1
|
Wang J, Yang X, Liang X, Zhang Y. Association of hepatitis B virus and thyroid hormones during pregnancy. Medicine (Baltimore) 2024; 103:e39925. [PMID: 39465763 PMCID: PMC11460905 DOI: 10.1097/md.0000000000039925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 10/29/2024] Open
Abstract
This study aims to evaluate the correlation between serum thyroid hormone levels and hepatitis B virus (HBV) DNA and HBV genotypes in pregnant women with chronic hepatitis B. A total of 96 pregnant women with chronic HBV-infected pregnant women between January 2020 and December 2022 were selected as the observational study subjects. About 50 HBV-uninfected pregnant women during the same period were selected as the control group. Serum thyroid hormone levels at different stages of pregnancy, including free triiodothyronine (FT3), free thyroxine (FT4), thyroid stimulating hormone (TSH), thyroperoxidase antibody (TPOAb), and thyroglobulin antibody (TGAb), were compared between the 2 groups. Thyroid hormones levels were also compared between HBV-DNA-positive and HBV-DNA-negative women in the HBV-infected pregnancy group, and to determine the correlation between thyroid hormones levels and HBV-DNA load and HBV genotype in HBV-DNA-positive pregnant women. The TSH levels in mid and late pregnancy and TPOAb levels in early, mid, and late pregnancy of HBV-infected pregnant women were higher than those in the same period in HBV-uninfected pregnant women (P < .05). The TPOAb and TGAb levels in early, mid, and late pregnancy of HBV-DNA-positive pregnant women were higher than those in the same period in HBV-DNA-negative pregnant women (P < .05). The HBV-DNA load and FT3 or FT4 levels were negatively correlated (P < .05), and the HBV-DNA load and TGAb levels were positively correlated (P < .05). However, there was no statistical difference in thyroid hormone levels between different HBV genotypes (P > .05). The thyroid hormone levels will change in pregnant women infected with hepatitis B virus, and there is a certain correlation between HBV-DNA load and thyroid hormone levels. Therefore, timely monitoring of thyroid hormones and HBV-DNA load can provide early prevention and treatment for HBV infection in pregnant women, ensuring the health of pregnant women and fetuses.
Collapse
Affiliation(s)
- Jing Wang
- Department of Clinical Laboratory, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
| | - Xiaoqiong Yang
- Department of Clinical Laboratory, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
| | - Xiuzhen Liang
- Department of Clinical Laboratory, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
| |
Collapse
|
2
|
Selim MA, Suef RA, Saied E, Abdel-Maksoud MA, Almutairi SM, Aufy M, Mousa AA, Mansour MTM, Farag MMS. Peripheral NK cell phenotypic alteration and dysfunctional state post hepatitis B subviral particles stimulation in CHB patients: evading immune surveillance. Front Immunol 2024; 15:1427519. [PMID: 39328404 PMCID: PMC11424423 DOI: 10.3389/fimmu.2024.1427519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/28/2024] Open
Abstract
Background The relationship between chronic hepatitis B (CHB) infection and natural killer (NK) cell dysfunction is well-established, but the specific role of HBV viral antigens in driving NK cell impairment in patients with CHB remains unclear. This study investigates the modulatory effects of hepatitis B virus subviral particles (HBVsvp, a representative model for HBsAg) on the phenotypic regulation (activating and inhibitory receptors), cytokine production and cytotoxic potential of peripheral blood mononuclear cell-derived natural killer cells (PBMCs-derived NK cell), which contributes to NK cell dysfunction in CHB infection, potentially serving as an effective HBV immune evasion strategy by the virus. Methods NK cells were isolated from peripheral blood of patients with CHB (n=5) and healthy individuals (n=5), stimulated with HBVsvp. Subsequent flow cytometric characterization involved assessing changes in activating (NKp46 and NKG2D) and inhibitory (CD94) receptors expression, quantifying TNF-α and IFN- γ cytokine secretion, and evaluating the cytotoxic response against HepG2.2.15 cells with subsequent HBVsvp quantification. Results In CHB patients, in vitro exposure of PBMCs-derived NK cell with HBVsvp (represent HBsAg model) significantly reduced NK cell-activating receptors expression (P = 0.022), increased expression of CD94 + NK cells (p = 0.029), accompanied with a reduced TNF-α - IFN-γ cytokine levels, and impaired cytotoxic capacity (evidenced by increased cell proliferation and elevated HBVsvp levels in co-cultures with HepG2.2.15 cells in a time-dependent), relative to healthy donors. Conclusion These findings suggest that HBVsvp may induce dysfunctional NK cell responses characterized by phenotypic imbalance with subsequent reduction in cytokine and cytotoxic levels, indicating HBVsvp immunosuppressive effect that compromises antiviral defense in CHB patients. These data enhance our understanding of NK cell interactions with HBsAg and highlight the potential for targeting CD94 inhibitory receptors to restore NK cell function as an immunotherapeutic approach. Further clinical research is needed to validate these observations and establish their utility as reliable biomarkers.
Collapse
Affiliation(s)
- Mohamed A Selim
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Suef
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Adel A Mousa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed T M Mansour
- Virology and Immunology Department, National Cancer Institute, Cairo University and Childern's Cancer Hospital, Cairo, Egypt
| | - Mohamed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
- Biomedical Research Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
- The Regional Centre for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Willner E, Kolbe F, Momburg F, Protzer U, Dietz H. Hepatitis B Virus Neutralization with DNA Origami Nanoshells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25836-25842. [PMID: 38728653 PMCID: PMC11129107 DOI: 10.1021/acsami.4c03700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
We demonstrate the use of DNA origami to create virus-trapping nanoshells that efficiently neutralize hepatitis B virus (HBV) in cell culture. By modification of the shells with a synthetic monoclonal antibody that binds to the HBV envelope, the effective neutralization potency per antibody is increased by approximately 100 times compared to using free antibodies. The improvements in neutralizing the virus are attributed to two factors: first, the shells act as a physical barrier that blocks the virus from interacting with host cells; second, the multivalent binding of the antibodies inside the shells lead to stronger attachment to the trapped virus, a phenomenon known as avidity. Pre-incubation of shells with HBV and simultaneous addition of both components separately to cells lead to comparable levels of neutralization, indicating rapid trapping of the virions by the shells. Our study highlights the potential of the DNA shell system to rationally create antivirals using components that, when used individually, show little to no antiviral effectiveness.
Collapse
Affiliation(s)
- Elena
M. Willner
- Department
of Biosciences, School of Natural Sciences and Munich Institute of
Biomedical Engineering, Technical University
of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Fenna Kolbe
- Institute
of Virology, School of Medicine & Health, Technical University of Munich and Helmholtz Munich, Trogerstraße 30, 81675 Munich, Germany
| | - Frank Momburg
- Translational
Immunity Unit, German Cancer Research Center
(DKFZ), Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Ulrike Protzer
- Institute
of Virology, School of Medicine & Health, Technical University of Munich and Helmholtz Munich, Trogerstraße 30, 81675 Munich, Germany
- German
Center for Infection Research (DZIF),
Munich Partner Site, 81675 Munich, Germany
| | - Hendrik Dietz
- Department
of Biosciences, School of Natural Sciences and Munich Institute of
Biomedical Engineering, Technical University
of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| |
Collapse
|
4
|
Chen D, Tan X, Chen W, Liu Y, Li C, Wu J, Zheng J, Shen HC, Zhang M, Wu W, Wang L, Xiong J, Dai J, Sun K, Zhang JD, Xiang K, Li B, Ni X, Zhu Q, Gao L, Wang L, Feng S. Discovery of Novel cccDNA Reducers toward the Cure of Hepatitis B Virus Infection. J Med Chem 2022; 65:10938-10955. [PMID: 35973101 DOI: 10.1021/acs.jmedchem.1c02215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide disease that causes thousands of deaths per year. Currently, there is no therapeutic that can completely cure already infected HBV patients due to the inability of humans to eliminate covalently closed circular DNA (cccDNA), which serves as the template to (re)initiate an infection even after prolonged viral suppression. Through phenotypic screening, we discovered xanthone series hits as novel HBV cccDNA reducers, and subsequent structure optimization led to the identification of a lead compound with improved antiviral activity and pharmacokinetic profiles. A representative compound 59 demonstrated good potency and oral bioavailability with no cellular toxicity. In an HBVcircle mouse model, compound 59 showed excellent efficacy in significantly reducing HBV antigens, DNA, and intrahepatic cccDNA levels.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Xuefei Tan
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Wenming Chen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Yongfu Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Chao Li
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jun Wu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jiamin Zheng
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Hong C Shen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Meifang Zhang
- Lead Discovery, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Waikwong Wu
- Lead Discovery, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Lin Wang
- pCMC, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jing Xiong
- pCMC, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jieyu Dai
- Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Kai Sun
- Pharmaceutical Sciences, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Jitao David Zhang
- Pharmaceutical Science, Roche Innovation Center Basel, Roche Pharma Research & Early Development, Grenzacherstrasse 124, Basel CH-4070, Switzerland
| | - Kunlun Xiang
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Baocun Li
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - XiaoJu Ni
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Qihui Zhu
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Lu Gao
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Li Wang
- Discovery Virology, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| | - Song Feng
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research & Early Development, Building 5, No. 371, Lishizhen Road, Shanghai 201203, China
| |
Collapse
|
5
|
Yang C, Chen H, Zhou B, Yin J, Cao G, Hou J, Jiang D. The effects of the interactions of STAT4 rs7574865 with HBV mutations on the risk of hepatocellular carcinoma. Mol Carcinog 2022; 61:933-940. [PMID: 35880842 DOI: 10.1002/mc.23449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/13/2022] [Accepted: 07/02/2022] [Indexed: 11/11/2022]
Abstract
Signal transducer and activator of transcription 4 (STAT4) is closely related to liver diseases and affects the processes of inflammation and carcinogenesis by regulating immune responses. A single-nucleotide polymorphism rs7574865 (T > G) in STAT4 has been reported to be associated with the risk of hepatocellular carcinoma (HCC). In addition, hepatitis B virus (HBV) mutations are crucial risk factors for HBV-induced HCC. However, the effects of the interactions of STAT4 rs7574865 with HBV mutations on the risk of HCC remain unknown. Rs7574865 was genotyped in 846 healthy controls (HCs), 968 chronic hepatitis B (CHB) subjects, 316 liver cirrhosis (LC) subjects and 1021 HCC subjects using Sequenom MassArray. HBV mutations were detected via direct sequencing. Multivariate logistic regression analysis was used to evaluate the effects of the interactions of STAT4 rs7574865 with HBV mutations on the risk of HCC. We found that the rs7574865 TT genotype was significantly associated with HBeAg seroconversion (TT vs. GG, p = 0.012; TT vs. GT, p = 0.033). The rs7574865 GG genotype was significantly associated with increased risks of CHB (p = 0.048), LC (p = 0.005) and HCC (p < 0.001). The interaction term between rs7574865 and HBV C1913A significantly increased the risk of progression from CHB to HCC (p = 0.038), while the interaction term between rs7574865 and HBV T1674C significantly increased the risk of progression from LC to HCC (p = 0.023). STAT4 rs7574865 is significantly associated with the risks of CHB, LC and HCC. The interactions of rs7574865 with HBV C1913A and T1674C mutations significantly increase the risk of HCC, which have the potential to identify HBV-infected individuals who tend to progress from CHB or LC to HCC.
Collapse
Affiliation(s)
- Chou Yang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
Hamdi M, Elmowafy E, Abdel-Bar HM, ElKashlan AM, Al-Jamal KT, Awad GAS. Hyaluronic acid-entecavir conjugates-core/lipid-shell nanohybrids for efficient macrophage uptake and hepatotropic prospects. Int J Biol Macromol 2022; 217:731-747. [PMID: 35841964 DOI: 10.1016/j.ijbiomac.2022.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Drug covalently bound to polymers had formed, lately, platforms with great promise in drug delivery. These drug polymer conjugates (DPC) boosted drug loading and controlled medicine release with targeting ability. Herein, the ability of entecavir (E) conjugated to hyaluronic acid (HA) forming the core of vitamin E coated lipid nanohybrids (EE-HA LPH), to target Kupffer cells and hepatocyte had been proved. The drug was associated to HA with efficiency of 93.48 ± 3.14 % and nanohybrids loading of 22.02 ± 2.3 %. DiI labelled lipidic nanohybrids improved the macrophage uptake in J774 cells with a 21 day hepatocytes retention post intramuscular injection. Finally, in vivo biocompatibility and safety with respect to body weight, organs indices and histopathological alterations were demonstrated. Coating with vitamin E and conjugation of E to HA (a CD44 ligand), could give grounds for prospective application for vectored nano-platform in hepatitis B.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom.
| | - Akram M ElKashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
7
|
Li M, Zhang L, Xie S, Sun F, Zeng Z, Deng W, Jiang T, Bi X, Lin Y, Yang L, Lu Y, Shen G, Liu R, Wu S, Chang M, Hu L, Dong J, Yi W, Xie Y. Dynamic Changes of Cytokine Profiles and Virological Markers Associated With HBsAg Loss During Peginterferon Alpha-2a Treatment in HBeAg-Positive Chronic Hepatitis B Patients. Front Immunol 2022; 13:892031. [PMID: 35603222 PMCID: PMC9114800 DOI: 10.3389/fimmu.2022.892031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore dynamic changes of cytokines and virological markers associated with hepatitis B surface antigen (HBsAg) loss during peginterferon alpha-2a (PEG-IFN α-2a) treatment in hepatitis B e antigen (HBeAg) positive chronic hepatitis B (CHB) patients. Methods It was a single-center prospective cohort study. HBeAg-positive CHB patients were prospectively and consecutively enrolled. Cytokines were detected at baseline, week 12 and 24 of PEG-IFN treatment. HBsAg disappearance rate was the primary evaluation index at 48 weeks of PEG-IFN treatment. Results Among 100 patients who completed the 48-week PEG-IFN α-2a treatment, 38 patients achieved serum HBeAg disappearance, 25 patients achieved HBeAg seroconversion, 9 patients achieved functional cure, 37 patients had HBsAg decline of ≥1 log IU/ml, and 8 patients produced hepatitis B surface antibody (HBsAb). Albumin (ALB), fms-like tyrosine kinase 3 ligand (FLT3-L) and interferon-alpha2 (IFN-α2) in the clinical cure group were significantly lower than those in the non-clinical-cure group at baseline. After 12 weeks of treatment, HBsAg in the clinical cure group was significantly lower than that in the non-clinical-cure group (median 1.14 vs. 3.45 log10IU/ml, Z=-4.355, P < 0.001). The decrease of HBsAg and hepatitis B virus desoxyribose nucleic acid (HBV DNA) in the clinical cure group was significantly higher than that in non-clinical-cure group (median: HBsAg 1.96 vs. 0.33 log10IU/ml, Z=-4.703, P< 0.001; HBV DNA 4.49 vs.3.13 log10IU/ml, Z=-3.053, P=0.002). The increase of IFN-α2 in the cure group was significantly higher than that in the non-clinical-cure group (497.89 vs. 344.74, Z=-2.126, P=0.034). After 24 weeks of treatment, HBsAg, HBeAg, Flt3-L, and IL-10 in the clinical cure group were significantly lower than those in the non-clinical-cure group (median: HBsAg 0.70 vs. 3.15 log10IU/ml, Z=-4.535, P< 0.001; HBeAg 1.48 vs. 13.72 S/CO, Z = 2.512, P = 0.012; Flt3-l 0.00 vs 2.24 pg/ml, Z = 3.137, P=0.002; IL-10 0.70 vs. 2.71 pg/ml, Z=-4.067, P < 0.001). HBsAg decreased significantly in the clinical cure group compared with non-clinical-cure group (median 3.27 vs. 0.45, Z=-4.463, P < 0.001). Conclusion Dynamic changes of cytokines and virology markers during early PEG IFN α-2a treatment were associated with HBsAg loss in HBeAg-positive CHB patients.
Collapse
Affiliation(s)
- Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Luxue Zhang
- Infectious Disease Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Si Xie
- Division of Hepatology, Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Fangfang Sun
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhan Zeng
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jianping Dong
- Department of Infectious Diseases, Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
8
|
Gao L, Yang J, Feng J, Liu Z, Dong Y, Luo J, Yu L, Wang J, Fan H, Ma W, Liu T. PreS/2-21-Guided siRNA Nanoparticles Target to Inhibit Hepatitis B Virus Infection and Replication. Front Immunol 2022; 13:856463. [PMID: 35572586 PMCID: PMC9098953 DOI: 10.3389/fimmu.2022.856463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
A viable therapy is needed to overcome the deadlock of the incurable chronic hepatitis B (CHB). The prolonged existence of covalently closed circular DNA (cccDNA) and integrated HBV DNA in the nucleus of hepatocytes is the root cause of CHB. As a result, it is critical to successfully suppress HBV DNA replication and eliminate cccDNA. RNA interference has been proven in recent research to silence the expression of target genes and thereby decrease HBV replication. However, siRNA is susceptible to be degraded by RNA enzymes in vivo, making it difficult to deliver successfully and lacking of tissue targeting. To exploit the advantages of siRNA technology while also overcoming its limitations, we designed a new strategy and prepared biomimetic nanoparticles that were directed by PreS/2-21 peptides and precisely loaded HBV siRNA. Experiments on these nanoparticles in vitro and in vivo revealed that they are tiny, stable, safe and highly targetable, with high inhibitory effects on HBV DNA, pgRNA, cccDNA, HBeAg and HBsAg. PreS/2-21-directed nanoparticles loaded with HBV gene therapy drugs are expected to be promising for the treatment of CHB.
Collapse
Affiliation(s)
- Lixia Gao
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jie Yang
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jutao Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziying Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Dong
- Institute of Antibody Engineering, School of Laboratory Medicine & Biotechnology, Southern Medical University, Guangzhou, China
| | - Jiangyan Luo
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liangzhentian Yu
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiamei Wang
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongying Fan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weifeng Ma
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Tiancai Liu, ; Weifeng Ma,
| | - Tiancai Liu
- Institute of Antibody Engineering, School of Laboratory Medicine & Biotechnology, Southern Medical University, Guangzhou, China
- *Correspondence: Tiancai Liu, ; Weifeng Ma,
| |
Collapse
|
9
|
Li Y, Zhou J, Li T. Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment. Front Mol Biosci 2022; 9:879817. [PMID: 35495620 PMCID: PMC9039015 DOI: 10.3389/fmolb.2022.879817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for more than 250 million cases of chronic liver infection, a condition that can lead to liver inflammation, cirrhosis, and hepatocellular carcinoma. Sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes and a mediator of bile acid transport, has been identified as the receptor responsible for the cellular entry of both HBV and its satellite, hepatitis delta virus (HDV). This has led to significant advances in our understanding of the HBV life cycle, especially the early steps of infection. HepG2-NTCP cells and human NTCP-expressing transgenic mice have been employed as the primary cell culture and animal models, respectively, for the study of HBV, and represent valuable approaches for investigating its basic biology and developing treatments for infection. However, the mechanisms involved in the regulation of NTCP transcription, translation, post-translational modification, and transport are still largely elusive. Improvements in our understanding of NTCP biology would likely facilitate the design of new therapeutic drugs for the prevention of the de novo infection of naïve hepatocytes. In this review, we provide critical findings regarding NTCP biology and discuss important questions that remain unanswered.
Collapse
Affiliation(s)
- Yan Li
- *Correspondence: Yan Li, ; Tianliang Li,
| | | | | |
Collapse
|
10
|
Special Issue: “Updates on HBV Infection”. Microorganisms 2022; 10:microorganisms10030580. [PMID: 35336155 PMCID: PMC8954355 DOI: 10.3390/microorganisms10030580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
|
11
|
Ding R, Shen Y, Yuan M, Zheng X, Chen S, Duan G. Rapid and facile detection of HBV with CRISPR/Cas13a. NEW J CHEM 2022; 46:19997-20004. [DOI: 10.1039/d2nj02674k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
A rapid point-of-care assay based on CRISPR-Cas13a for HBV was built with a LOD of 1 copy per μL was achieved in 50 min. The lateral flow test strip method can achieve naked-eye results, and the fluorescence readout can achieve real-time detection.
Collapse
Affiliation(s)
- Ronghua Ding
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450000, Henan, China
- Jining No. 1 People′s Hospital, Jining 272000, Shandong, China
| | - Yue Shen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450000, Henan, China
| | - Mingzhu Yuan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450000, Henan, China
| | - Xue Zheng
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450000, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450000, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou 450000, Henan, China
- Key Laboratory of Molecular Medicine in Henan Province, Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
12
|
Meneghello BHDS, Soares MMCN, Silva VCM, Lemos MF, Cervato MC, Caetano Filho J, Sitnik R, Estécio TCH, Compri AP, Pinho JRR, Moreira RC. Hepatitis B in the Northwestern region of Sao Paulo State: genotypes and resistance mutations. Rev Inst Med Trop Sao Paulo 2021; 63:e78. [PMID: 34755817 PMCID: PMC8580483 DOI: 10.1590/s1678-9946202163078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
In Brazil, few studies on the molecular aspects of hepatitis B virus (HBV)
infection have been conducted in the interior regions of Sao Paulo State. This
study aimed to identify HBV genotypes and evaluate strains with resistance
mutations for nucleoside analogues in the Administrative Region (AR) of the
municipality of Sao Jose do Rio Preto. We performed nested PCRs of 127 samples
from the Health Care Services of the AR to amplify, sequence and analyze
fragments of the HBV DNA, in order to identify genotypes and resistance
mutations. The HBV S/Pol regions of 126 samples were successfully amplified and
sequenced. Five different genotypes were found, and the main ones were A, D and
F; a greater number of samples contained the subgenotypes A1 (n = 51; 40.5%), D3
(n = 36; 28.6%), A2 (n = 14; 11.1%) and F2a (n = 9; 7.1%). Resistance mutations
(rtM204V/I/S) associated or not with compensatory mutations (rtL180M, rtV173L)
were identified in 13.9% (5/36) of patients undergoing viral treatment and 1.1%
(1/90) of naïve patients. The diversity of genotypes/subgenotypes found is
probably due to the intense migration occurring in the region. These data can
complement epidemiological and clinical surveillance, and can be used for a more
effective management of chronic HBV patients.
Collapse
Affiliation(s)
| | | | | | | | | | - João Caetano Filho
- Instituto Adolfo Lutz, Centro de Laboratório Regional, São José do Rio Preto, São Paulo, Brazil
| | - Roberta Sitnik
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | | | | | - João Renato Rebello Pinho
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Hospital das Clínicas, LIM-03, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Gastroenterologia e Hepatologia Tropical "João de Queiroz e Castorina Bettencourt Alves", LIM-07, São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Departamento de Gastroenterologia, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Philips CA, Ahamed R, Abduljaleel JK, Rajesh S, Augustine P. Critical Updates on Chronic Hepatitis B Virus Infection in 2021. Cureus 2021; 13:e19152. [PMID: 34733599 PMCID: PMC8557099 DOI: 10.7759/cureus.19152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global healthcare burden in the form of chronic liver disease, cirrhosis, liver failure and liver cancer. There is no definite cure for the virus and even though extensive vaccination programs have reduced the burden of liver disease in the future population, treatment options to eradicate the virus from the host are still lacking. In this review, we discuss in detail current updates on the structure and applied biology of the virus in the host, examine updates to current treatment and explore novel and state-of-the-art therapeutics in the pipeline for management of chronic HBV. Furthermore, we also specifically review clinical updates on HBV-related acute on chronic liver failure (ACLF). Current treatments for chronic HBV infection have seen important updates in the form of considerations for treating patients in the immune tolerant phase and some clarity on end points for treatment and decisions on finite therapy with nucleos(t)ide inhibitors. Ongoing cutting-edge research on HBV biology has helped us identify novel target areas in the life cycle of the virus for application of new therapeutics. Due to improvements in the area of genomics, the hope for therapeutic vaccines, vector-based treatments and focused management aimed at targeting host integration of the virus and thereby a total cure could become a reality in the near future. Newer clinical prognostic tools have improved our understanding of timing of specific treatment options for the catastrophic syndrome of ACLF secondary to reactivation of HBV. In this review, we discuss in detail pertinent updates regarding virus biology and novel therapeutic targets with special focus on the appraisal of prognostic scores and treatment options in HBV-related ACLF.
Collapse
Affiliation(s)
- Cyriac A Philips
- Clinical and Translational Hepatology, The Liver Institute, Rajagiri Hospital, Aluva, IND
| | - Rizwan Ahamed
- Gastroenterology and Advanced Gastrointestinal Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| | - Jinsha K Abduljaleel
- Gastroenterology and Advanced Gastrointestinal Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| | - Sasidharan Rajesh
- Diagnostic and Interventional Radiology, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| | - Philip Augustine
- Gastroenterology and Advanced Gastrointestinal Endoscopy, Center of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, IND
| |
Collapse
|
14
|
Ouchida T, Takamatsu S, Maeda M, Asuka T, Morita C, Kondo J, Ueda K, Miyoshi E. Challenges in the Application of Glyco-Technology to Hepatitis B Virus Therapy and Diagnosis. Viruses 2021; 13:v13091860. [PMID: 34578441 PMCID: PMC8473023 DOI: 10.3390/v13091860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus (HBV) is a major pathogen that causes acute/chronic hepatitis. Continuous HBV infection can lead to the development of hepatocellular carcinoma (HCC). Although several different anti-HBV treatments are available for chronic hepatitis B patients, discontinuing these medications is difficult. Patients with chronic hepatitis B at high risk for HCC therefore require close observation. However, no suitable biomarkers for detecting high-risk groups for HCC exist, except for serum HBV-DNA, but a number of HCC biomarkers are used clinically, such as alpha-fetoprotein (AFP) and protein induced by vitamin K absence-II (PIVKA-II). Glycosylation is an important post-translational protein modification involved in many human pathologic conditions. HBV surface proteins contain various oligosaccharides, and several reports have described their biological functions. Inhibition of HBV glycosylation represents a potential novel anti-HBV therapy. It is thought that glycosylation of hepatocytes/hepatoma cells is also important for HBV infection, as it prevents HBV from infecting cells other than hepatocytes, even if the cells express the HBV receptor. In this review, we summarize considerable research regarding the relationship between HBV and glycosylation as it relates to the development of novel diagnostic tests and therapies for HBV.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Japan; (T.O.); (S.T.); (M.M.); (T.A.); (C.M.); (J.K.)
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Japan; (T.O.); (S.T.); (M.M.); (T.A.); (C.M.); (J.K.)
| | - Megumi Maeda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Japan; (T.O.); (S.T.); (M.M.); (T.A.); (C.M.); (J.K.)
| | - Tatsuya Asuka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Japan; (T.O.); (S.T.); (M.M.); (T.A.); (C.M.); (J.K.)
| | - Chiharu Morita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Japan; (T.O.); (S.T.); (M.M.); (T.A.); (C.M.); (J.K.)
- Department of Microbiology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan;
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Japan; (T.O.); (S.T.); (M.M.); (T.A.); (C.M.); (J.K.)
| | - Keiji Ueda
- Department of Microbiology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan;
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita 565-0871, Japan; (T.O.); (S.T.); (M.M.); (T.A.); (C.M.); (J.K.)
- Correspondence: ; Tel./Fax: +81-6-6879-2590
| |
Collapse
|
15
|
Torre P, Aglitti A, Masarone M, Persico M. Viral hepatitis: Milestones, unresolved issues, and future goals. World J Gastroenterol 2021; 27:4603-4638. [PMID: 34366625 PMCID: PMC8326259 DOI: 10.3748/wjg.v27.i28.4603] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
In this review the current overall knowledge on hepatitis A, B, C, D, and E will be discussed. These diseases are all characterized by liver inflammation but have significant differences in distribution, transmission routes, and outcomes. Hepatitis B virus and hepatitis C virus are transmitted by exposure to infected blood, and in addition to acute infection, they can cause chronic hepatitis, which in turn can evolve into cirrhosis. It is estimated that more than 300 million people suffer from chronic hepatitis B or C worldwide. Hepatitis D virus, which is also transmitted by blood, only affects hepatitis B virus infected people, and this dual infection results in worse liver-related outcomes. Hepatitis A and E spread via the fecal-oral route, which corresponds mainly to the ingestion of food or water contaminated with infected stools. However, in developed countries hepatitis E is predominantly a zoonosis. Although hepatitis A virus and hepatitis E virus are usually responsible for a self-limiting hepatitis, a serious, rarely fatal illness is also possible, and in immunosuppressed patients, such as organ transplant recipients, hepatitis E virus infection can become chronic. The description of goals achieved, unresolved issues, and the latest research on this topic may make it possible to speculate on future scenarios in the world of viral hepatitis.
Collapse
Affiliation(s)
- Pietro Torre
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana,” University of Salerno, Salerno 84081, Italy
| | - Andrea Aglitti
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana,” University of Salerno, Salerno 84081, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana,” University of Salerno, Salerno 84081, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana,” University of Salerno, Salerno 84081, Italy
| |
Collapse
|
16
|
Sirilert S, Tongsong T. Hepatitis B Virus Infection in Pregnancy: Immunological Response, Natural Course and Pregnancy Outcomes. J Clin Med 2021; 10:jcm10132926. [PMID: 34210105 PMCID: PMC8267880 DOI: 10.3390/jcm10132926] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
This review aimed to provide an update on the impact of pregnancy on the natural course of hepatitis B virus (HBV) infection and also on the impact of HBV infection on adverse pregnancy outcomes, including mother-to-child transmission (MTCT). For the literature review, original research articles, review articles, and guidelines were narratively reviewed and comprehensively validated. The databases of PubMed, EMBASE, and CINAHL were carefully searched for articles in English on topics related to HBV infection, pregnancy, and vertical transmission from 1960 to May 2021. Immunological changes during pregnancy such as suppression of Th1 response and induction of Th2 immunity lead to an impaired immune reaction to HBV and stimulate viral activity along with the reduction of CD8 T cells to escape immune detection. The impact of pregnancy on the natural course of chronic HBV infection seems to be minimal, while pregnancy can increase morbidity and mortality in the case of advanced HBV hepatitis or cirrhosis. Importantly, hepatitis flare or alanine aminotransferase (ALT) flare can occur during pregnancy and is more common during the postpartum period due to the interaction between HBV and the immune response. Interestingly, the impact of HBV infection on adverse pregnancy outcomes is more serious than ever thought. Updated evidence indicates that pregnancies with chronic HBV infection increase the risk of preterm birth and gestational diabetes, especially in cases of positive hepatitis e antigen (HBeAg).
Collapse
|
17
|
Ding R, Long J, Yuan M, Zheng X, Shen Y, Jin Y, Yang H, Li H, Chen S, Duan G. CRISPR/Cas12-Based Ultra-Sensitive and Specific Point-of-Care Detection of HBV. Int J Mol Sci 2021; 22:ijms22094842. [PMID: 34063629 PMCID: PMC8125043 DOI: 10.3390/ijms22094842] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B remains a major global public health challenge, with particularly high prevalence in medically disadvantaged western Pacific and African regions. Although clinically available technologies for the qPCR detection of HBV are well established, research on point-of-care testing has not progressed substantially. The development of a rapid, accurate point-of-care test is essential for the prevention and control of hepatitis B in medically disadvantaged rural areas. The development of the CRISPR/Cas system in nucleic acid detection has allowed for pathogen point-of-care detection. Here, we developed a rapid and accurate point-of-care assay for HBV based on LAMP-Cas12a. It innovatively solves the problem of point-of-care testing in 10 min, particularly the problem of sample nucleic acid extraction. Based on LAMP-Cas12a, visualization of the assay results is presented by both a fluorescent readout and by lateral flow test strips. The lateral flow test strip technology can achieve results visible to the naked eye, while fluorescence readout can achieve real-time high-sensitivity detection. The fluorescent readout-based Cas12a assay can achieve HBV detection with a limit of detection of 1 copy/μL within 13 min, while the lateral flow test strip technique only takes 20 min. In the evaluation of 73 clinical samples, the sensitivity and specificity of both the fluorescence readout and lateral flow test strip method were 100%, and the results of the assay were fully comparable to qPCR. The LAMP-Cas12a-based HBV assay relies on minimal equipment to provide rapid, accurate test results and low costs, providing significant practical value for point-of-care HBV detection.
Collapse
Affiliation(s)
- Ronghua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (R.D.); (J.L.); (M.Y.); (X.Z.); (Y.S.); (Y.J.); (H.Y.)
| | - Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (R.D.); (J.L.); (M.Y.); (X.Z.); (Y.S.); (Y.J.); (H.Y.)
| | - Mingzhu Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (R.D.); (J.L.); (M.Y.); (X.Z.); (Y.S.); (Y.J.); (H.Y.)
| | - Xue Zheng
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (R.D.); (J.L.); (M.Y.); (X.Z.); (Y.S.); (Y.J.); (H.Y.)
| | - Yue Shen
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (R.D.); (J.L.); (M.Y.); (X.Z.); (Y.S.); (Y.J.); (H.Y.)
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (R.D.); (J.L.); (M.Y.); (X.Z.); (Y.S.); (Y.J.); (H.Y.)
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (R.D.); (J.L.); (M.Y.); (X.Z.); (Y.S.); (Y.J.); (H.Y.)
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (R.D.); (J.L.); (M.Y.); (X.Z.); (Y.S.); (Y.J.); (H.Y.)
- Correspondence: (S.C.); (G.D.); Tel.: +86-0371-6778-1405 (S.C. & G.D.)
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China; (R.D.); (J.L.); (M.Y.); (X.Z.); (Y.S.); (Y.J.); (H.Y.)
- Key Laboratory of Molecular Medicine in Henan Province, Zhengzhou 450000, China
- Correspondence: (S.C.); (G.D.); Tel.: +86-0371-6778-1405 (S.C. & G.D.)
| |
Collapse
|
18
|
Castaneda D, Gonzalez AJ, Alomari M, Tandon K, Zervos XB. From hepatitis A to E: A critical review of viral hepatitis. World J Gastroenterol 2021; 27:1691-1715. [PMID: 33967551 PMCID: PMC8072198 DOI: 10.3748/wjg.v27.i16.1691] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections affecting the liver have had an important impact on humanity, as they have led to significant morbidity and mortality in patients with acute and chronic infections. Once an unknown etiology, the discovery of the viral agents triggered interest of the scientific community to establish the pathogenesis and diagnostic modalities to identify the affected population. With the rapid scientific and technological advances in the last centuries, controlling and even curing the infections became a possibility, with a large focus on preventive medicine through vaccination. Hence, a comprehensive understanding of hepatitis A, B, C, D and E is required by primary care physicians and gastroenterologists to provide care to these patients. The review article describes the epidemiology, pathogenesis, clinical presentation, diagnostic tools and current medication regimens, with a focus on upcoming treatment options and the role of liver transplantation.
Collapse
Affiliation(s)
- Daniel Castaneda
- Digestive Disease Institute, Cleveland Clinic Florida, Weston, FL 33331, United States
| | | | - Mohammad Alomari
- Digestive Disease Institute, Cleveland Clinic Florida, Weston, FL 33331, United States
| | - Kanwarpreet Tandon
- Digestive Disease Institute, Cleveland Clinic Florida, Weston, FL 33331, United States
| | | |
Collapse
|
19
|
Cell Penetrating Peptides Used in Delivery of Therapeutic Oligonucleotides Targeting Hepatitis B Virus. Pharmaceuticals (Basel) 2020; 13:ph13120483. [PMID: 33371278 PMCID: PMC7766285 DOI: 10.3390/ph13120483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Peptide Nucleic Acid (PNAs) and small noncoding RNAs including small interfering RNAs (siRNAs) represent a new class of oligonucleotides considered as an alternative therapeutic strategy in the chronic hepatitis B treatment. Indeed, chronic hepatitis B virus (HBV) infection remains a major public health problem worldwide, despite the availability of an effective prophylactic vaccine. Current therapeutic approaches approved for chronic HBV treatment are pegylated-interferon alpha (IFN)-α and nucleos(t)ide analogues (NAs). Both therapies do not completely eradicate viral infection and promote severe side effects. In this context, the development of new effective treatments is imperative. This review focuses on antiviral activity of both PNAs and siRNAs targeting hepatitis B virus. Thus, we briefly present our results on the ability of PNAs to decrease hepadnaviral replication in duck hepatitis B virus (DHBV) model. Interestingly, other oligonucleotides as siRNAs could significantly inhibit HBV antigen expression in transient replicative cell culture. Because the application of these oligonucleotides as new antiviral drugs has been hampered by their poor intracellular bioavailability, we also discuss the benefits of their coupling to different molecules such as the cell penetrating peptides (CPPs), which were used as vehicles to deliver therapeutic agents into the cells.
Collapse
|