1
|
Callanan S, Talaei M, Delahunt A, Shaheen SO, McAuliffe FM. Low glycaemic index diet in pregnancy and child asthma: follow-up of the ROLO trial. Br J Nutr 2024:1-11. [PMID: 39466114 DOI: 10.1017/s0007114524001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epidemiological evidence suggests that a higher intake of sugar during pregnancy is associated with a higher risk of childhood asthma and atopy. However, randomised trial evidence supporting such a link is lacking. This study aimed to examine whether a low glycaemic index (GI) dietary intervention during pregnancy decreases the risk of childhood asthma and eczema. This is a secondary analysis of 514 children from the ROLO trial. Healthy women were randomised to receive an intervention of low GI dietary advice or routine care from early pregnancy. Mothers reported current doctor-diagnosed eczema in their children at 2 years (n 271) and current doctor-diagnosed asthma and eczema in their children at 5 (n 357) and 9-11 years (n 391) of age. Multivariable logistic regression models were used test the effect of the intervention on child outcomes overall and stratified by maternal education. There was a suggestion of a reduction in asthma at 5 years of age in children whose mothers received the low GI dietary intervention during pregnancy compared with usual care (adjusted OR 0·46 (95 % CI 0·19, 1·09); P = 0·08). In stratified adjusted analyses, the intervention was associated with a reduced risk of asthma at 5 years of age in children born to mothers with incomplete tertiary level education but not in those with complete tertiary level education (OR 0·14 (95 % CI 0·02, 0·69); P = 0·010 and OR 1·03 (95 % CI 0·34, 3·13); P = 0·94, respectively). A low GI diet in pregnancy may reduce the risk of developing asthma in childhood, particularly amongst children born to mothers with lower educational attainment.
Collapse
Affiliation(s)
- Sophie Callanan
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Republic of Ireland
| | - Mohammad Talaei
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna Delahunt
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Republic of Ireland
| | - Seif O Shaheen
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Republic of Ireland
| |
Collapse
|
2
|
Suárez-Martínez C, Santaella-Pascual M, Yagüe-Guirao G, García-Marcos L, Ros G, Martínez-Graciá C. The Early Appearance of Asthma and Its Relationship with Gut Microbiota: A Narrative Review. Microorganisms 2024; 12:1471. [PMID: 39065238 PMCID: PMC11278858 DOI: 10.3390/microorganisms12071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is, worldwide, the most frequent non-communicable disease affecting both children and adults, with high morbidity and relatively low mortality, compared to other chronic diseases. In recent decades, the prevalence of asthma has increased in the pediatric population, and, in general, the risk of developing asthma and asthma-like symptoms is higher in children during the first years of life. The "gut-lung axis" concept explains how the gut microbiota influences lung immune function, acting both directly, by stimulating the innate immune system, and indirectly, through the metabolites it generates. Thus, the process of intestinal microbial colonization of the newborn is crucial for his/her future health, and the alterations that might generate dysbiosis during the first 100 days of life are most influential in promoting hypersensitivity diseases. That is why this period is termed the "critical window". This paper reviews the published evidence on the numerous factors that can act by modifying the profile of the intestinal microbiota of the infant, thereby promoting or inhibiting the risk of asthma later in life. The following factors are specifically addressed in depth here: diet during pregnancy, maternal adherence to a Mediterranean diet, mode of delivery, exposure to antibiotics, and type of infant feeding during the first three months of life.
Collapse
Affiliation(s)
- Clara Suárez-Martínez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Marina Santaella-Pascual
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Genoveva Yagüe-Guirao
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Microbiology Service, Virgen de La Arrixaca University Clinical Hospital, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Pediatric Allergy and Pulmonology Units, Virgen de La Arrixaca University Clinical Hospital, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Gaspar Ros
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Carmen Martínez-Graciá
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
3
|
Inchingolo F, Inchingolo AM, Latini G, Ferrante L, de Ruvo E, Campanelli M, Longo M, Palermo A, Inchingolo AD, Dipalma G. Difference in the Intestinal Microbiota between Breastfeed Infants and Infants Fed with Artificial Milk: A Systematic Review. Pathogens 2024; 13:533. [PMID: 39057760 PMCID: PMC11280328 DOI: 10.3390/pathogens13070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota (GM) plays a crucial role in human health, particularly during the first years of life. Differences in GM between breastfed and formula (F)-fed infants may influence long-term health outcomes. This systematic review aims to compare the gut microbiota of breastfed infants with that of F-fed infants and to evaluate the clinical implications of these differences. We searched databases on Scopus, Web of Science, and Pubmed with the following keywords: "gut microbiota", "gut microbiome", and "neonatal milk". The inclusion criteria were articles relating to the analysis of the intestinal microbiome of newborns in relation to the type of nutrition, clinical studies or case series, excluding reviews, meta-analyses, animal models, and in vitro studies. The screening phase ended with the selection of 13 publications for this work. Breastfed infants showed higher levels of beneficial bacteria such as Bifidobacterium and Lactobacillus, while F-fed infants had a higher prevalence of potentially pathogenic bacteria, including Clostridium difficile and Enterobacteriaceae. Infant feeding type influences the composition of oral GM significantly. Breastfeeding promotes a healthier and more diverse microbial ecosystem, which may offer protective health benefits. Future research should explore strategies to improve the GM of F-fed infants and understand the long-term health implications.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Angelo Michele Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Giulia Latini
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Laura Ferrante
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Elisabetta de Ruvo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Merigrazia Campanelli
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Marialuisa Longo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Gianna Dipalma
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| |
Collapse
|
4
|
Wang T, Song G, Sun M, Zhang Y, Zhang B, Peng M, Li M. Nerolidol attenuates airway inflammation and airway remodeling and alters gut microbes in ovalbumin-induced asthmatic mice. Cell Biochem Funct 2024; 42:e3899. [PMID: 38088534 DOI: 10.1002/cbf.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/26/2024]
Abstract
Asthma is a common respiratory disease associated with airway inflammation. Nerolidol is an acyclic sesquiterpenoid with anti-inflammatory properties. BALB/C mice were sensitized with ovalbumin (OVA) to induce asthma symptoms and given different doses of Nerolidol. We found that Nerolidol reduced OVA-induced inflammatory cell infiltration, the number of goblet cells and collagen deposition in lung tissue. Nerolidol reduced the OVA-specific IgE levels in serum and alveolar lavage fluid in an asthma model. Immunohistochemical staining of α-SMA (the marker of airway smooth muscle) showed that Nerolidol caused bronchial basement membrane thinning in asthmatic mice. The hyperplasia of airway smooth muscle cells (ASMCs) is an important feature of airway remodeling in asthma. ASMCs were treated with 10 ng/mL TGF-β to simulate the pathological environment of asthma in vitro and then treated with different doses of Nerolidol. Nerolidol inhibited the activity of TGF-β/Smad signaling pathway both in the lung tissue of OVA-induced mouse and TGF-β-stimulated ASMCs. 16s rRNA sequencing was performed on feces of normal mice, the changes of intestinal flora in OVA-induced asthmatic mice and Nerolidol-treated asthmatic mice were studied. The results showed that Nerolidol reversed the reduced gut microbial alpha diversity in asthmatic mice. Nerolidol changed the relative abundance of gut bacteria at different taxonomic levels. At the phylum level, the dominant bacteria were Bacteroidota, Firmicutes, and Proteobacteria. At the genus level, the dominant bacteria were Lactobacillus, Muribaculaceae, Bacteroides, and Lachnospiraceae. We conclude that Nerolidol attenuates OVA-induced airway inflammation and alters gut microbes in mice with asthma via TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Guihua Song
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengmeng Sun
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Bingxue Zhang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Minghao Peng
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengyin Li
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Alsharairi NA, Li L. Gut Microbiota, Inflammation, and Probiotic Supplementation in Fetal Growth Restriction-A Comprehensive Review of Human and Animal Studies. Life (Basel) 2023; 13:2239. [PMID: 38137841 PMCID: PMC10745050 DOI: 10.3390/life13122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Fetal growth restriction (FGR) is a pathological state that represents a fetus's inability to achieve adequate growth during pregnancy. Several maternal, placental, and fetal factors are likely associated with FGR etiology. FGR is linked to severe fetal and neonatal complications, as well as adverse health consequences in adulthood. Numerous randomized controlled trials (RCTs) have demonstrated improved growth in FGR fetuses with promising treatment strategies such as maternal micronutrient, amino acid, and nitric oxide supplementation. Elevated inflammation in pregnant women diagnosed with FGR has been associated with an imbalance between pro- and anti-inflammatory cytokines. Gut microbiota dysbiosis may result in increased FGR-related inflammation. Probiotic treatment may relieve FGR-induced inflammation and improve fetal growth. The aim of this review is to provide an overview of the gut microbiota and inflammatory profiles associated with FGR and explore the potential of probiotics in treating FGR.
Collapse
Affiliation(s)
- Naser A. Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| | - Li Li
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia;
| |
Collapse
|
6
|
Hu M, Zhao X, Liu Y, Zhou H, You Y, Xue Z. Complex interplay of gut microbiota between obesity and asthma in children. Front Microbiol 2023; 14:1264356. [PMID: 38029078 PMCID: PMC10655108 DOI: 10.3389/fmicb.2023.1264356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is an important risk factor and common comorbidity of childhood asthma. Simultaneously, obesity-related asthma, a distinct asthma phenotype, has attracted significant attention owing to its association with more severe clinical manifestations, poorer disease control, and reduced quality of life. The establishment of the gut microbiota during early life is essential for maintaining metabolic balance and fostering the development of the immune system in children. Microbial dysbiosis influences host lipid metabolism, triggers chronic low-grade inflammation, and affects immune responses. It is intimately linked to the susceptibility to childhood obesity and asthma and plays a potentially crucial transitional role in the progression of obesity-related asthma. This review article summarizes the latest research on the interplay between asthma and obesity, with a particular focus on the mediating role of gut microbiota in the pathogenesis of obesity-related asthma. This study aims to provide valuable insight to enhance our understanding of this condition and offer preliminary evidence to support the development of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Yannan You
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Kian N, Bagheri A, Salmanpour F, Soltani A, Mohajer Z, Samieefar N, Barekatain B, Kelishadi R. Breast feeding, obesity, and asthma association: clinical and molecular views. Clin Mol Allergy 2023; 21:8. [PMID: 37789370 PMCID: PMC10546753 DOI: 10.1186/s12948-023-00189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Asthma is a chronic condition that affects children worldwide. Accumulating number of studies reported that the prevalence of pediatric obesity and asthma might be altered through breastfeeding. It has been proposed that Leptin, which exists in human milk, is oppositely associated with weight increase in newborns. It may also influence peripheral immune system by promoting TH1 responses and suppressing TH2 cytokines. Leptin influences body weight and immune responses through complex signaling pathways at molecular level. Although previous studies provide explanations for the protective role of breastfeeding against both obesity and asthma, other factors such as duration of breastfeeding, parental, and prenatal factors may confound this relationship which requires further research.
Collapse
Affiliation(s)
- Naghmeh Kian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Bagheri
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Fardis Salmanpour
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsaneh Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Mohajer
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behzad Barekatain
- Division of Neonatology, Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- USERN Office, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Weng TH, Huang KY, Jhong JH, Kao HJ, Chen CH, Chen YC, Weng SL. Microbiome analysis of maternal and neonatal microbial communities associated with the different delivery modes based on 16S rRNA gene amplicon sequencing. Taiwan J Obstet Gynecol 2023; 62:687-696. [PMID: 37678996 DOI: 10.1016/j.tjog.2023.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVE With the rising number of cases of non-vaginal delivery worldwide, scientists have been concerned about the influence of the different delivery modes on maternal and neonatal microbiomes. Although the birth rate trend is decreasing rapidly in Taiwan, more than 30 percent of newborns are delivered by caesarean section every year. However, it remains unclear whether the different delivery modes could have a certain impact on the postpartum maternal microbiome and whether it affects the mother-to-newborn vertical transmission of bacteria at birth. MATERIALS AND METHODS To address this, we recruited 30 mother-newborn pairs to participate in this study, including 23 pairs of vaginal delivery (VD) and seven pairs of caesarean section (CS). We here investigate the development of the maternal prenatal and postnatal microbiomes across multiple body habitats. Moreover, we also explore the early acquisition of neonatal gut microbiome through a vertical multi-body site microbiome analysis. RESULTS AND CONCLUSION The results indicate that no matter the delivery mode, it only slightly affects the maternal microbiome in multiple body habitats from pregnancy to postpartum. On the other hand, about 95% of species in the meconium microbiome were derived from one of the maternal body habitats; notably, the infants born by caesarean section acquire bacterial communities resembling their mother's oral microbiome. Consequently, the delivery modes play a crucial role in the initial colonization of the neonatal gut microbiome, potentially impacting children's health and development.
Collapse
Affiliation(s)
- Tzu-Hsiang Weng
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei City 104, Taiwan
| | - Kai-Yao Huang
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Jhih-Hua Jhong
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Hui-Ju Kao
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Chia-Hung Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Yu-Chi Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei City 112, Taiwan.
| |
Collapse
|
9
|
Suárez-Martínez C, Santaella-Pascual M, Yagüe-Guirao G, Martínez-Graciá C. Infant gut microbiota colonization: influence of prenatal and postnatal factors, focusing on diet. Front Microbiol 2023; 14:1236254. [PMID: 37675422 PMCID: PMC10478010 DOI: 10.3389/fmicb.2023.1236254] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Maternal microbiota forms the first infant gut microbial inoculum, and perinatal factors (diet and use of antibiotics during pregnancy) and/or neonatal factors, like intra partum antibiotics, gestational age and mode of delivery, may influence microbial colonization. After birth, when the principal colonization occurs, the microbial diversity increases and converges toward a stable adult-like microbiota by the end of the first 3-5 years of life. However, during the early life, gut microbiota can be disrupted by other postnatal factors like mode of infant feeding, antibiotic usage, and various environmental factors generating a state of dysbiosis. Gut dysbiosis have been reported to increase the risk of necrotizing enterocolitis and some chronic diseases later in life, such as obesity, diabetes, cancer, allergies, and asthma. Therefore, understanding the impact of a correct maternal-to-infant microbial transfer and a good infant early colonization and maturation throughout life would reduce the risk of disease in early and late life. This paper reviews the published evidence on early-life gut microbiota development, as well as the different factors influencing its evolution before, at, and after birth, focusing on diet and nutrition during pregnancy and in the first months of life.
Collapse
Affiliation(s)
- Clara Suárez-Martínez
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Marina Santaella-Pascual
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Genoveva Yagüe-Guirao
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Microbiology Service, Virgen de La Arrixaca University Hospital, Murcia, Spain
| | - Carmen Martínez-Graciá
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
10
|
Zaidi S, Ali K, Khan AU. It's all relative: analyzing microbiome compositions, its significance, pathogenesis and microbiota derived biofilms: Challenges and opportunities for disease intervention. Arch Microbiol 2023; 205:257. [PMID: 37280443 DOI: 10.1007/s00203-023-03589-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Concept of microorganisms has largely been perceived from their pathogenic view point. Nevertheless, it is being gradually revisited in terms of its significance to human health and now appears to be the most dominant force that shapes the immune system of the human body and also determines an individual's predisposition to diseases. Human inhabits bacterial diversity (which is predominant among all microbial communities in human body) occupying 0.3% of body mass, known as microbiota. On birth, a part of microbiota that child obtains is essentially a mother's legacy. So, the review was initiated with this critical topic of microbiotal inheritance. Since, each body site has distinct physiological specifications; therefore, they contain discrete microbiome composition that has been separately discussed along with dysbiosis-induced pathologies originating in different body organs. Factors affecting microbiome composition and may cause dysbiosis like antibiotics, delivery, feeding method etc. as well as the strategies that immune system adopts to prevent dysbiosis have been highlighted. We also tried to bring into attention the topic of dysbiosis induced biofilms, that enables cohort to survive stresses, evolve, disseminate and infection resurgence that is still in dormancy. Eventually, we put spotlight on microbiome significance in medical therapeutics. We didn't merely confine article to gut microbiota, that is being studied more extensively. Numerous community forms at diverse body sites are inter-related, and being exposed to awfully variable perturbations appear to be challenging to evaluate perturbation risks holistically. All aspects have been elaborately discussed to achieve a global depiction of human microbiota in order to meet urgent necessity for protocol standardisation. Demonstrates that environmental challenges (antibiotic use, alterations in diet, stress, smoking etc.) might cause dysbiosis i.e. transition of healthy microbiome composition to the one in which pathogenic microorganisms become more abundant, and eventually results in an infected state.
Collapse
Affiliation(s)
- Sahar Zaidi
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Khursheed Ali
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
11
|
Zajac D, Wojciechowski P. The Role of Vitamins in the Pathogenesis of Asthma. Int J Mol Sci 2023; 24:ijms24108574. [PMID: 37239921 DOI: 10.3390/ijms24108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamins play a crucial role in the proper functioning of organisms. Disturbances of their levels, seen as deficiency or excess, enhance the development of various diseases, including those of the cardiovascular, immune, or respiratory systems. The present paper aims to summarize the role of vitamins in one of the most common diseases of the respiratory system, asthma. This narrative review describes the influence of vitamins on asthma and its main symptoms such as bronchial hyperreactivity, airway inflammation, oxidative stress, and airway remodeling, as well as the correlation between vitamin intake and levels and the risk of asthma in both pre- and postnatal life.
Collapse
Affiliation(s)
- Dominika Zajac
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| |
Collapse
|
12
|
Alsharairi NA. Exploring the Diet-Gut Microbiota-Epigenetics Crosstalk Relevant to Neonatal Diabetes. Genes (Basel) 2023; 14:genes14051017. [PMID: 37239377 DOI: 10.3390/genes14051017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Neonatal diabetes (NDM) is a rare monogenic disorder that presents as hyperglycemia during the first six months of life. The link between early-life gut microbiota dysbiosis and susceptibility to NDM remains uncertain. Experimental studies have demonstrated that gestational diabetes mellitus (GDM) could develop into meconium/gut microbiota dysbiosis in newborns, and thus, it is thought to be a mediator in the pathogenesis of NDM. Epigenetic modifications have been considered as potential mechanisms by which the gut microbiota and susceptibility genes interact with the neonatal immune system. Several epigenome-wide association studies have revealed that GDM is associated with neonatal cord blood and/or placental DNA methylation alterations. However, the mechanisms linking diet in GDM with gut microbiota alterations, which may in turn induce the expression of genes linked to NDM, are yet to be unraveled. Therefore, the focus of this review is to highlight the impacts of diet, gut microbiota, and epigenetic crosstalk on altered gene expression in NDM.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast, QLD P.O. Box 4222, Australia
| |
Collapse
|
13
|
Mady EA, Doghish AS, El-Dakroury WA, Elkhawaga SY, Ismail A, El-Mahdy HA, Elsakka EGE, El-Husseiny HM. Impact of the mother's gut microbiota on infant microbiome and brain development. Neurosci Biobehav Rev 2023; 150:105195. [PMID: 37100161 DOI: 10.1016/j.neubiorev.2023.105195] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
The link between the gut microbiome and health has recently garnered considerable interest in its employment for medicinal purposes. Since the early microbiota exhibits more flexibility compared to that of adults, there is a considerable possibility that altering it will have significant consequences on human development. Like genetics, the human microbiota can be passed from mother to child. This provides information on early microbiota acquisition, future development, and prospective chances for intervention. The succession and acquisition of early-life microbiota, modifications of the maternal microbiota during pregnancy, delivery, and infancy, and new efforts to understand maternal-infant microbiota transmission are discussed in this article. We also examine the shaping of mother-to-infant microbial transmission, and we then explore possible paths for future research to advance our knowledge in this area.
Collapse
Affiliation(s)
- Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya,13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and industrial pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
14
|
Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life (Basel) 2023; 13:life13020561. [PMID: 36836917 PMCID: PMC9959300 DOI: 10.3390/life13020561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Short chain fatty acids (SCFAs), the principle end-products produced by the anaerobic gut microbial fermentation of complex carbohydrates (CHO) in the colon perform beneficial roles in metabolic health. Butyrate, acetate and propionate are the main SCFA metabolites, which maintain gut homeostasis and host immune responses, enhance gut barrier integrity and reduce gut inflammation via a range of epigenetic modifications in DNA/histone methylation underlying these effects. The infant gut microbiota composition is characterized by higher abundances of SCFA-producing bacteria. A large number of in vitro/vivo studies have demonstrated the therapeutic implications of SCFA-producing bacteria in infant inflammatory diseases, such as obesity and asthma, but the application of gut microbiota and its metabolite SCFAs to necrotizing enterocolitis (NEC), an acute inflammatory necrosis of the distal small intestine/colon affecting premature newborns, is scarce. Indeed, the beneficial health effects attributed to SCFAs and SCFA-producing bacteria in neonatal NEC are still to be understood. Thus, this literature review aims to summarize the available evidence on the therapeutic potential of gut microbiota and its metabolite SCFAs in neonatal NEC using the PubMed/MEDLINE database.
Collapse
|
15
|
Jiang Q, Li T, Chen W, Huo Y, Mou X, Zhao W. Microbial regulation of offspring diseases mediated by maternal-associated microbial metabolites. Front Microbiol 2022; 13:955297. [PMID: 36406399 PMCID: PMC9672376 DOI: 10.3389/fmicb.2022.955297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The microbiota plays a crucial role in individuals’ early and long-term health. Previous studies indicated that the microbial regulation of health may start before birth. As the in utero environment is (nearly) sterile, the regulation is probably be originated from maternal microbiota and mediated by their metabolites transferred across the placenta. After the birth, various metabolites are continuously delivered to offspring through human milk feeding. Meanwhile, some components, for example, human milk oligosaccharides, in human milk can only be fermented by microbes, which brings beneficial effects on offspring health. Hence, we speculated that human milk-derived metabolites may also play roles in microbial regulation. However, reports between maternal-associated microbial metabolites and offspring diseases are still lacking and sparsely distributed in several fields. Also, the definition of the maternal-associated microbial metabolite is still unclear. Thus, it would be beneficial to comb through the current knowledge of these metabolites related to diseases for assisting our goals of early prediction, early diagnosis, early prevention, or early treatment through actions only on mothers. Therefore, this review aims to present studies showing how researchers came to the path of investigating these metabolites and then to present studies linking them to the development of offspring asthma, type 1 diabetes mellitus, food allergy, neonatal necrotizing enterocolitis, or autism spectrum disorder. Potential English articles were collected from PubMed by searching terms of disease(s), maternal, and a list of microbial metabolites. Articles published within 5 years were preferred.
Collapse
Affiliation(s)
- Qingru Jiang
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Chen
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yingfang Huo
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiangyu Mou
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xiangyu Mou,
| | - Wenjing Zhao
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wenjing Zhao,
| |
Collapse
|
16
|
The Therapeutic Role of Short-Chain Fatty Acids Mediated Very Low-Calorie Ketogenic Diet-Gut Microbiota Relationships in Paediatric Inflammatory Bowel Diseases. Nutrients 2022; 14:nu14194113. [PMID: 36235765 PMCID: PMC9572225 DOI: 10.3390/nu14194113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
The very low-calorie ketogenic diet (VLCKD) has been recognized as a promising dietary regimen for the treatment of several diseases. Short-chain fatty acids (SCFAs) produced by anaerobic bacterial fermentation of indigestible dietary fibre in the gut have potential value for their underlying epigenetic role in the treatment of obesity and asthma-related inflammation through mediating the relationships between VLCKD and the infant gut microbiota. However, it is still unclear how VLCKD might influence gut microbiota composition in children, and how SCFAs could play a role in the treatment of inflammatory bowel disease (IBD). To overcome this knowledge gap, this review aims to investigate the role of SCFAs as key epigenetic metabolites that mediate VLCKD-gut microbiota relationships in children, and their therapeutic potential in IBD.
Collapse
|
17
|
Eow SY, Gan WY, Jiang T, Loh SP, Lee LJ, Chin YS, Than LTL, How KN, Thong PL, Liu Y, Zhao J, Chen L. MYBIOTA: A birth cohort on maternal and infant microbiota and its impact on infant health in Malaysia. Front Nutr 2022; 9:994607. [PMID: 36238465 PMCID: PMC9552002 DOI: 10.3389/fnut.2022.994607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background The microbiota plays a key role in early immunity maturation that affects infant health and is associated with the development of non-communicable diseases and allergies in later life. Objective The MYBIOTA is a prospective mother-infant cohort study in Malaysia aiming to determine the association between gut microbiota with infant health (temperament, gastrointestinal disorders, eczema, asthma, and developmental delays) in Selangor, Malaysia. Methods Pregnant mothers will be enrolled in their first trimester of pregnancy, and follow-ups will be done for infants during their first year of life. Maternal-infant biological samples (blood, feces, saliva, urine, and breast milk), anthropometric, dietary, and clinical information will be collected at different time points from early pregnancy to 12 months postpartum. Discussion This study could provide a better understanding of the colonization and development of the gut microbiome during early life and its impact on infant health. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04919265.
Collapse
Affiliation(s)
- Shiang Yen Eow
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Ying Gan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Su Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ling Jun Lee
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yit Siew Chin
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Research Center of Excellence, Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kang Nien How
- Unit of Dermatology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pui Ling Thong
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| |
Collapse
|
18
|
Avram C, Bucur OM, Zazgyva A, Avram L, Ruta F. Vitamin Supplementation in Pre-Pregnancy and Pregnancy among Women-Effects and Influencing Factors in Romania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8503. [PMID: 35886354 PMCID: PMC9318761 DOI: 10.3390/ijerph19148503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023]
Abstract
Introduction: The aim of the study was to identify the consumption of vitamin and folic acid supplements before and during pregnancy in a group of post-partum women (Romanian, Hungarian, and Roma) from Mureș County, Romania, and the influence of socio-economic and behavioral factors on the consumption of vitamins. Materials and Methods: This cross-sectional questionnaire-based study included 1278 post-partum women (during the three days of hospitalization for birth), average age 29.5, registered for giving birth in the three hospitals in Mureș County, 2015−2016. Results: In our sample, 69.58% of the interviewed women did not use any vitamin and folic acid supplements before pregnancy, while 30.70% did not use vitamin supplements during pregnancy. The lack of vitamin supplementation during pregnancy was associated with the low birth weight (<2500 g) of newborns (OR = 2.4, 95% CI [1.6−3.8]) and birth at under 36 weeks of gestation (OR = 0.5, 95% CI [0.2−0.8]). Conclusion: The use of vitamin supplements, including folic acid, continues to be deficient among Romanian women before getting pregnant, as well as during their pregnancy. We observed a lack of vitamin supplementation for pregnant women even if they were influenced by risk factors. This highlights the importance of promoting the benefits of vitamin supplementation equally among all subjects.
Collapse
Affiliation(s)
- Calin Avram
- George Emil Palade University of Medicine, Pharmacy, Science and Technology, 38 Gh. Marinescu St., 540139 Targu Mureș, Romania; (A.Z.); (F.R.)
| | - Oana Maria Bucur
- George Emil Palade University of Medicine, Pharmacy, Science and Technology, 38 Gh. Marinescu St., 540139 Targu Mureș, Romania; (A.Z.); (F.R.)
| | - Ancuța Zazgyva
- George Emil Palade University of Medicine, Pharmacy, Science and Technology, 38 Gh. Marinescu St., 540139 Targu Mureș, Romania; (A.Z.); (F.R.)
| | - Laura Avram
- Dimitrie Cantemir University, 3-5 Bodoni Sandor St., 540545 Targu Mureș, Romania;
| | - Florina Ruta
- George Emil Palade University of Medicine, Pharmacy, Science and Technology, 38 Gh. Marinescu St., 540139 Targu Mureș, Romania; (A.Z.); (F.R.)
| |
Collapse
|
19
|
Al Sabbah H, Assaf EA, Taha Z, Qasrawi R, Radwan H. Determinants of Exclusive Breastfeeding and Mixed Feeding Among Mothers of Infants in Dubai and Sharjah, United Arab Emirates. Front Nutr 2022; 9:872217. [PMID: 35619950 PMCID: PMC9127614 DOI: 10.3389/fnut.2022.872217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Background Breastfeeding (BF) is considered the ultimate method of infant feeding for at least the first 6 months of life. Exclusive breastfeeding (EBF) is one of the most effective interventions to improve child survival. The main objective of this study was to assess the prevalence and duration of exclusive breastfeeding and the associated factors among women in Dubai and Sharjah, UAE. Methods A cross-sectional study was conducted in four hospitals and four healthcare centers in Dubai and Sharjah between September 2017 and December 2017. Hospitals and centers are governmental and provide maternal and child health services. A convenience sample of 858 Arab and Emirati mothers with children under the age of 2 years participated in the study. Face-to-face interviews were conducted by using structured questionnaires. The study was approved by the University Ethical Committee and the UAE Ministry of Health before data collection. Descriptive statistics were computed to describe all the questionnaire items. The chi-square test was used to compare the study's categorical variables. A binary logistic regression analysis was used to predict the relationship between BF and its associated factors. Statistical tests with P-values < 0.05 were considered statistically significant. Results The mean age of the participating mothers was 30.6 (SD 5.5) years. Results showed that the prevalence of exclusive breastfeeding among the study participants was 24.4% (31.1% in Sharjah and 22% in Dubai; P = 0.003). The binary logistic regression reported that mother's and father's education, skin-to-skin period, number of children, mothers' health, and place of living were significantly associated with exclusive breastfeeding (P < 0.05). The results reported a significant association between EB and duration of breastfeeding (OR = 6.9, P = 0.002), husband education (OR = 2.1, P = 0.015), mother education (OR = 1.3, P = 0.027), number of children (OR = 7.9, P = 0.045), having any health problem (OR = 1.2, P = 0.045), and living place (OR = 1.4, P = 0.033), and a non-significant positive effect of family size and family income. Furthermore, the result reported a significant association between mixed breastfeeding and duration of breastfeeding (OR = 0.1, P = 0.000), skin-to-skin period (OR = 0.3, P = 0.002), underweight (OR = 4.7, P = 0.034), last infant's sex (OR = 1.6, P = 0.010), having maid at home (OR = 2.1, P = 0.000), number of children (OR = 0.2, P = 0.013), and living place (OR =1.1, P = 0.014), and a non-significant association with family size and family income. Conclusions Therefore, a health promotion program for exclusive breastfeeding during antenatal health visits, together with initiating health policies in maternal hospitals to encourage the initiation of breastfeeding during the first hour of birth and the introduction of skin-to-skin contact during the first 5 min of birth are highly recommended.
Collapse
Affiliation(s)
- Haleama Al Sabbah
- Department of Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Enas A Assaf
- Department of Community Nursing, Faculty of Nursing, Applied Science Private University, Amman, Jordan
| | - Zainab Taha
- Department of Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Radwan Qasrawi
- Department of Computer Science, Al-Quds University, Jerusalem, Palestine.,Department of Computer Engineering, Istinye University, Istanbul, Turkey
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
20
|
Notarbartolo V, Giuffrè M, Montante C, Corsello G, Carta M. Composition of Human Breast Milk Microbiota and Its Role in Children's Health. Pediatr Gastroenterol Hepatol Nutr 2022; 25:194-210. [PMID: 35611376 PMCID: PMC9110848 DOI: 10.5223/pghn.2022.25.3.194] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Claudio Montante
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Maurizio Carta
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| |
Collapse
|
21
|
Associations between Maternal Dietary Patterns and Infant Birth Weight in the NISAMI Cohort: A Structural Equation Modeling Analysis. Nutrients 2021; 13:nu13114054. [PMID: 34836305 PMCID: PMC8623182 DOI: 10.3390/nu13114054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023] Open
Abstract
The mother’s diet during pregnancy is associated with maternal and child health. However, there are few studies with moderation analysis on maternal dietary patterns and infant birth weight. We aim to analyse the association between dietary patterns during pregnancy and birth weight. A prospective cohort study was performed with pregnant women registered with the prenatal service (Bahia, Brazil). A food frequency questionnaire was used to evaluate dietary intake. Birth weight was measured by a prenatal service team. Statistical analyses were performed using factor analysis with a principal component extraction technique and structural equation modelling. The mean age of the pregnant women was 27 years old (SD: 5.5) and the mean birth weight was 3341.18 g. It was observed that alcohol consumption (p = 0.05) and weight-gain during pregnancy (p = 0.05) were associated with birth weight. Four patterns of dietary consumption were identified for each trimester of the pregnancy evaluated. Adherence to the “Meat, Eggs, Fried Snacks and Processed foods” dietary pattern (pattern 1) and the “Sugars and Sweets” dietary pattern (pattern 4) in the third trimester directly reduced birth weight, by 98.42 g (Confidence interval (CI) 95%: 24.26, 172.59) and 92.03 g (CI 95%: 39.88, 165.30), respectively. It was also observed that insufficient dietary consumption in the third trimester increases maternal complications during pregnancy, indirectly reducing birth weight by 145 g (CI 95%: −21.39, −211.45). Inadequate dietary intake in the third trimester appears to have negative results on birth weight, directly and indirectly, but more studies are needed to clarify these causal paths, especially investigations of the influence of the maternal dietary pattern on the infant gut microbiota and the impacts on perinatal outcomes.
Collapse
|
22
|
Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front Immunol 2021; 12:708472. [PMID: 34691021 PMCID: PMC8529064 DOI: 10.3389/fimmu.2021.708472] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
From early life to adulthood, the microbiota play a crucial role in the health of the infant. The microbiota in early life are not only a key regulator of infant health but also associated with long-term health. Pregnancy to early life is the golden time for the establishment of the infant microbiota, which is affected by both environmental and genetic factors. Recently, there is an explosion of the studies on the role of microbiota in human diseases, but the application to disease or health is relatively limited because many aspects of human microbiota remain controversial, especially about the infant microbiota. Therefore, a critical and conclusive review is necessary to understand fully the relationship between the microbiota and the health of infant. In this article, we introduce in detail the role of microbiota in the infant from pregnancy to early life to long-term health. The main contents of this article include the relationship between the maternal microbiota and adverse pregnancy outcomes, the establishment of the neonatal microbiota during perinatal period and early life, the composition of the infant gut microbiota, the prediction of the microbiota for long-term health, and the future study directions of microbiota.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in Mediating Very Low-Calorie Ketogenic Diet-Infant Gut Microbiota Relationships and Its Therapeutic Potential in Obesity. Nutrients 2021; 13:3702. [PMID: 34835958 PMCID: PMC8624546 DOI: 10.3390/nu13113702] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
As the very low-calorie ketogenic diet (VLCKD) gains increased interest as a therapeutic approach for many diseases, little is known about its therapeutic use in childhood obesity. Indeed, the role of VLCKD during pregnancy and lactation in influencing short chain fatty acid (SCFA)-producing bacteria and the potential mechanisms involved in the protective effects on obesity are still unclear. Infants are characterized by a diverse gut microbiota composition with higher abundance of SCFA-producing bacteria. Maternal VLCKD during pregnancy and lactation stimulates the growth of diverse species of SCFA-producing bacteria, which may induce epigenetic changes in infant obese gene expression and modulate adipose tissue inflammation in obesity. Therefore, this review aims to determine the mechanistic role of SCFAs in mediating VLCKD-infant gut microbiota relationships and its protective effects on obesity.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
24
|
The Interplay between Nutrition, Innate Immunity, and the Commensal Microbiota in Adaptive Intestinal Morphogenesis. Nutrients 2021; 13:nu13072198. [PMID: 34206809 PMCID: PMC8308283 DOI: 10.3390/nu13072198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract is a functionally and anatomically segmented organ that is colonized by microbial communities from birth. While the genetics of mouse gut development is increasingly understood, how nutritional factors and the commensal gut microbiota act in concert to shape tissue organization and morphology of this rapidly renewing organ remains enigmatic. Here, we provide an overview of embryonic mouse gut development, with a focus on the intestinal vasculature and the enteric nervous system. We review how nutrition and the gut microbiota affect the adaptation of cellular and morphologic properties of the intestine, and how these processes are interconnected with innate immunity. Furthermore, we discuss how nutritional and microbial factors impact the renewal and differentiation of the epithelial lineage, influence the adaptation of capillary networks organized in villus structures, and shape the enteric nervous system and the intestinal smooth muscle layers. Intriguingly, the anatomy of the gut shows remarkable flexibility to nutritional and microbial challenges in the adult organism.
Collapse
|
25
|
Bédard A, Li Z, Ait-hadad W, Camargo CA, Leynaert B, Pison C, Dumas O, Varraso R. The Role of Nutritional Factors in Asthma: Challenges and Opportunities for Epidemiological Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063013. [PMID: 33804200 PMCID: PMC7999662 DOI: 10.3390/ijerph18063013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
The prevalence of asthma has nearly doubled over the last decades. Twentieth century changes in environmental and lifestyle factors, including changes in dietary habits, physical activity and the obesity epidemic, have been suggested to play a role in the increase of asthma prevalence and uncontrolled asthma worldwide. A large body of evidence has suggested that obesity is a likely risk factor for asthma, but mechanisms are still unclear. Regarding diet and physical activity, the literature remains inconclusive. Although the investigation of nutritional factors as a whole (i.e., the “diet, physical activity and body composition” triad) is highly relevant in terms of understanding underlying mechanisms, as well as designing effective public health interventions, their combined effects across the life course has not received a lot of attention. In this review, we discuss the state of the art regarding the role of nutritional factors in asthma, for each window of exposure. We focus on the methodological and conceptual challenges encountered in the investigation of the complex time-dependent interrelations between nutritional factors and asthma and its control, and their interaction with other determinants of asthma. Lastly, we provide guidance on how to address these challenges, as well as suggestions for future research.
Collapse
Affiliation(s)
- Annabelle Bédard
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
- Correspondence:
| | - Zhen Li
- Clinical Research Centre, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Wassila Ait-hadad
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Bénédicte Leynaert
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
| | - Christophe Pison
- Service Hospitalier Universitaire Pneumologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée, Inserm 1055, Université Grenoble Alpes, 38400 Grenoble, France;
| | - Orianne Dumas
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
| | - Raphaëlle Varraso
- Université Paris-Saclay, UVSQ, University Paris-Sud, Inserm, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France; (W.A.-h.); (B.L.); (O.D.); (R.V.)
| |
Collapse
|
26
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. Int J Mol Sci 2020; 21:E9580. [PMID: 33339172 PMCID: PMC7765661 DOI: 10.3390/ijms21249580] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota is well known as playing a critical role in inflammation and asthma development. The very low-calorie ketogenic diet (VLCKD) is suggested to affect gut microbiota; however, the effects of VLCKD during pregnancy and lactation on the infant gut microbiota are unclear. The VLCKD appears to be more effective than caloric/energy restriction diets for the treatment of several diseases, such as obesity and diabetes. However, whether adherence to VLCKD affects the infant gut microbiota and the protective effects thereof on asthma remains uncertain. The exact mechanisms underlying this process, and in particular the potential role of short chain fatty acids (SCFAs), are still to be unravelled. Thus, the aim of this review is to identify the potential role of SCFAs that underlie the effects of VLCKD during pregnancy and lactation on the infant gut microbiota, and explore whether it incurs significant implications for reducing asthma.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|