1
|
Ribeiro RF, da Mata VB, Tomaselli LDO, Simionato AA, Santos EDS, Faria ACL, Rodrigues RCS, do Nascimento C. Microbial Leakage through Three Different Implant-Abutment Interfaces on Morse Taper Implants In Vitro. Dent J (Basel) 2024; 12:226. [PMID: 39057013 PMCID: PMC11275855 DOI: 10.3390/dj12070226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this study was to evaluate microbial leakage by means of genome counts, through the implant-abutment interface in dental implants with different Morse taper abutments. Fifty-six samples were prepared and divided in four groups: CMC TB (14 Cylindrical Implants-14 TiBase Abutments), CMX TB (14 Conical Implants-14 TiBase Abutments), CMX PU (14 Conical Implants-14 Universal Abutment) and CMX U (14 Tapered Implants-14 UCLA Abutments). Assemblies had their interface submerged in saliva as the contaminant. Samples were subjected either to thermomechanical cycling (2 × 106 mechanical cycles with frequency of 5 Hz and load of 120 N simultaneously with thermal cycles of 5-55 °C) or thermal cycling (5-55 °C). After cycling, the contents from the inner parts of assemblies were collected and analyzed using the Checkerboard DNA-DNA hybridization technique. Significant differences in the total genome counts were found after both thermomechanical or thermal cycling: CMX U > CMX PU > CMX TB > CMC TB. There were also significant differences in individual bacterial counts in each of the groups (p < 0.05). Irrespective of mechanical cycling, the type of abutment seems to influence not only the total microbial leakage through the interface, but also seems to significantly reflect differences considering individual target species.
Collapse
Affiliation(s)
- Ricardo Faria Ribeiro
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil; (V.B.d.M.); (L.d.O.T.); (A.A.S.); (A.C.L.F.); (R.C.S.R.)
| | - Victor Barboza da Mata
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil; (V.B.d.M.); (L.d.O.T.); (A.A.S.); (A.C.L.F.); (R.C.S.R.)
| | - Lucas de Oliveira Tomaselli
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil; (V.B.d.M.); (L.d.O.T.); (A.A.S.); (A.C.L.F.); (R.C.S.R.)
| | - Anselmo Agostinho Simionato
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil; (V.B.d.M.); (L.d.O.T.); (A.A.S.); (A.C.L.F.); (R.C.S.R.)
| | - Emerson de Souza Santos
- Department of Clinical Analysis, Toxicology, and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto 14040-903, Brazil;
| | - Adriana Cláudia Lapria Faria
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil; (V.B.d.M.); (L.d.O.T.); (A.A.S.); (A.C.L.F.); (R.C.S.R.)
| | - Renata Cristina Silveira Rodrigues
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil; (V.B.d.M.); (L.d.O.T.); (A.A.S.); (A.C.L.F.); (R.C.S.R.)
| | - Cássio do Nascimento
- Department of Dental Materials and Prostheses, School of Dentistry of Ribeirao Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil; (V.B.d.M.); (L.d.O.T.); (A.A.S.); (A.C.L.F.); (R.C.S.R.)
| |
Collapse
|
2
|
Abdulghafor MA, Mahmood MK, Tassery H, Tardivo D, Falguiere A, Lan R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J Funct Biomater 2023; 15:15. [PMID: 38248682 PMCID: PMC10816551 DOI: 10.3390/jfb15010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface's chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper).
Collapse
Affiliation(s)
| | - Mohammed Khalid Mahmood
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
- College of Dentistry, The American University of Iraq, Sulaimani 46001, Kurdistan, Iraq
| | | | - Delphine Tardivo
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
| | - Arthur Falguiere
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, 13284 Marseille, France
| | - Romain Lan
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, CNRS, EFS, ADES, 13284 Marseille, France;
| |
Collapse
|
3
|
Zhai S, Tian Y, Shi X, Liu Y, You J, Yang Z, Wu Y, Chu S. Overview of strategies to improve the antibacterial property of dental implants. Front Bioeng Biotechnol 2023; 11:1267128. [PMID: 37829564 PMCID: PMC10565119 DOI: 10.3389/fbioe.2023.1267128] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
The increasing number of peri-implant diseases and the unsatisfactory results of conventional treatment are causing great concern to patients and medical staff. The effective removal of plaque which is one of the key causes of peri-implant disease from the surface of implants has become one of the main problems to be solved urgently in the field of peri-implant disease prevention and treatment. In recent years, with the advancement of materials science and pharmacology, a lot of research has been conducted to enhance the implant antimicrobial properties, including the addition of antimicrobial coatings on the implant surface, the adjustment of implant surface topography, and the development of new implant materials, and significant progress has been made in various aspects. Antimicrobial materials have shown promising applications in the prevention of peri-implant diseases, but meanwhile, there are some shortcomings, which leads to the lack of clinical widespread use of antimicrobial materials. This paper summarizes the research on antimicrobial materials applied to implants in recent years and presents an outlook on the future development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shunli Chu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Lähteenmäki H, Tervahartiala T, Räisänen IT, Pärnänen P, Sorsa T. Fermented lingonberry juice's effects on active MMP-8 (aMMP-8), bleeding on probing (BOP), and visible plaque index (VPI) in dental implants-A clinical pilot mouthwash study. Clin Exp Dent Res 2022; 8:1322-1330. [PMID: 35894289 PMCID: PMC9760138 DOI: 10.1002/cre2.638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES We aimed to study the effects of fermented lingonberry juice (FLJ) as a mouthwash on the levels of active matrix metalloproteinase-8 (aMMP-8) in peri-implant sulcular fluid (PISF), bleeding on probing (BOP), and visible plaque index (VPI). We hypothesized that FLJ rinsing could reduce inflammation (aMMP-8 and BOP) and microbial load (VPI) in the oral cavity, especially around dental implants. MATERIALS AND METHODS A clinical pilot study was performed using FLJ as a mouthwash. The inclusion criteria were at least one dental implant in the anterior or posterior areas with a screw-retained crown. Ten participants used 10 ml of mouthwash twice a day for 15 days, and 10 participants served as the control group. Point-of-care tests (POCTs) were used to measure aMMP-8 levels in the PISF, and BOP and VPI were recorded at the beginning of the trial and after 15 and 30 days. RESULTS The FLJ mouthwash had a reductive effect on aMMP-8, VPI, and BOP in the mouthwash group; however, there was no significant difference compared to the control group. The difference in VPI and BOP levels between the groups diminished after the lingonberry regimen ended. The decrease in aMMP-8 levels appeared to continue even after discontinuation of the mouthwash regimen. CONCLUSION The reduction in the amount of plaque, aMMP-8, and BOP by FLJ was promising and continuous considering the relatively short study period and sample size. FLJ is a natural and safe supplement for oral and dental implant home care. Further studies are required to verify these promising results.
Collapse
Affiliation(s)
- Hanna Lähteenmäki
- Department of Oral and Maxillofacial Diseases, Head and Neck CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Head and Neck CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Ismo T. Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, Head and Neck CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland,Department of Dental Medicine, Division of PeriodontologyKarolinska InstitutetHuddingeSweden
| |
Collapse
|
5
|
Abstract
Bioactive coatings are widely used and understood materials in engineering [...]
Collapse
|
6
|
Using ultraviolet (UV) light emitting diodes (LED) to create sterile root canals and to treat endodontic infections. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Contaldo M, De Rosa A, Nucci L, Ballini A, Malacrinò D, La Noce M, Inchingolo F, Xhajanka E, Ferati K, Bexheti-Ferati A, Feola A, Di Domenico M. Titanium Functionalized with Polylysine Homopolymers: In Vitro Enhancement of Cells Growth. MATERIALS 2021; 14:ma14133735. [PMID: 34279306 PMCID: PMC8269806 DOI: 10.3390/ma14133735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
In oral implantology, the success and persistence of dental implants over time are guaranteed by the bone formation around the implant fixture and by the integrity of the peri-implant mucosa seal, which adheres to the abutment and becomes a barrier that hinders bacterial penetration and colonization close to the outer parts of the implant. Research is constantly engaged in looking for substances to coat the titanium surface that guarantees the formation and persistence of the peri-implant bone, as well as the integrity of the mucous perimeter surrounding the implant crown. The present study aimed to evaluate in vitro the effects of a titanium surface coated with polylysine homopolymers on the cell growth of dental pulp stem cells and keratinocytes to establish the potential clinical application. The results reported an increase in cell growth for both cellular types cultured with polylysine-coated titanium compared to cultures without titanium and those without coating. These preliminary data suggest the usefulness of polylysine coating not only for enhancing osteoinduction but also to speed the post-surgery mucosal healings, guarantee appropriate peri-implant epithelial seals, and protect the fixture against bacterial penetration, which is responsible for compromising the implant survival.
Collapse
Affiliation(s)
- Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (A.D.R.); (L.N.)
- Correspondence: (M.C.); (M.D.D.); Tel.: +39-32-0487-6058 (M.C.)
| | - Alfredo De Rosa
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (A.D.R.); (L.N.)
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (A.D.R.); (L.N.)
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario Ernesto Quagliariello, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Davide Malacrinò
- Department of Research, Development and Quality Assessment, AISER SA, Rue du Rhone, 14 VH-1204 Genève, Switzerland;
| | - Marcella La Noce
- Department of Experimental Medicine, Università Degli Studi della Campania Luigi Vanvitelli, Campania, 80138 Naples, Italy;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy;
| | - Edit Xhajanka
- Department of Dental Prosthesis, Medical University of Tirana, Rruga e Dibrës, U.M.T., 1001 Tirana, Albania;
| | - Kenan Ferati
- Faculty of Medicine, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.-F.)
| | | | - Antonia Feola
- Department of Biology, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (M.C.); (M.D.D.); Tel.: +39-32-0487-6058 (M.C.)
| |
Collapse
|
8
|
Körtvélyessy G, Tarjányi T, Baráth ZL, Minarovits J, Tóth Z. Bioactive coatings for dental implants: A review of alternative strategies to prevent peri-implantitis induced by anaerobic bacteria. Anaerobe 2021; 70:102404. [PMID: 34146701 DOI: 10.1016/j.anaerobe.2021.102404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Members of oral bacterial communities form biofilms not only on tooth surfaces but also on the surface of dental implants that replace natural teeth. Prolonged interaction of host cells with biofilm-forming anaerobes frequently elicits peri-implantitis, a destructive inflammatory disease accompanied by alveolar bone loss leading to implant failure. Here we wish to overview how the deposition of bioactive peptides to dental implant surfaces could potentially inhibit bacterial colonization and the development of peri-implantisis. One preventive strategy is based on natural antimicrobial peptides (AMPs) immobilized on titanium surfaces. AMPs are capable to destroy both Gram positive and Gram negative bacteria directly. An alternative strategy aims at coating implant surfaces - especially the transmucosal part - with peptides facilitating the attachment of gingival epithelial cells and connective tissue cells. These cells produce AMPs and may form a soft tissue seal that prevents oral bacteria from accessing the apical part of the osseointegrated implant. Because a wide variety of titanium-bound peptides were studied in vitro, we wish to concentrate on bioactive peptides of human origin and some of their derivatives. Furthermore, special attention will be given to peptides effective under in vivo test conditions.
Collapse
Affiliation(s)
- Győző Körtvélyessy
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Tamás Tarjányi
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zoltán L Baráth
- Department of Prosthodontics, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary
| | - Zsolt Tóth
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Faculty of Dentistry, 6720, Szeged, Tisza Lajos Krt. 64, Hungary; Department of Experimental Physics, University of Szeged, Faculty of Science and Informatics, 6720, Szeged, Dóm Tér 9, Hungary.
| |
Collapse
|
9
|
Kligman S, Ren Z, Chung CH, Perillo MA, Chang YC, Koo H, Zheng Z, Li C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J Clin Med 2021; 10:1641. [PMID: 33921531 PMCID: PMC8070594 DOI: 10.3390/jcm10081641] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant's surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.
Collapse
Affiliation(s)
- Stefanie Kligman
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhi Ren
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Z.R.); (H.K.)
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| | - Michael Angelo Perillo
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| | - Yu-Cheng Chang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hyun Koo
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Z.R.); (H.K.)
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| |
Collapse
|