1
|
Makambai A, Mazhitova A, Altıntaş AK, Kuleasan H. Application of selected lactic acid bacteria isolates for bread production without baker's yeast. Food Sci Biotechnol 2024; 33:3279-3290. [PMID: 39328226 PMCID: PMC11422332 DOI: 10.1007/s10068-024-01571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 09/28/2024] Open
Abstract
The isolates of lactic acid bacteria (LAB) from traditional fermented koumiss and homemade dry rye sourdough were examined for their potential to be used in bread production without baker's yeast. Among twenty isolates, three with superior fermentation ability and acidification capability were identified by 16S rRNA gene sequencing. Leuconostoc mesenteroides from koumiss, Levilactobacillus brevis from 48 h activated rye sourdough, and Leuconostoc citreum from rye sourdough extract were singly and mixed (1:1:1) inoculated into liquid sourdoughs and used for bread-making tests. Bread prepared with Saccharomyces cerevisiae was used as the control. The substitution of water with whey in LAB fermentation demonstrated lower pH and higher total titratable acidity values in the sourdough. The resulting bread's color parameters, textural properties, and sensory characteristics confirmed the suitability of the selected strains to produce bread without baker's yeast and highlighted the enhancement of new starter varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01571-7.
Collapse
Affiliation(s)
- Azhar Makambai
- Department of Food Engineering, Kyrgyz-Turkish Manas University, Chyngyz Aitmatov Campus (Djal), Bishkek, 720038 Kyrgyz Republic
| | - Aichurok Mazhitova
- Department of Food Engineering, Kyrgyz-Turkish Manas University, Chyngyz Aitmatov Campus (Djal), Bishkek, 720038 Kyrgyz Republic
| | | | - Hakan Kuleasan
- Department of Food Engineering, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
2
|
Rathod BG, Pandala S, Poosarla VG. A Novel Halo-Acid-Alkali-Tolerant and Surfactant Stable Amylase Secreted from Halophile Bacillus siamensis F2 and Its Application in Waste Valorization by Bioethanol Production and Food Industry. Appl Biochem Biotechnol 2023; 195:4775-4795. [PMID: 37171761 DOI: 10.1007/s12010-023-04559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
The extracellular amylase production level by the moderate halophile Bacillus siamensis F2 was optimized, and the enzyme was biochemically characterized. The culture parameters for NaCl, carbon, nitrogen, pH, and temperature were optimized for high titers of amylase production. Growing B. siamensis F2 cultures in Great Salt Lake-2 medium with additions of (in g/L) NaCl (100), starch (30), yeast extract (2), KNO3 (2), and MgSO4 (1) at pH 8, 30 °C resulted in the maximum amylase production (4.2 U/ml). The amylase was active across a wide range of salinities (0 to 30% NaCl), pH (5.0-10.0), and temperatures (20-70 °C) and showed good stability with surfactants (sodium dodecyl sulfate (SDS) and Triton X-100); hence, it was identified as halo-acid-alkali-tolerant and surfactant stable. Temperature, pH, and salinity were optimal for amylase activity at 50 °C, pH 7, and 5% NaCl, respectively. It also generates amylase by utilizing agricultural wastes like sugarcane bagasse, sweet potato peel, and rice husk. Based on the performance of B. siamensis F2 using agricultural wastes and synthesizing amylase, the current study attempted to produce bioethanol by coculturing with baker's yeast using sugarcane bagasse and sweet potato peel as a substrate, which yielded 47 and 57 g/L of bioethanol, respectively. Besides bioethanol production, amylase secreted by F2 was also employed for juice clarification for better yield and clarity and for softening dough to produce better-quality buns. This novel amylase may have many potential applications in waste valorization, biorefinery sectors, and food industries.
Collapse
Affiliation(s)
- Baliram Gurunath Rathod
- Department of Microbiology and FST (Food Science & Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Srinija Pandala
- Department of Microbiology and FST (Food Science & Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Venkata Giridhar Poosarla
- Department of Microbiology and FST (Food Science & Technology), GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
3
|
Nissen L, Casciano F, Di Nunzio M, Galaverna G, Bordoni A, Gianotti A. Effects of the replacement of nitrates/nitrites in salami by plant extracts on colon microbiota. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
4
|
Liu L, Li JT, Li SH, Liu LP, Wu B, Wang YW, Yang SH, Chen CH, Tan FR, He MX. The potential use of Zymomonas mobilis for the food industry. Crit Rev Food Sci Nutr 2022; 64:4134-4154. [PMID: 36345974 DOI: 10.1080/10408398.2022.2139221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Zymomonas mobilis is a gram-negative facultative anaerobic spore, which is generally recognized as a safe. As a promising ethanologenic organism for large-scale bio-ethanol production, Z. mobilis has also shown a good application prospect in food processing and food additive synthesis for its unique physiological characteristics and excellent industrial characteristics. It not only has obvious advantages in food processing and becomes the biorefinery chassis cell for food additives, but also has a certain healthcare effect on human health. Until to now, most of the research is still in theory and laboratory scale, and further research is also needed to achieve industrial production. This review summarized the physiological characteristics and advantages of Z. mobilis in food industry for the first time and further expounds its research status in food industry from three aspects of food additive synthesis, fermentation applications, and prebiotic efficacy, it will provide a theoretical basis for its development and applications in food industry. This review also discussed the shortcomings of its practical applications in the current food industry, and explored other ways to broaden the applications of Z. mobilis in the food industry, to promote its applications in food processing.
Collapse
Affiliation(s)
- Lu Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
- College of Food and Bioengineering, Chengdu University, Chengdu, P.R. China
| | - Jian-Ting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Sheng-Hao Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Lin-Pei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Yan-Wei Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Shi-Hui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, Hubei, P.R. China
| | - Cheng-Han Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Fu-Rong Tan
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
| | - Ming-Xiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, P.R. China
- College of Food and Bioengineering, Chengdu University, Chengdu, P.R. China
- Institute of Ecological Environment, Chengdu University of Technology, Chengdu, P.R. China
- Chengdu National Agricultural Science and Technology Center, Chengdu, P.R. China
| |
Collapse
|
5
|
Red Beetroot Fermentation with Different Microbial Consortia to Develop Foods with Improved Aromatic Features. Foods 2022; 11:foods11193055. [PMID: 36230131 PMCID: PMC9562875 DOI: 10.3390/foods11193055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The European culinary culture relies on a wide range of fermented products of plant origin, produced mostly through spontaneous fermentation. Unfortunately, this kind of fermentations is difficult to standardize. Therefore, the use of commercial starter cultures is becoming common to achieve more stable, reproducible, and predictable results. Among plant-based fermentation processes, that of the red beet (Beta vulgaris L. var. conditiva) is scarcely described in the scientific literature. In this work, we compared different types of fermentation methods of beetroot and evaluated the processes' micro-biological, physico-chemical, structural, and volatilome features. A multi-variate analysis was used to match the production of specific VOCs to each starter and to define the correlations between the process variables and volatilome. Overall, the results showed a successful lactic acid fermentation. The analysis of the volatilome clearly discriminated the metabolic profiles of the different fermentations. Among them, the sample fermented with the mixture was the one with the most complex and diversified volatilome. Furthermore, samples did not appear softened after fermentation. Although this work had its weaknesses, such as the limited number of samples and variety, it may pave the way for the standardization of artisanal fermentation procedures of red beetroot in order to improve the quality and safety of the derived food products.
Collapse
|
6
|
Picozzi C, Clagnan E, Musatti A, Rollini M, Brusetti L. Characterization of Two Zymomonas mobilis Wild Strains and Analysis of Populations Dynamics during Their Leavening of Bread-like Doughs. Foods 2022; 11:foods11182768. [PMID: 36140896 PMCID: PMC9497783 DOI: 10.3390/foods11182768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023] Open
Abstract
Two Zymomonas mobilis wild strains (UMB478 and 479) isolated from water kefir were characterized for their biomass production levels and leavening performance when used as the inoculum of a real bread-like dough formulation. The obtained baked product would be consumable by people with adverse responses to Saccharomyces cerevisiae. In liquid cultures, the two strains reached similar biomass concentration (0.7 g CDW/L). UMB479 showed an interesting resistance to NaCl (MBC 30 g/L), that may be useful in the bakery sector. When inoculated in doughs, UMB479 produced the maximum dough volume (650 mL) after 5 h, glucose was almost consumed and 1 g/100 g of ethanol produced, +200% respective to UMB478. Using S. cerevisiae for comparison purposes, the dough doubled its volume fast, in only 2 h, but reached a final level of 575 mL, lower than that achieved by Z. mobilis. The analysis of bacterial and fungal population dynamics during dough leavening was performed through the Automated Ribosomal Intergenic Spacer Analysis (ARISA); doughs leavened by UMB479 showed an interesting decrease in fungal richness after leavening. S. cerevisiae, instead, created a more complex fungal community, similar before and after leavening. Results will pave the way for the use of Z. mobilis UMB479 in commercial yeast-free leavened products.
Collapse
Affiliation(s)
- Claudia Picozzi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Elisa Clagnan
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Alida Musatti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Manuela Rollini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-0250319150
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
7
|
Torbica A, Radosavljević M, Belović M, Tamilselvan T, Prabhasankar P. Biotechnological tools for cereal and pseudocereal dietary fibre modification in the bakery products creation – Advantages, disadvantages and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
|
9
|
Nissen L, Casciano F, Babini E, Gianotti A. The Exploitation of a Hempseed Byproduct to Produce Flavorings and Healthy Food Ingredients by a Fermentation Process. Microorganisms 2021; 9:microorganisms9122418. [PMID: 34946020 PMCID: PMC8707447 DOI: 10.3390/microorganisms9122418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Following the One Health principles in food science, the challenge to valorize byproducts from the industrial sector is open. Hemp (Cannabis sativa subsp. sativa) is considered an important icon of sustainability and as an alternative food source. Hemp seed bran, in particular, is a byproduct of industrial hemp seed processing, which is not yet valorized. The success, and a wider market diffusion of hemp seed for food applications, is hindered by its unpleasant taste, which is produced by certain compounds that generally overwhelm the pleasant bouquet of the fresh product. This research concerns the exploration of hemp seed bran through fermentation using beneficial lactobacilli, focusing on the sensorial and bioactive traits of the products when they are subjected to bacterial transformation. By studying of the aromatic profile formation during the fermentation process the aim was to modulate it in order to reduce off-odors without affecting the presence of healthy volatile organic compounds (VOCs). Applying multivariate analyses, it was possible to target the contribution of processing parameters to the generation of flavoring and bioactive compounds. To conclude, the fermentation process proposed was able to reduce unpleasant VOCs, whilst at the same time keeping the healthy ones, and it also improved nutritional quality, depending on time and bacterial starters. The fermentation proposed was a sustainable biotechnological approach that fitted perfectly with the valorization of hemp byproducts from the perspective of a green-oriented industrial process that avoids synthetic masking agents.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI (Interdepartmental Centre of Agri-Food Industrial Research), Alma Mater Studiorum—University of Bologna, P.za Goidanich 60, 47521 Cesena, Italy; (L.N.); (E.B.)
- DISTAL (Department of Agricultural and Food Sciences), Alma Mater Studiorum—University of Bologna, V. le Fanin 44, 40127 Bologna, Italy;
| | - Flavia Casciano
- DISTAL (Department of Agricultural and Food Sciences), Alma Mater Studiorum—University of Bologna, V. le Fanin 44, 40127 Bologna, Italy;
| | - Elena Babini
- CIRI (Interdepartmental Centre of Agri-Food Industrial Research), Alma Mater Studiorum—University of Bologna, P.za Goidanich 60, 47521 Cesena, Italy; (L.N.); (E.B.)
- DISTAL (Department of Agricultural and Food Sciences), Campus of Food Sciences, Alma Mater Studiorum—University of Bologna, P.za Goidanich 60, 47521 Cesena, Italy
| | - Andrea Gianotti
- CIRI (Interdepartmental Centre of Agri-Food Industrial Research), Alma Mater Studiorum—University of Bologna, P.za Goidanich 60, 47521 Cesena, Italy; (L.N.); (E.B.)
- DISTAL (Department of Agricultural and Food Sciences), Alma Mater Studiorum—University of Bologna, V. le Fanin 44, 40127 Bologna, Italy;
- DISTAL (Department of Agricultural and Food Sciences), Campus of Food Sciences, Alma Mater Studiorum—University of Bologna, P.za Goidanich 60, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
10
|
Multiunit In Vitro Colon Model for the Evaluation of Prebiotic Potential of a Fiber Plus D-Limonene Food Supplement. Foods 2021; 10:foods10102371. [PMID: 34681420 PMCID: PMC8535099 DOI: 10.3390/foods10102371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The search for new fiber supplements that can claim to be "prebiotic" is expanding fast, as the role of prebiotics and intestinal microbiota in well-being has been well established. This work explored the prebiotic potential of a novel fiber plus D-Limonene supplement (FLS) in comparison to fructooligosaccharides (FOS) over distal colonic fermentation with the in vitro model MICODE (multi-unit in vitro colon gut model). During fermentation, volatilome characterization and core microbiota quantifications were performed, then correlations among volatiles and microbes were interpreted. The results indicated that FLS generated positive effects on the host gut model, determining: (i) eubiosis; (ii) increased abundance of beneficial bacteria, as Bifidobacteriaceae; (iii) production of beneficial compounds, as n-Decanoic acid; (iv) reduction in detrimental bacteria, as Enterobaceteriaceae; (v) reduction in detrimental compounds, as skatole. The approach that we followed permitted us to describe the prebiotic potential of FLS and its ability to steadily maintain the metabolism of colon microbiota over time. This aspect is two-faced and should be investigated further because if a fast microbial turnover and production of beneficial compounds is a hallmark of a prebiotic, the ability to reduce microbiota changes and to reduce imbalances in the productions of microbial metabolites could be an added value to FLS. In fact, it has been recently demonstrated that these aspects could serve as an adjuvant in metabolic disorders and cognitive decline.
Collapse
|
11
|
Nissen L, Casciano F, Gianotti A. Volatilome changes during probiotic fermentation of combined soy and rice drinks. Food Funct 2021; 12:3159-3169. [PMID: 33729245 DOI: 10.1039/d0fo03337e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant-based drinks as a substitute for animal milk consumption are crucial products in the food industry. Soy and rice drinks are the most successful milk substitutes but are low in fiber and protein contents, respectively, whilst being rich in sugars. Generally, an improvement is foreseen; thus, apart from supplement addition, a natural occurring strategy is functionalizing the drinks by beneficial bacteria fermentation. The aim of this work is to develop novel plant-based drinks assessing different mixtures of soy and rice milks fermented with single or multi-strain probiotics (Lactobacillus fermentum, L. plantarum, L. helveticus, Bifidobacterium bifidum, and B. longum). The drinks were characterized to study bacterial performances, by means of culture-dependent and -independent techniques, and their volatilome, by means of solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Through multivariate analysis, these features were investigated and correlated to define accurate descriptors of the produced functional drinks. The results showed that combined drinks and multi-strain fermentation generated higher-value products. For example, combined drinks in comparison with single ones had a lower amount of toxic 2-acetyl-3,5-dimethylfuran and higher abundances of desirable compounds such as 2-butanone, 3-hydroxy and butanoic acid. Multivariate analysis of volatile metabolites and physiological parameters could offer a novel approach to assess the quality of functional plant-based drinks and result in a decisional tool for industrial applications.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI-CIRI-Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum - University of Bologna, P.za G. Goidanich 60, 47521 Cesena, Italy.
| | | | | |
Collapse
|
12
|
Nissen L, Casciano F, Gianotti A. Plant Volatiles of Lettuce and Chicory Cultivated in Aquaponics Are Associated to Their Microbial Community. Microorganisms 2021; 9:microorganisms9030580. [PMID: 33808993 PMCID: PMC7998580 DOI: 10.3390/microorganisms9030580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, an aquaponic cultivation system for Lactuca sativa (L.) and Chicorium intybus (L.) was compared to a hydroponic one, focusing on the main microbial populations related to food safety and their volatile compounds (VOCs), concluding with Spearman correlations among the microbes and VOCs. Different sections of both systems were sampled at the end of the commercial development of the plants. Plants cultivated in aquaponics were in general more contaminated than those from hydroponics, while for the cultivation waters a higher contamination of the hydroponics than aquaponics system was unexpectedly observed. Furthermore, the chicory exhibited higher levels of all microbial groups compared to lettuce grown under the same cultivation system. The results obtained also showed correlations between the distribution of some VOCs and microbial groups in the phyllosphere, while some examples of positive correlations between 2-nonanone (a positive phytostimulant compound) and anaerobic bacilli of the rhizosphere in lettuce were reported. So far, multivariate analysis of VOCs was able to discriminate on the basis of varieties but not on the cultivation systems. In conclusion, the microbial characteristics of the two ecosystems depended both on plant variety and cultivation method but further studies will need to deeply investigate the variables influencing the microbial quality of vegetable foods obtained by aquaponics. On the other hand, the analysis of the VOCs was more related to the microbial community of each plant variety considered, whatever the cultivation system. In precision agriculture, metabolomics may represent an opportunity to study the holobiome and through it the interactions between plants and their microbial populations, to possibly provide for a tool to assess the microbiological quality of vegetable foods obtained by aquaponic systems.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI—Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum—University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy;
| | - Flavia Casciano
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy;
| | - Andrea Gianotti
- CIRI—Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum—University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy;
- DiSTAL—Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, P.za G. Goidanich, 60, 47521 Cesena, Italy;
- Correspondence:
| |
Collapse
|
13
|
Nissen L, Casciano F, Chiarello E, Di Nunzio M, Bordoni A, Gianotti A. Colonic In Vitro Model Assessment of the Prebiotic Potential of Bread Fortified with Polyphenols Rich Olive Fiber. Nutrients 2021; 13:nu13030787. [PMID: 33673592 PMCID: PMC7997273 DOI: 10.3390/nu13030787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
The use of olive pomace could represent an innovative and low-cost strategy to formulate healthier and value-added foods, and bakery products are good candidates for enrichment. In this work, we explored the prebiotic potential of bread enriched with Polyphenol Rich Fiber (PRF), a defatted olive pomace byproduct previously studied in the European Project H2020 EcoProlive. To this aim, after in vitro digestion, the PRF-enriched bread, its standard control, and fructo-oligosaccharides (FOS) underwent distal colonic fermentation using the in vitro colon model MICODE (multi-unit colon gut model). Sampling was done prior, over and after 24 h of fermentation, then metabolomic analysis by Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (SPME GCMS), 16S-rDNA genomic sequencing of colonic microbiota by MiSeq, and absolute quantification of main bacterial species by qPCR were performed. The results indicated that PRF-enriched bread generated positive effects on the host gut model: (i) surge in eubiosis; (ii) increased abundance of beneficial bacterial groups, such as Bifidobacteriaceae and Lactobacillales; (iii) production of certain bioactive metabolites, such as low organic fatty acids; (iv) reduction in detrimental compounds, such as skatole. Our study not only evidenced the prebiotic role of PRF-enriched bread, thereby paving the road for further use of olive by-products, but also highlighted the potential of the in vitro gut model MICODE in the critical evaluation of functionality of food prototypes as modulators of the gut microbiota.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI-Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (M.D.N.); (A.B.); (A.G.)
- Correspondence: ; Tel.: +39-0547-338-146
| | - Flavia Casciano
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (F.C.); (E.C.)
| | - Elena Chiarello
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (F.C.); (E.C.)
| | - Mattia Di Nunzio
- CIRI-Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (M.D.N.); (A.B.); (A.G.)
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (F.C.); (E.C.)
| | - Alessandra Bordoni
- CIRI-Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (M.D.N.); (A.B.); (A.G.)
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (F.C.); (E.C.)
| | - Andrea Gianotti
- CIRI-Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (M.D.N.); (A.B.); (A.G.)
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (F.C.); (E.C.)
| |
Collapse
|
14
|
Adebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO, Abrahams AM, Tugizimana F. Application of gas chromatography–mass spectrometry (GC‐MS)‐based metabolomics for the study of fermented cereal and legume foods: A review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14794] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Samson Adeoye Oyeyinka
- School of Agriculture and Food Technology Alafua Campus University of the South Pacific Suva Fiji
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Xi Feng
- Department of Nutrition Food Science and Packaging San Jose State University One Washington Square San Jose CA95192USA
| | - Jonathan D. Wilkin
- Division of Engineering and Food Science School of Applied Sciences Abertay University Dundee United Kingdom
| | - Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P. O. Box 524Bunting Road Campus Johannesburg South Africa
| | - Adrian Mark Abrahams
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Fidele Tugizimana
- International R&D Omnia Group, Ltd P.O. Box 69888 Gauteng South Africa
| |
Collapse
|