh
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Frances L. Diggle
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Zach M. Alaga
- Alegría Vineyards and Acorn Winery, Healdsburg, California, USA
| | | | | | - Marvin Whiteley
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children’s Cystic Fibrosis Center, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Bedoya K, Buetas L, Rozès N, Mas A, Portillo MC. Influence of different stress factors during the elaboration of grape must's pieddecuve on the dynamics of yeast populations during alcoholic fermentation. Food Microbiol 2024; 123:104571. [PMID: 39038885 DOI: 10.1016/j.fm.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024]
Abstract
The pieddecuve (PdC) technique involves using a portion of grape must to undergo spontaneous fermentation, which is then used to inoculate a larger volume of must. This allows for promoting autochthonous yeasts present in the must, which can respect the typicality of the resulting wine. However, the real impact of this practice on the yeast population has not been properly evaluated. In this study, we examined the effects of sulphur dioxide (SO2), temperature, ethanol supplementation, and time on the dynamics and selection of yeasts during spontaneous fermentation to be used as PdC. The experimentation was conducted in a synthetic medium and sterile must using a multi-species yeast consortium and in un-inoculated natural grape must. Saccharomyces cerevisiae dominated both the PdC and fermentations inoculated with commercial wine yeast, displaying similar population growth regardless of the tested conditions. However, using 40 mg/L of SO2 and 1% (v/v) ethanol during spontaneous fermentation of Muscat of Alexandria must allowed the non-Saccharomyces to be dominant during the first stages, regardless of the temperature tested. These findings suggest that it is possible to apply the studied parameters to modulate the yeast population during spontaneous fermentation while confirming the effectiveness of the PdC methodology in controlling alcoholic fermentation.
Collapse
Affiliation(s)
- Katherine Bedoya
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Luis Buetas
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Nicolas Rozès
- Biotecnologia Microbiana dels Aliments, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Albert Mas
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - M Carmen Portillo
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| |
Collapse
|
3
|
Snyder T, Osborne J, Curtin C. Contributions of Hanseniaspora species to Pinot Noir microbial terroir in Oregon's Willamette Valley wine region. Appl Environ Microbiol 2024; 90:e0081024. [PMID: 39136488 PMCID: PMC11409673 DOI: 10.1128/aem.00810-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/18/2024] [Indexed: 09/19/2024] Open
Abstract
The apiculate yeast genus Hanseniaspora has appeared frequently in enological research for more than 100 years, mostly focused upon the species H. uvarum due to its notable capacity to cause spoilage. Recently, there has been increased research into the potential benefits of other Hanseniaspora species, such as H. vineae, in producing more complex wines. Furthermore, large-scale DNA sequencing-based (metabarcoding) vineyard ecology studies have suggested that Hanseniaspora species may not be evenly distributed. To address potential differences across geographical areas in Oregon, we sampled extensively from 12 vineyards within the Willamette Valley American Viticultural Area (AVA), across 2 sub-AVAs (Eola-Amity Hills and Yamhill-Carlton). Metabarcoding was then used to assess the contribution of Hanseniaspora to the grape berry fungal community and the impact of wine processing on diversity. While 6 of the 23 recognized Hanseniaspora species were present on Pinot Noir grapes in the Willamette Valley AVA, differences between vineyards were driven by the abundance of H. uvarum. Significant positive correlations between the amount of H. uvarum present in must and at cold soak, and then cold soak to early ferment were observed. While intuitive, it is worth noting that no prior studies have observed this across such a large number of grape samples from different vineyards. Our results provide clear evidence that the abundance of H. uvarum on grapes may be an important predictor of potential impacts on wine quality, particularly if performing cold soak, which acts as an enrichment step. IMPORTANCE Hanseniaspora yeasts are frequently found in uninoculated wine fermentations, and depending upon the species present, their contributions to the wine may be positive or negative. We found that in Oregon's Willamette Valley, the most common species of Hanseniaspora in Pinot Noir vineyards was the known spoilage organism, H. uvarum. This species was one of the strongest contributors to differences in fungal communities between different vineyards and was enriched during typical Pinot Noir processing. These results support Hanseniaspora as an integral and functional component of vineyard "microbial terroir" within Oregon.
Collapse
Affiliation(s)
- Tess Snyder
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - James Osborne
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Chris Curtin
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Shibayama K, Kondo K, Otoguro M. Yeast Diversity in Wine Grapes from Japanese Vineyards and Enological Traits of Indigenous Saccharomyces cerevisiae Strains. Microorganisms 2024; 12:1769. [PMID: 39338444 PMCID: PMC11433644 DOI: 10.3390/microorganisms12091769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Japan has numerous vineyards with distinct geographical and climatic conditions. To the best of our knowledge, there is no comprehensive analysis of the diversity of yeasts associated with wine grapes from Japan. This study aimed to determine yeast diversity in wine grapes from four wine-producing regions in Japan and to evaluate the physicochemical characteristics of wines produced with indigenous Saccharomyces cerevisiae strains isolated from two regions. A total of 2648 strains were isolated from nine wine grape samples. MALDI-TOF MS and 26S rDNA sequence analyses revealed that the strains belonged to 21 non-Saccharomyces yeasts and 1 Saccharomyces yeast (S. cerevisiae). Non-Saccharomyces yeasts were found in high quantities and were highly distributed among the wine grape samples. Differences in the distribution of the identified yeast species were noted among the different wine grape varieties and regions. Indigenous S. cerevisiae strains of different genotypes from different regions exhibit distinct physiological traits. Our findings are expected to enhance our understanding of the local yeasts associated with Japanese vineyards and contribute to obtaining cultures that can provide region-specific organoleptic characteristics to local wines produced in Japan.
Collapse
Affiliation(s)
- Kaito Shibayama
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Japan
| | - Kozue Kondo
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Japan
| | - Misa Otoguro
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Japan
| |
Collapse
|
5
|
Franco GC, Leiva J, Nand S, Lee DM, Hajkowski M, Dick K, Withers B, Soto L, Mingoa BR, Acholonu M, Hutchins A, Neely L, Anand A. Soil Microbial Communities and Wine Terroir: Research Gaps and Data Needs. Foods 2024; 13:2475. [PMID: 39200402 PMCID: PMC11354026 DOI: 10.3390/foods13162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Microbes found in soil can have a significant impact on the taste and quality of wine, also referred to as wine terroir. To date, wine terroir has been thought to be associated with the physical and chemical characteristics of the soil. However, there is a fragmented understanding of the contribution of vineyard soil microbes to wine terroir. Additionally, vineyards can play an important role in carbon sequestration since the promotion of healthy soil and microbial communities directly impacts greenhouse gas emissions in the atmosphere. We review 24 studies that explore the role of soil microbial communities in vineyards and their influence on grapevine health, grape composition, and wine quality. Studies spanning 2015 to 2018 laid a foundation by exploring soil microbial biogeography in vineyards, vineyard management effects, and the reservoir function of soil microbes for grape-associated microbiota. On the other hand, studies spanning 2019 to 2023 appear to have a more specific and targeted approach, delving into the relationships between soil microbes and grape metabolites, the microbial distribution at different soil depths, and microbial influences on wine flavor and composition. Next, we identify research gaps and make recommendations for future work. Specifically, most of the studies utilize targeted sequencing (16S, 26S, ITS), which only reveals community composition. Utilizing high-throughput omics approaches such as shotgun sequencing (to infer function) and transcriptomics (for actual function) is vital to determining the specific mechanisms by which soil microbes influence grape chemistry. Going forward, understanding the long-term effects of vineyard management practices and climate change on soil microbiology, grapevine trunk diseases, and the role of bacteriophages in vineyard soil and wine-making would be a fruitful investigation. Overall, the studies presented shed light on the importance of soil microbiomes and their interactions with grapevines in shaping wine production. However, there are still many aspects of this complex ecosystem that require further exploration and understanding to support sustainable viticulture and enhance wine quality.
Collapse
Affiliation(s)
- Gabriela Crystal Franco
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Jasmine Leiva
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Sanjiev Nand
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Danica Marvi Lee
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Michael Hajkowski
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Katherine Dick
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Brennan Withers
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - LuzMaria Soto
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Benjamin-Rafael Mingoa
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Michael Acholonu
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Amari Hutchins
- Department of Biology, Howard University, 2400 6th St NW, Washington, DC 20059, USA;
| | - Lucy Neely
- Neely Winery, Spring Ridge Vineyard, 555 Portola Road, Portola Valley, CA 94028, USA;
| | - Archana Anand
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| |
Collapse
|
6
|
Agarbati A, Comitini F, Ciani M, Canonico L. Occurrence and Persistence of Saccharomyces cerevisiae Population in Spontaneous Fermentation and the Relation with "Winery Effect". Microorganisms 2024; 12:1494. [PMID: 39065262 PMCID: PMC11278986 DOI: 10.3390/microorganisms12071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The yeast Saccharomyces cerevisiae ensures successful fermentation in winemaking, although the persistent use of commercial strains lead to the loss of aroma complexity of wines. Hence, the research of indigenous S. cerevisiae with proper oenological features and well adapted to specific wine-growing areas become of great interest for winemakers. Here, 206 pure cultures of S. cerevisiae were isolated from two wineries during a two-year sampling campaign and bio-typed through interdelta sequences analyses with the aim to evaluate the occurrence and persistence of the S. cerevisiae wild population linked to each winery. Both wineries belong to the same Verdicchio DOC wine area (Castelli di Jesi), and never used commercial yeasts during fermentation. Results showed 19 different biotypes with a specific population of S. cerevisiae in each winery, without cross-contamination with each other and with commercial starter strains. Moreover, inside each winery a persistence of some dominant biotypes was observed over time (three biotypes in winery 1; 95% of isolates in the two years and one biotype in winery 2; 20% of isolates in the two years), indicating a sort of "winery-effect". The evaluation of S. cerevisiae populations for the oenological characters by microfermentations showed a proper and well distinct aromatic imprinting on the resulted wines supporting the concept of "winery effect".
Collapse
Affiliation(s)
| | | | - Maurizio Ciani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (A.A.); (F.C.); (L.C.)
| | | |
Collapse
|
7
|
Onetto CA, Ward CM, Van Den Heuvel S, Hale L, Cuijvers K, Borneman AR. Temporal and spatial dynamics within the fungal microbiome of grape fermentation. Environ Microbiol 2024; 26:e16660. [PMID: 38822592 DOI: 10.1111/1462-2920.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Over 6 years, we conducted an extensive survey of spontaneous grape fermentations, examining 3105 fungal microbiomes across 14 distinct grape-growing regions. Our investigation into the biodiversity of these fermentations revealed that a small number of highly abundant genera form the core of the initial grape juice microbiome. Consistent with previous studies, we found that the region of origin had the most significant impact on microbial diversity patterns. We also discovered that certain taxa were consistently associated with specific geographical locations and grape varieties, although these taxa represented only a minor portion of the overall diversity in our dataset. Through unsupervised clustering and dimensionality reduction analysis, we identified three unique community types, each exhibiting variations in the abundance of key genera. When we projected these genera onto global branches, it suggested that microbiomes transition between these three broad community types. We further investigated the microbial community composition throughout the fermentation process. Our observations indicated that the initial microbial community composition could predict the diversity during the early stages of fermentation. Notably, Hanseniaspora uvarum emerged as the primary non-Saccharomyces species within this large collection of samples.
Collapse
Affiliation(s)
- Cristobal A Onetto
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chris M Ward
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | | | - Laura Hale
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Kathleen Cuijvers
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, Glen Osmond, South Australia, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Boban A, Milanović V, Veršić Bratinčević M, Botta C, Ferrocino I, Cardinali F, Ivić S, Rampanti G, Budić-Leto I. Spontaneous fermentation of Maraština wines: The correlation between autochthonous mycobiota and phenolic compounds. Food Res Int 2024; 180:114072. [PMID: 38395560 DOI: 10.1016/j.foodres.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Understanding fungal community dynamics during fermentation is important for assessing their influence on wine's phenolic content. The present study represents the first effort to explore the correlation between the autochthonous mycobiota of Maraština grapes collected from Dalmatian winegrowing sub-regions in Croatia and the phenolic composition, as well as the physicochemical parameters of wines produced through spontaneous fermentation. The metataxonomic approach revealed Metschnikowia pulcherrima, Metschnikowia fructicola and Hanseniaspora uvarum as the core mycobiota detected at the initial phase of fermentation. By contrast, Saccharomyces cerevisiae took over the dominance starting from the middle stage of fermentation. The wine's phenolic compounds were revealed by high-performance liquid chromatography, with tyrosol being the most abundant. Rhodotorula babjevae and Botrytis cinerea showed a positive correlation with p-hydroxybenzoic acid, gentisic acid, caffeic acid and cinnamic acid, while demonstrating a negative correlation with protocatechuic acid and chlorogenic acid. Heterophoma novae-verbascicola exhibited the opposite behaviour regarding the same phenolic compounds. The concentration of lactic acid was positively correlated with B. cinerea and negatively correlated with Het. novae-verbascicola. These findings serve as a foundation for in-depth investigations into the role of autochthonous grape mycobiota in phenolic transformation during spontaneous fermentation, potentially leading to the production of high-quality wines with unique terroir characteristics. Future studies should aim to explore the specific role played by individual yeast isolates in the formation of phenolic compounds.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split 21000, Croatia
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy.
| | | | - Cristian Botta
- Department of Agricultural, Forest and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy
| | - Stipe Ivić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split 21000, Croatia
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona 60131, Italy
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split 21000, Croatia
| |
Collapse
|
9
|
Ward CM, Onetto CA, Van Den Heuvel S, Cuijvers KM, Hale LJ, Borneman AR. Recombination, admixture and genome instability shape the genomic landscape of Saccharomyces cerevisiae derived from spontaneous grape ferments. PLoS Genet 2024; 20:e1011223. [PMID: 38517929 PMCID: PMC10990190 DOI: 10.1371/journal.pgen.1011223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/03/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Cultural exchange of fermentation techniques has driven the spread of Saccharomyces cerevisiae across the globe, establishing natural populations in many countries. Despite this, Oceania is thought to lack native populations of S. cerevisiae, only being introduced after colonisation. Here we investigate the genomic landscape of 411 S. cerevisiae isolated from spontaneous grape fermentations in Australia across multiple locations, years, and grape cultivars. Spontaneous fermentations contained highly recombined mosaic strains that exhibited high levels of genome instability. Assigning genomic windows to putative ancestral origin revealed that few closely related starter lineages have come to dominate the genetic landscape, contributing most of the genetic variation. Fine-scale phylogenetic analysis of loci not observed in strains of commercial wine origin identified widespread admixture with European derived beer yeast along with three independent admixture events from potentially endemic Oceanic lineages that was associated with genome instability. Finally, we investigated Australian ecological niches for basal isolates, identifying phylogenetically distinct S. cerevisiae of non-European, non-domesticated origin associated with admixture loci. Our results illustrate the effect commercial use of microbes may have on local microorganism genetic diversity and demonstrates the presence of non-domesticated, potentially endemic lineages of S. cerevisiae in Australian niches that are actively admixing.
Collapse
Affiliation(s)
- Chris M. Ward
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
| | - Cristobal A. Onetto
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Laura J. Hale
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
| | - Anthony R. Borneman
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Zhang Z, Wang H, Xia H, Sun L, Zhang Q, Yang H, Zhang J. Wine aroma modification by Hanseniaspora uvarum: A multiple-step strategy for screening potential mixed starters. Food Chem X 2023; 20:100930. [PMID: 38144769 PMCID: PMC10739847 DOI: 10.1016/j.fochx.2023.100930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 12/26/2023] Open
Abstract
Hanseniaspora uvarum is a prevalent yeast species in vineyards. However, its application in grape wine fermentation remains limited. This study used culture-dependent and -independent approaches to investigate the dynamics of H. uvarum during the spontaneous fermentation of Cabernet Sauvignon grapes. The results revealed that H. uvarum constituted 77.49 % of the non-Saccharomyces yeast population during fermentation. An indigenous strain, QTX-C10, was isolated from the 148 H. uvarum strains using a multistep screening strategy. The 1:1 co-inoculation of QTX-C10 with Saccharomyces cerevisiae proved to be an optimal strategy for mixed fermentation, resulting in a 48.54 %-59.55 % increase in ethyl esters in Cabernet Sauvignon wine and a 96.94 %-110.92 % increase in Chardonnay wine. Furthermore, this approach reduced the acetic acid levels by 12.50 %-17.07 % for Cabernet Sauvignon wine and 10.81 %-17.78 % for Chardonnay wine. Additionally, increased ethyl ester content may enhance the tropical fruit flavor of Cabernet Sauvignon wines.
Collapse
Affiliation(s)
- Zhong Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Huiqing Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hongchuan Xia
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
- Project Management Department, Yinchuan Wine Industry Development Service Center, Yinchuan, Ningxia 750021, China
| | - Lijun Sun
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qingchen Zhang
- College of Pharmacy, University of Florida, Gainesville, FL 32610, United States of America
| | - Hui Yang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junxiang Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
- College of Enology and Horticulture, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
11
|
López-Enríquez L, Vila-Crespo J, Rodríguez-Nogales JM, Fernández-Fernández E, Ruipérez V. Non- Saccharomyces Yeasts from Organic Vineyards as Spontaneous Fermentation Agents. Foods 2023; 12:3644. [PMID: 37835297 PMCID: PMC10572797 DOI: 10.3390/foods12193644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Currently, non-Saccharomyces yeasts are the subject of interest, among other things, for their contribution to the aromatic complexity of wines. In this study, the characterisation of non-Saccharomyces yeasts was addressed by their isolation during spontaneous fermentations of organic Verdejo grapes, obtaining a total of 484 isolates, of which 11% were identified by molecular techniques as non-Saccharomyces yeasts. Fermentative isolates belonging to the species Hanseniaspora meyeri, Hanseniaspora osmophila, Pichia guilliermondii, Pichia kudriavzevii, Torulaspora delbrueckii, and Wickerhamomyces anomalus were analysed. Significant differences were found in the yeast populations established at the different fermentation stages. Interestingly, W. anomalus stood up as a widely distributed species in vineyards, vintages, and fermentation stages. Several of the strains studied stood out for their biotechnological potential in the production of Verdejo wine, showing the presence of relevant enzymatic activity for the release of varietal aromas and the technological improvement of the winemaking process. Three enzymatic activities were found in an important number of isolates, β-glucosidase, protease, and β-lyase, implicated in the positive aromatic impact on this style of white wine. In that sense, all the isolates of W. anomalus presented those activities. T. delbrueckii isolates were highlighted for their significant β-lyase activity. In addition, T. delbrueckii was outlined because of its potential to achieve an elevated fermenting power, as well as the lack of lag phase. The results obtained highlight the importance of maintaining the microbial diversity that contributes to the production of wines with unique and distinctive characteristics of the production region.
Collapse
Affiliation(s)
- Lorena López-Enríquez
- Microbiology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (L.L.-E.); (J.V.-C.)
| | - Josefina Vila-Crespo
- Microbiology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (L.L.-E.); (J.V.-C.)
| | - José Manuel Rodríguez-Nogales
- Food Technology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (J.M.R.-N.); (E.F.-F.)
| | - Encarnación Fernández-Fernández
- Food Technology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (J.M.R.-N.); (E.F.-F.)
| | - Violeta Ruipérez
- Microbiology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (L.L.-E.); (J.V.-C.)
| |
Collapse
|
12
|
Castrillo D, Blanco P, Vélez S. Can Satellite Remote Sensing Assist in the Characterization of Yeasts Related to Biogeographical Origin? SENSORS (BASEL, SWITZERLAND) 2023; 23:2059. [PMID: 36850656 PMCID: PMC9962804 DOI: 10.3390/s23042059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Biogeography is a key concept associated with microbial terroir, which is responsible for the differentiation and uniqueness of wines. One of the factors influencing this microbial terroir is the vegetation, which in turn is influenced by climate, soil, and cultural practices. Remote sensing instruments can provide useful information about vegetation. This study analyses the relationship between NDVI, calculated using Sentinel-2 and Landsat-8 satellite images of different veraison dates, and microbial data obtained in 2015 from 14 commercial (organic and conventional) vineyards belonging to four Designations of Origin (DOs) from Galicia (northwest Spain). Microbial populations in grapes and musts were identified using PCR techniques and confirmed by sequencing. Statistical analyses were made using PCA, CCA, TB-PLS, and correlation analyses. This study confirms that the NDVI is positively correlated with the diversity of yeasts, both in grapes' surface and must samples. Moreover, the results of this study show: (i) Sentinel-2 images, as well as Landsat-8 images, can establish differences in NDVI related to yeast terroir in grapes and musts, as it is the most relevant DO factor, (ii) Sentinel-2 NDVI and yeast biogeography are moderately to strongly correlated, (iii) Sentinel-2 achieved a better delimitation of the DOs than Landsat-8 and can establish more accurate differences in NDVI-yeast terroir correlations, and (iv) a higher NDVI was associated with the yeast biogeographical patterns of the DOs with higher species richness (S) consisting of weakly fermenting yeasts (Hanseniaspora uvarum, Pichia spp., Starmerella bacillaris, and Zygosaccharomyces spp). However, NDVI values did not correlate well with biogeographic patterns of yeasts previously studied at frequency level (proportion or percentage of each species) in each particular DO. This study suggests that satellite imagery has the potential to be a valuable tool for wine quality management and a decision-making instrument for DO regulators and winegrowers.
Collapse
Affiliation(s)
- David Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro-Ourense, Spain
| | - Pilar Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428 Leiro-Ourense, Spain
| | - Sergio Vélez
- Information Technology Group, Wageningen University & Research, 6708 Wageningen, The Netherlands
| |
Collapse
|
13
|
Hawkins DL, Ryder J, Lee SA, Parish‐Virtue K, Fedrizzi B, Goddard MR, Knight SJ. Mixed yeast communities contribute to regionally distinct wine attributes. FEMS Yeast Res 2023; 23:foad005. [PMID: 36725210 PMCID: PMC9952052 DOI: 10.1093/femsyr/foad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/15/2022] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
There is evidence that vineyard yeast communities are regionally differentiated, but the extent to which this contributes to wine regional distinctiveness is not yet clear. This study represents the first experimental test of the hypothesis that mixed yeast communities-comprising multiple, region-specific, isolates, and species-contribute to regional wine attributes. Yeast isolates were sourced from uninoculated Pinot Noir fermentations from 17 vineyards across Martinborough, Marlborough, and Central Otago in New Zealand. New methodologies for preparing representative, mixed species inoculum from these significantly differentiated regional yeast communities in a controlled, replicable manner were developed and used to inoculate Pinot Noir ferments. A total of 28 yeast-derived aroma compounds were measured in the resulting wines via headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Yeast community region of origin had a significant impact on wine aroma, explaining ∼10% of the observed variation, which is in line with previous reports of the effects of region-specific Saccharomyces cerevisiae isolates on Sauvignon Blanc ferments. This study shows that regionally distinct, mixed yeast communities can modulate wine aroma compounds in a regionally distinct manner and are in line with the hypothesis that there is a microbial component to regional distinctiveness, or terroir, for New Zealand Pinot Noir.
Collapse
Affiliation(s)
- Diana Lynne Hawkins
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Jess Ryder
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Soon A Lee
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Katie Parish‐Virtue
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Matthew R Goddard
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Life and Environmental Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7DL, United Kingdom
| | - Sarah J Knight
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Croatian white grape variety Maraština: First taste of its indigenous mycobiota. Food Res Int 2022; 162:111917. [DOI: 10.1016/j.foodres.2022.111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022]
|
15
|
Chen Y, Jiang J, Song Y, Zang X, Wang G, Pei Y, Song Y, Qin Y, Liu Y. Yeast Diversity during Spontaneous Fermentations and Oenological Characterisation of Indigenous Saccharomyces cerevisiae for Potential as Wine Starter Cultures. Microorganisms 2022; 10:microorganisms10071455. [PMID: 35889174 PMCID: PMC9325129 DOI: 10.3390/microorganisms10071455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diversity of regional yeast can be influenced by geography, grape cultivars and the use of SO2, but at single vineyard scale in China, the impact of these factors on yeast population, particularly Saccharomyces cerevisiae, is not well studied. Here, we characterised yeast species and dynamics during spontaneous fermentations with/without SO2 using eight typical grape cultivars from Yuma vineyard in Ningxia wine region of China. Results show that distribution and abundance of yeast species varied by grape varieties, fermentation stage and SO2 treatment. A number of 290 S. cerevisiae isolates were further classified into 33 genotypes by Interdelta fingerprinting. A prevailing role of grape varieties in shaping the genetic divergence of S. cerevisiae in Yuma vineyard was observed, as compared to the impacts of fermentation stage and SO2 treatment. Pre-selected S. cerevisiae strains were subjected to vinification with Cabernet Sauvignon and Chardonnay. All strains completed fermentations but the physiochemical parameters and volatile profiles of wines were strain-specific. Some indigenous S. cerevisiae yielded more desirable aroma compounds compared to the commercial strains, among which NX16 and NX18 outcompeted others, therefore having potential for use as starters. This study provides comprehensive analysis on yeast diversity at vineyard scale in Ningxia. Information on the vinification using indigenous S. cerevisiae is of great value for improving Ningxia wine regionality.
Collapse
Affiliation(s)
- Yu Chen
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Jiao Jiang
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
| | - Yaoyao Song
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Xiaomin Zang
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Guoping Wang
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Yingfang Pei
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
| | - Yuyang Song
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
| | - Yi Qin
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
- Correspondence: (Y.Q.); (Y.L.)
| | - Yanlin Liu
- College of Enology, Northwest A & F University, Yangling, Xianyang 712100, China; (Y.C.); (J.J.); (Y.S.); (X.Z.); (G.W.); (Y.P.); (Y.S.)
- Ningxia Helan Mountain’s East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning 750104, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Xianyang 712100, China
- Correspondence: (Y.Q.); (Y.L.)
| |
Collapse
|
16
|
Wine Microbial Consortium: Seasonal Sources and Vectors Linking Vineyard and Winery Environments. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Winemaking involves a wide diversity of microorganisms with different roles in the process. The wine microbial consortium (WMC) includes yeasts, lactic acid bacteria and acetic acid bacteria with different implications regarding wine quality. Despite this technological importance, their origin, prevalence, and routes of dissemination from the environment into the winery have not yet been fully unraveled. Therefore, this study aimed to evaluate the WMC diversity and incidence associated with vineyard environments to understand how wine microorganisms overwinter and enter the winery during harvest. Soils, tree and vine barks, insects, vine leaves, grapes, grape musts, and winery equipment were sampled along four seasons. The isolation protocol included: (a) culture-dependent microbial recovery; (b) phenotypical screening to select fermenting yeasts, lactic acid, and acetic acid bacteria; and (c) molecular identification. The results showed that during all seasons, only 11.4% of the 1424 isolates presumably belonged to the WMC. The increase in WMC recovery along the year was mostly due to an increase in the number of sampled sources. Acetic acid bacteria (Acetobacter spp., Gluconobacter spp., Gluconoacetobacter spp.) were mostly recovered from soils during winter while spoilage lactic acid bacteria (Leuconostoc mesenteroides and Lactobacillus kunkeii) were only recovered from insects during véraison and harvest. The fermenting yeast Saccharomyces cerevisiae was only isolated from fermented juice and winery equipment. The spoilage yeast Zygosaccharomyces bailii was only recovered from fermented juice. The single species bridging both vineyard and winery environments was the yeast Hanseniaspora uvarum, isolated from insects, rot grapes and grape juice during harvest. Therefore, this species appears to be the best surrogate to study the dissemination of the WMC from vineyard into the winery. Moreover, the obtained results do not evidence the hypothesis of a perennial terroir-dependent WMC given the scarcity of their constituents in the vineyard environment along the year and the importance of insect dissemination.
Collapse
|
17
|
Perpetuini G, Pio Rossetti A, Battistelli N, Zulli C, Cichelli A, Arfelli G, Tofalo R. Impact of vineyard management on grape fungal community and Montepulciano d’Abruzzo wine quality. Food Res Int 2022; 158:111577. [DOI: 10.1016/j.foodres.2022.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
|
18
|
Ecological Distribution and Oenological Characterization of Native Saccharomyces cerevisiae in an Organic Winery. FERMENTATION 2022. [DOI: 10.3390/fermentation8050224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The relation between regional yeast biota and the organoleptic characteristics of wines has attracted growing attention among winemakers. In this work, the dynamics of a native Saccharomyces cerevisiae population was investigated in an organic winery. In this regard, the occurrence and the persistence of native S. cerevisiae were evaluated in the vineyard and winery and during spontaneous fermentation of two nonconsecutive vintages. From a total of 98 strains, nine different S. cerevisiae biotypes were identified that were distributed through the whole winemaking process, and five of them persisted in both vintages. The results of the oenological characterization of the dominant biotypes (I and II) show a fermentation behavior comparable to that exhibited by three common commercial starter strains, exhibiting specific aromatic profiles. Biotype I was characterized by some fruity aroma compounds, such as isoamyl acetate and ethyl octanoate, while biotype II was differentiated by ethyl hexanoate, nerol, and β-damascenone production also in relation to the fermentation temperature. These results indicate that the specificity of these resident strains should be used as starter cultures to obtain wines with distinctive aromatic profiles.
Collapse
|
19
|
Native Yeasts and Lactic Acid Bacteria Isolated from Spontaneous Fermentation of Seven Grape Cultivars from the Maule Region (Chile). Foods 2021; 10:foods10081737. [PMID: 34441515 PMCID: PMC8391128 DOI: 10.3390/foods10081737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Grapes are a source of native yeasts and lactic acid bacteria (LAB); however, the microbial make up is dependent on the grape cultivar and the regional growth conditions. Therefore, the aim of this study was to characterize the yeast and LAB in seven grape cultivars cultivated in Chile. Grape juices were fermented at 25 °C for 7 days. Samples were collected to analyze sugar, organic acids, and ethanol. Microbial evolution was measured with culture-dependent and molecular approaches. Then, a native isolated Candida oleophila was selected for further sequential fermentations with Saccharomyces cerevisiae. The grape cultivars in the Maule showed a diversity of non-Saccharomyces yeasts, with a greater diversity observed at the beginning of the fermentation. However, species from the Hansenasporia, Metschnikowia, Torulaspora, Lachancea, and Candida genera were detected after 7 days, suggesting tolerance to environments rich in ethanol, capability may be associated to the terroir studied, which is characterized by torrid weather and antique and traditional vineyards. The alcoholic fermentation negatively impacted the LAB population, and after 7 days only Leuconostoc mesenteroides was isolated. In the sequential fermentations, C. oleophila was able to produce fermented grape juices with <1.5 g/L glucose, 12.5% (v/v) alcohol, and low concentrations of malic (<1.00 g/L) and succinic (2.05 g/L) acids, while acetic acid reached values >0.3 (g/L). To our knowledge this is the first time C. oleophila has been reported as a potential starter culture for wine production. However, more studies are necessary to fully characterize the potential of C. oleophila on wine attributes.
Collapse
|
20
|
Chalvantzi I, Banilas G, Tassou C, Nisiotou A. Biogeographical Regionalization of Wine Yeast Communities in Greece and Environmental Drivers of Species Distribution at a Local Scale. Front Microbiol 2021; 12:705001. [PMID: 34276637 PMCID: PMC8278314 DOI: 10.3389/fmicb.2021.705001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
Recent research has expanded our understanding on vineyard-associated fungal community assembly, suggesting non-random distribution and implicating regional differences in the wine terroir effect. Here, we focused on the culturable fraction of the fungal community that resides on grapes and determine wine quality, the so-called wine yeast populations. We aimed to analyze local-scale yeast community assemblages and to test whether the hypothesis of biogeographical patterns also applies to wine yeasts in particular. Surveying 34 vineyards across four main viticultural zones in Greece showed significant trends in vineyard-specific patterns. At a local scale, viticultural regions were also linked to distinct yeast community compositions. Importantly, major yeast populations directly related to wine fermentation contributed significantly to the delimitation of regions, highlighting their potential influence on the regionality of wine characteristics. In terms of the microbial terroir influence, yeast communities within an area were temporarily stable, which is critical for the regional character of the wine. Community structure could be explained only partially by environmental features. Maximum temperature, elevation, and net precipitation were the highest correlated variables with the yeast community biogeographic patterns. Finally, we also showed that certain environmental factors may drive the population size of specific yeast populations. The present results indicate that the wine yeast community has a geographical character at local scale, which is an important feature of the microbial terroir concept and thus for the wine industry.
Collapse
Affiliation(s)
- Ioanna Chalvantzi
- Hellenic Agricultural Organization "Dimitra", Institute of Technology of Agricultural Products, Lykovrysi, Greece.,Department of Wine, Vine and Beverage Sciences, University of West Attica, Athens, Greece
| | - Georgios Banilas
- Department of Wine, Vine and Beverage Sciences, University of West Attica, Athens, Greece
| | - Chrysoula Tassou
- Hellenic Agricultural Organization "Dimitra", Institute of Technology of Agricultural Products, Lykovrysi, Greece
| | - Aspasia Nisiotou
- Hellenic Agricultural Organization "Dimitra", Institute of Technology of Agricultural Products, Lykovrysi, Greece
| |
Collapse
|
21
|
Spatio-Temporal Analysis of Satellite Imagery (NDVI) to Identify Terroir and Vineyard Yeast Differences according to Appellation of Origin (AOP) and Biogeographic Origin. J 2021. [DOI: 10.3390/j4030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Terroir is one of the core concepts associated with wine and presumes that the land from which the grapes are grown, the plant habitat, imparts a unique quality that is specific to that growing site. Additionally, numerous factors can influence yeast diversity, and terroir is among the most relevant. Therefore, it can be interesting to use Remote Sensing tools that help identify and give helpful information about the terroir and key characteristics that define the AOP (Appellation of Origin). In this study, the NDVI (Normalized Difference Vegetation Index) calculated from Landsat 8 imagery was used to perform a spatio-temporal analysis during 2013, 2014, and 2015 of several vineyards belonging to four different AOP in Galicia (Spain). This work shows that it is possible to use Remote Sensing for AOP delimitation. Results suggest: (i) satellite imagery can establish differences in terroir, (ii) the higher the NDVI, the higher the yeast species richness, (iii) the relationship between NDVI, terroir, and yeasts shows a stable trend over the years (Pearson’s r = 0.3894, p = 0.0119).
Collapse
|
22
|
Editorial for Special Issue "Yeast in Winemaking". Microorganisms 2021; 9:microorganisms9050940. [PMID: 33925702 PMCID: PMC8145253 DOI: 10.3390/microorganisms9050940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/03/2022] Open
|
23
|
From the vineyard to the cellar: new insights of Starmerella bacillaris (synonym Candida zemplinina) technological properties and genomic perspective. Appl Microbiol Biotechnol 2021; 105:493-501. [PMID: 33394145 DOI: 10.1007/s00253-020-11041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
A large diversity of yeasts can be involved in alcoholic fermentation; however, Starmerella bacillaris strains have gained great attention due to their relevant and particular characteristics. S. bacillaris is commonly known as an osmotolerant, acidogenic, psychrotolerant, and fructophilic yeast. Most strains of this species are high producers of glycerol and show low ethanol production rates, being highlighted as promising alternatives to the manufacture of low-alcohol beverages. The increased production of high alcohols, such as benzyl alcohol that has antifungal and antibacterial properties, highlights S. bacillaris potential as a biocontrol agent. After harvest, antifungal yeasts become part of the must microbiota and may also improve the fermentation process. Moreover, during the fermentation, S. bacillaris releases important molecules with biotechnological properties, such as mannoproteins and glutathione. Considering the potential biotechnological properties of S. bacillaris strains, this review presents an overview of recent trends concerning the application of S. bacillaris in fermented beverages. KEY POINTS: •S. bacillaris as an alternative to the production of low-alcohol beverages. •S. bacillaris strains present biocontrol potential. •Molecules released by S. bacillaris may be of great biotechnological interest.
Collapse
|
24
|
Rusch A, Beaumelle L, Giffard B, Alonso Ugaglia A. Harnessing biodiversity and ecosystem services to safeguard multifunctional vineyard landscapes in a global change context. ADV ECOL RES 2021. [DOI: 10.1016/bs.aecr.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
SSR-Marker Analysis—A Method for S. cerevisiae Strain Characterization and Its Application for Wineries. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Considering that many Saccharomyces cerevisiae strains exist and that they have different fermentation capacities, the challenge is to select the yeast strain that generates the most interesting wine character and wine flavor for the winemaker. A method based on simple sequence repeats (SSRs) markers, occurring in the yeast genome, was developed to differentiate the collected S.cerevisiae strains. For the amplification of the polymorphic SSR markers performed by polymerase chain reaction (PCR), two primer sets showing different size products for different S. cerevisiae strains were designed. The PCR-method with gel electrophoresis was validated using capillary sequencing and then used as a service for winegrowers combined with a sensory analysis via napping. This approach can be used for the preservation of the yeast diversity associated with given terroirs and as an option for an increased safety of fermentations. The application of S. cerevisiae strains collected in spontaneous fermentations and used for fermentation sustains the initial character of the wine and ensures a secure fermentation at the same time.
Collapse
|