1
|
Sukmak R, Suttinun C, Kovitvadhi U, Kovitvadhi A, Vongsangnak W. Uncovering nutrients and energy related gene functions of black soldier fly Hermetia illucens strain KUP. Gene 2024; 896:148045. [PMID: 38042219 DOI: 10.1016/j.gene.2023.148045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
The black soldier fly (Hermetia illucens) has emerged as a significant insect species in the decomposition of organic waste for sustainable agricultural practices. Due to its remarkable characteristics and performance, H. illucens is increasingly utilised for insect farming, particularly for industrial-scale rearing throughout the world. In this study, we employed whole-genome sequencing to annotate the gene and protein functions of H. illucens and to explore the functional genomics related to nutrients and energy. As a result, a genome size of H. illucens strain KUP 1.68 Gb with a GC content of 42.13 % was achieved. Of the 14,036 coding sequences, we determined the function of 12,046 protein-coding genes. Based on metabolic functional assignment, we classified 4,218 protein-coding genes; the main category was metabolism (32.86 %). Comparative genomic analysis across the other H. illucens strain and insect species revealed that the major metabolic gene functions and pathways related to nutrient and energy sources of H. illucens KUP are involved in key amino acid metabolism (e.g., cysteine and methionine) as well as fatty acid biosynthesis and glycerolipid metabolism. These findings underscore the metabolic capability and versatility of H. illucens, which is regarded as a potential source of proteins and lipids. Our study contributes to the knowledge regarding the feed utilisation of H. illucens and offers insights into transforming waste into valuable products. H. illucens has the potential to create globally sustainable nutrients and environmentally friendly solutions, aligning with the goal of responsible resource utilisation.
Collapse
Affiliation(s)
- Rachrapee Sukmak
- Graduate Student in Animal Health and Biomedical Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chanaporn Suttinun
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
2
|
Franco A, Scieuzo C, Salvia R, Pucciarelli V, Borrelli L, Addeo NF, Bovera F, Laginestra A, Schmitt E, Falabella P. Antimicrobial activity of lipids extracted from Hermetia illucens reared on different substrates. Appl Microbiol Biotechnol 2024; 108:167. [PMID: 38261012 PMCID: PMC10806025 DOI: 10.1007/s00253-024-13005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
As the problem of antimicrobial resistance is constantly increasing, there is a renewed interest in antimicrobial products derived from natural sources, particularly obtained from innovative and eco-friendly materials. Insect lipids, due to their fatty acid composition, can be classified as natural antimicrobial compounds. In order to assess the antibacterial efficacy of Hermetia illucens lipids, we extracted this component from the larval stage, fed on different substrates and we characterized it. Moreover, we analyzed the fatty acid composition of the feeding substrate, to determine if and how it could affect the antimicrobial activity of the lipid component. The antimicrobial activity was evaluated against Gram-positive Micrococcus flavus and Gram-negative bacteria Escherichia coli. Analyzing the fatty acid profiles of larval lipids that showed activity against the two bacterial strains, we detected significant differences for C4:0, C10:0, C16:1, C18:3 n3 (ALA), and C20:1. The strongest antimicrobial activity was verified against Micrococcus flavus by lipids extracted from larvae reared on strawberry, tangerine, and fresh manure substrates, with growth inhibition zones ranged from 1.38 to 1.51 mm, while only the rearing on manure showed the effect against Escherichia coli. Notably, the fatty acid profile of H. illucens seems to not be really influenced by the substrate fatty acid profile, except for C18:0 and C18:2 CIS n6 (LA). This implies that other factors, such as the rearing conditions, larval development stages, and other nutrients such as carbohydrates, affect the amount of fatty acids in insects. KEY POINTS: • Feeding substrates influence larval lipids and fatty acids (FA) • Generally, there is no direct correlation between substrate FAs and the same larvae FAs • Specific FAs influence more the antimicrobial effect of BSF lipids.
Collapse
Affiliation(s)
- Antonio Franco
- Department of Sciences, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy.
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| | - Valentina Pucciarelli
- Department of Sciences, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Luca Borrelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137, Naples, Italy
| | - Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137, Naples, Italy
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137, Naples, Italy
| | - Ambrogio Laginestra
- Department of Relations With the Territory, TotalEnergies EP Italia S.P.A, Via Della Tecnica, 4, 85100, Potenza, Italy
| | - Eric Schmitt
- Protix B.V., Industriestaat 3, NC, 5107, Dongen, The Netherlands
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy.
- Spinoff XFlies S.R.L, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
3
|
Zabulionė A, Šalaševičienė A, Makštutienė N, Šarkinas A. Exploring the Antimicrobial Potential and Stability of Black Soldier Fly (Hermentia illucens) Larvae Fat for Enhanced Food Shelf-Life. Gels 2023; 9:793. [PMID: 37888366 PMCID: PMC10606111 DOI: 10.3390/gels9100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
The larvae of the Black Soldier Fly (BSF, Hermetia illucens) have been introduced as one of the tools to create a circular economy model, which will be used in areas such as waste management and the treatment of industrial by-products to produce high-added-value food grade ingredients. The main aim of this research was to investigate the fat composition and antimicrobial activity against food pathogens and spoilers of Black Soldier Fly larvae. The research revealed that the Black Soldier Fly larvae fats are predominantly lauric fatty (40.93%), which are followed by palmitic, oleic, myristic, linolenic and palmitoleic fatty acids, accounting for 19.11, 17.34, 6.49, 8.79 and 3.89% of the fatty acid content, respectively. The investigation of the fats showed stability through a one-year monitoring period with no indication of chemical or microbiological spoilage. Different fat fractions were tested for antimicrobial activity, which showed efficiency against Candida albicans (the inhibition zone varied from 10.5 to 12.5 mm), Bacillus subtilis (from 12.5 to 16.5 mm), Staphylococcus aureus (12.5 mm) and Escherichia coli (10.0 mm). The inhibitory effect on Candida albicans was confirmed by shelf-life studies using larvae fat-based oleogel in a model food matrix. GraphPad Prism (ver. 8.0.1) was used for the statistical data processing. This research revealed the potential of Black Soldier Fly larvae fat as a very stable ingredient with promising antibacterial properties that can extend the product shelf-life in food matrixes even when used in relatively small amounts.
Collapse
Affiliation(s)
- Aelita Zabulionė
- Food Institute, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (A.Š.); (N.M.); (A.Š.)
| | | | | | | |
Collapse
|
4
|
Kaczor M, Bulak P, Proc-Pietrycha K, Kirichenko-Babko M, Bieganowski A. The Variety of Applications of Hermetia illucens in Industrial and Agricultural Areas-Review. BIOLOGY 2022; 12:25. [PMID: 36671718 PMCID: PMC9855018 DOI: 10.3390/biology12010025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Hermetia illucens (Diptera: Stratiomyidae, Linnaeus, 1978), commonly known as the black soldier fly (BSF), is a saprophytic insect, which in recent years has attracted significant attention from both the scientific community and industry. The unrestrained appetite of the larvae, the ability to forage on various organic waste, and the rapid growth and low environmental impact of its breeding has made it one of the insect species bred on an industrial scale, in the hope of producing fodder or other ingredients for various animals. The variety of research related to this insect has shown that feed production is not the only benefit of its use. H. illucens has many features and properties that could be of interest from the point of view of many other industries. Biomass utilization, chitin and chitosan source, biogas, and biodiesel production, entomoremediation, the antimicrobial properties of its peptides, and the fertilizer potential of its wastes, are just some of its potential uses. This review brings together the work of four years of study into H. illucens. It summarizes the current state of knowledge and introduces the characteristics of this insect that may be helpful in managing its breeding, as well as its use in agro-industrial fields. Knowledge gaps and under-studied areas were also highlighted, which could help identify future research directions.
Collapse
Affiliation(s)
- Monika Kaczor
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr Bulak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Kinga Proc-Pietrycha
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Marina Kirichenko-Babko
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnitsky 15, 01030 Kyiv, Ukraine
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
5
|
Nekrasov RV, Ivanov GA, Chabaev MG, Zelenchenkova AA, Bogolyubova NV, Nikanova DA, Sermyagin AA, Bibikov SO, Shapovalov SO. Effect of Black Soldier Fly ( Hermetia illucens L.) Fat on Health and Productivity Performance of Dairy Cows. Animals (Basel) 2022; 12:ani12162118. [PMID: 36009708 PMCID: PMC9405003 DOI: 10.3390/ani12162118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Due to the intensive development of technologies for obtaining protein, energy feed and biologically active supplements from insects, the feasibility and effectiveness of introducing these products into the rations of farm animals require further study. This research aims to study the possibility and effects of feeding dairy cows fat from the larvae of the black soldier fly (BSFLF). The composition and properties of the BSFLF have been studied. The research of the fatty acid composition of BSFLF showed a high content of saturated fatty acids, including 58.9% lauric acid. The experiment was performed on black-and-white cows at the beginning of lactation (control, D0 (n = 12) vs. experimental D10 (n = 12) and D100 (n = 12) groups, 10 and 100 g/head/day BSFLF, respectively. There was no negative effect of BSFLF feeding on the process of feed digestion. The pH of the rumen content decreased (6.80 ± 0.07 & 6.85 ± 0.09 vs. 7.16 ± 0.06, p < 0.05), with an increase in the number of infusoria (0.27 ± 0.03&0.37 ± 0.09 vs. 0.18 ± 0.03 g/100 mL, p = 0.16); there was an increase in the concentration of VFA in the rumen content of animals of the experimental groups by 2.1 (p < 0.05) and 3.81 (p < 0.01) (8.66 ± 0.46 & 10.37 ± 0.42 vs. 6.56 ± 0.29) mmol/100 mL. The average daily milk yield of Group D10 cows over the experimental period (d17−d177) was slightly higher than the control (by 4.9%, p = 0.24 vs. Group D0). At the same time, Group D100 cows showed a significant increase in natural-fat milk compared to controls (by 8.0%, p < 0.05 vs. Group D0) over the same experiment period. Analysis of the fatty acid composition of the milk of the experimental animals showed some changes in the fatty acid composition of milk under the influence of BSFLF feeding; these changes were especially noticeable in Group D10. Thus, it was found that feeding dairy cows BSFLF at different dosages leads to better indicators of pre-gastric digestion and productivity.
Collapse
Affiliation(s)
- Roman V. Nekrasov
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Russia
- Correspondence: ; Tel.: +7-4967651277
| | | | - Magomed G. Chabaev
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Russia
| | | | | | - Daria A. Nikanova
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Russia
| | - Alexander A. Sermyagin
- L.K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Russia
| | - Semen O. Bibikov
- Cherkizovo Research and Testing Center LLC, 107143 Moscow, Russia
| | | |
Collapse
|
6
|
Mohamed H, Marusich E, Afanasev Y, Leonov S. Bacterial Outer Membrane Permeability Increase Underlies the Bactericidal Effect of Fatty Acids From Hermetia illucens (Black Soldier Fly) Larvae Fat Against Hypermucoviscous Isolates of Klebsiella pneumoniae. Front Microbiol 2022; 13:844811. [PMID: 35602017 PMCID: PMC9121012 DOI: 10.3389/fmicb.2022.844811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Behind expensive treatments, Klebsiella pneumoniae infections account for extended hospitalization’s high mortality rates. This study aimed to evaluate the activity and mechanism of the antimicrobial action of a fatty acid-containing extract (AWME3) isolated from Hermetia illucens (HI) larvae fat against K. pneumoniae subsp. pneumoniae standard NDM-1 carbapenemase-producing ATCC BAA-2473 strain, along with a wild-type hypermucoviscous clinical isolate, strain K. pneumoniae subsp. pneumoniae KPi1627, and an environmental isolate, strain K. pneumoniae subsp. pneumoniae KPM9. We classified these strains as extensive multidrug-resistant (XDR) or multiple antibiotic-resistant (MDR) demonstrated by a susceptibility assay against 14 antibiotics belonging to ten classes of antibiotics. Antibacterial properties of fatty acids extracted from the HI larvae fat were evaluated using disk diffusion method, microdilution, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), half of the inhibitory concentration (MIC50), and bactericidal assays. In addition, the cytotoxocity of AWME3 was tested on human HEK293 cells, and AWME3 lipid profile was determined by gas chromatography-mass spectrometry (GC-MS) analysis. For the first time, we demonstrated that the inhibition zone diameter (IZD) of fatty acid-containing extract (AWME3) of the HI larvae fat tested at 20 mg/ml was 16.52 ± 0.74 and 14.23 ± 0.35 mm against colistin-resistant KPi1627 and KPM9, respectively. It was 19.72 ± 0.51 mm against the colistin-susceptible K. pneumoniae ATCC BAA-2473 strain. The MIC and MBC were 250 μg/ml for all the tested bacteria strains, indicating the bactericidal effect of AWME3. The MIC50 values were 155.6 ± 0.009 and 160.1 ± 0.008 μg/ml against the KPi1627 and KPM9 isolates, respectively, and 149.5 ± 0.013 μg/ml against the ATCC BAA-2473 strain in the micro-dilution assay. For the first time, we demonstrated that AWME3 dose-dependently increased bacterial cell membrane permeability as determined by the relative electric conductivity (REC) of the K. pneumoniae ATCC BAA-2473 suspension, and that none of the strains did not build up resistance to extended AWME3 treatment using the antibiotic resistance assay. Cytotoxicity assay showed that AWME3 is safe for human HEK293 cells at IC50 266.1 μg/ml, while bactericidal for all the strains of bacteria at the same concentration. Free fatty acids (FFAs) and their derivatives were the significant substances among 33 compounds identified by the GC-MS analysis of AWME3. Cis-oleic and palmitoleic acids represent the most abundant unsaturated FAs (UFAs), while palmitic, lauric, stearic, and myristic acids were the most abundant saturated FAs (SFAs) of the AWME3 content. Bactericidal resistant-free AWM3 mechanism of action provides a rationale interpretations and the utility of HI larvae fat to develop natural biocidal resistance-free formulations that might be promising therapeutic against Gram-negative MDR bacteria causing nosocomial infections.
Collapse
Affiliation(s)
- Heakal Mohamed
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elena Marusich
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- *Correspondence: Elena Marusich,
| | - Yuriy Afanasev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
- Sergey Leonov,
| |
Collapse
|
7
|
Jin N, Liu Y, Zhang S, Sun S, Wu M, Dong X, Tong H, Xu J, Zhou H, Guan S, Xu W. C/N-Dependent Element Bioconversion Efficiency and Antimicrobial Protein Expression in Food Waste Treatment by Black Soldier Fly Larvae. Int J Mol Sci 2022; 23:ijms23095036. [PMID: 35563424 PMCID: PMC9104233 DOI: 10.3390/ijms23095036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
The black soldier fly (BSF), Hermetia illucens, has emerged as a promising species for waste bioconversion and source of antimicrobial proteins (AMPs). However, there is a scarcity of research on the element transformation efficiency and molecular characterization of AMPs derived from waste management. Here, food waste treatment was performed using BSF larvae (BSFL) in a C/N ratio of 21:1−10:1, with a focus on the C/N-dependent element bioconversion, AMP antimicrobial activity, and transcriptome profiling. The C-larvae transformation rates were found to be similar among C/Ns (27.0−35.5%, p = 0.109), while the N-larvae rates were different (p = 0.001), with C/N 21:1−16:1 (63.5−75.0%) being higher than C/N 14:1−10:1 (35.0−45.7%). The C/N ratio did not alter the antimicrobial spectrum of AMPs, but did affect the activities, with C/N 21:1 being significantly lower than C/N 18:1−10:1. The lysozyme genes were found to be significantly more highly expressed than the cecropin, defensin, and attacin genes in the AMP gene family. Out of 51 lysozyme genes, C/N 18:1 and C/N 16:1 up-regulated (p < 0.05) 14 and 12 genes compared with C/N 21:1, respectively, corresponding to the higher activity of AMPs. Overall, the element bioconversion efficiency and AMP expression can be enhanced through C/N ratio manipulation, and the C/N-dependent transcriptome regulation is the driving force of the AMP difference.
Collapse
Affiliation(s)
- Ning Jin
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Yanxia Liu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Shouyu Zhang
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Shibo Sun
- School of Life Science and Pharmaceutical Sciences, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (S.S.); (J.X.)
| | - Minghuo Wu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, Dalian University of Technology, Dalian 116024, China
| | - Xiaoying Dong
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Huiyan Tong
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
| | - Jianqiang Xu
- School of Life Science and Pharmaceutical Sciences, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (S.S.); (J.X.)
| | - Hao Zhou
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, Dalian University of Technology, Dalian 116024, China
| | - Shui Guan
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Weiping Xu
- School of Ocean Science and Technology & Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin Campus, Panjin 124221, China; (N.J.); (Y.L.); (S.Z.); (M.W.); (X.D.); (H.T.); (H.Z.)
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education China, Dalian University of Technology, Dalian 116024, China
- Correspondence:
| |
Collapse
|
8
|
Almeida C, Murta D, Nunes R, Baby AR, Fernandes Â, Barros L, Rijo P, Rosado C. Characterization of lipid extracts from the Hermetia illucens larvae and their bioactivities for potential use as pharmaceutical and cosmetic ingredients. Heliyon 2022; 8:e09455. [PMID: 35637671 PMCID: PMC9142853 DOI: 10.1016/j.heliyon.2022.e09455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/06/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
There is an increasingly growing demand for the use of natural and sustainable bioactives in the field of the pharmaceutical and cosmetic industries. The biomass from black soldier fly larvae (Hermetia illucens) can be viewed as an innovative source of compounds with high aggregate value and marketing potential due to the sustainable organic matter bioconversion process used as substrate for its development. This insect can be a source of lipid compounds with high added value, mainly due to its high content in fatty acids (FA) with potential applicability in the pharmaceutical and cosmetic industry. In this context, in this work different extraction methods were tested (decoction, microwaves, maceration and ultrasound), using water, acetone, n-hexane as extraction solvents, to evaluate yields of the BSF larvae lipid extracts, as well as their lipid profile, and a preliminary safety screening was conducted. Results show that despite using different extraction techniques and solvents, similar FA composition profiles were obtained. The lauric acid content (C12: 0) is elevated in all the extracts in relation to the other FA, ranging 37%-62%. The contents in palmitic (C16: 0) and oleic (C18: 1n-9) acids, were also high in all applied extraction methods. The omega-6 FA (ω-6 PUFAs), mainly linoleic acid (C18: 2n6c), were also identified in the lipid fraction of BSF larvae biomass, with a content variation between 4.5% and 17.7%, while the omega-3 group, namely α-Linolenic acid (C18: 3n3), presented values between 0.66% and 1.95%. None of the extracts presented toxicity in preliminary tests with the Artemia salina model. Through this study, it was possible to confirm that BSF larvae oil can be obtained by sustainable methods, containing a broad mixture of FA and being highly rich in lauric acid, with a promising skin care applicability.
Collapse
Affiliation(s)
- Cíntia Almeida
- Universidade Lusófona (CBIOS – Research Center for Biosciences & Health Technologies), Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra, Madrid-Barcelona, Km 33.600, Alcalá de Henares, 28871, Madrid, Spain
| | - Daniel Murta
- Ingredient Odyssey SA – EntoGreen, Rua Cidade de Santarém 140, 2005-079 Santarém, Portugal
- CiiEM – Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, 2829-511 Caparica, Portugal
- Myrtus Unipessoal Lda, Monte Claro, Nisa, Portugal
| | - Rui Nunes
- Ingredient Odyssey SA – EntoGreen, Rua Cidade de Santarém 140, 2005-079 Santarém, Portugal
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Ângela Fernandes
- Centro de Investigação da Montanha (CIMO), Intituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação da Montanha (CIMO), Intituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Rijo
- Universidade Lusófona (CBIOS – Research Center for Biosciences & Health Technologies), Lisboa, Portugal
| | - Catarina Rosado
- Universidade Lusófona (CBIOS – Research Center for Biosciences & Health Technologies), Lisboa, Portugal
| |
Collapse
|
9
|
Rodrigues DP, Calado R, Pinho M, Rosário Domingues M, Antonio Vázquez J, Ameixa OMCC. Bioconversion and performance of Black Soldier Fly (Hermetia illucens) in the recovery of nutrients from expired fish feeds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:183-193. [PMID: 35134619 DOI: 10.1016/j.wasman.2022.01.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In modern aquaculture systems, feed is the main source of the waste being produced, including expired aquafeeds. There is a link between the expiration date of aquafeeds enriched with fish oil for marine fish and the observation of several physical and microbiological changes. Among these, lipid oxidation is worth highlighting, as this process is responsible for the loss of palatability of aquafeeds, which can lead to feeding rejection by the species being farmed. In this study, we used an expired fish aquafeed, which otherwise would be discarded as waste, as a substrate to feed Black Soldier Fly (BSF) larvae. Different replacement levels of expired aquafeed were used which unravelled the amount of n-3 fatty acids added to larval tissues of BSF larvae after 2, 7, and 10 days of feeding. Our results also showed that shorter trials and higher diet replacement levels induced a deleterious effect on final larval weight. Furthermore, amino acid and fatty acid larval contents were shaped by the supplied diet, with results supporting the inclusion of BSF meal in aquafeeds, due to the levels of lysine (5.6-8.9%), methionine (1.9-3.2%), and omega-3 fatty acids (14.5%) recorded. These results demonstrate that the re-introduction of an expired resource aiming to diversify the source of aquafeeds raw materials can be safely achieved through BSF biotransformation. Overall, BSF larvae can successfully recover important nutrients for aquafeeds targeting marine species and foster the production of value-added insects under a circular bioeconomy framework.
Collapse
Affiliation(s)
- Daniela P Rodrigues
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Marisa Pinho
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - José Antonio Vázquez
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España
| | - Olga M C C Ameixa
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Antimicrobial and antihemolytic properties of a CNF/AgNP-chitosan film: A potential wound dressing material. Heliyon 2021; 7:e08197. [PMID: 34754969 PMCID: PMC8564568 DOI: 10.1016/j.heliyon.2021.e08197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/03/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Cellulose nanofibers (CNFs), chitosan, and silver nanoparticles (AgNPs) are widely used to enhance the active functions and antibacterial properties of wound dressings. This study was conducted to prepare CNF/AgNP-chitosan using a straight incorporation method and to assess its antimicrobial activity. CNFs were isolated from oil palm empty fruit bunches (OPEFBs) using the pulping method and acid hydrolysis. AgNPs were synthesized using a green synthesis method. The wound dressing was produced by mixing a 10% CNF solution in LiCl/DMAc and AgNP-chitosan in a glass plate with various ratios of CNF/AgNP-chitosan, i.e., 100:0, 80:20, 60:40, and 50:50. UV-visible and TEM analyses were conducted to confirm the formation of AgNPs and CNFs at the nanoscale. The results showed particles with an absorption wavelength of 435 nm and spherical shapes. Based on the calculation using ImageJ software, the diameters of CNFs were approximately 50 nm, and the lengths were several micrometers. FTIR was used to analyze the chemical bonding of AgNP-chitosan and the incorporated AgNP-chitosan in CNFs. Based on the XRD analysis, the presence of AgNPs did not affect the crystallinity of the CNFs. SEM images showed that the addition of AgNPs resulted in the stretching of CNF pores on the pads. Thermal degradation of the film increased with the addition of AgNP-chitosan by up to 40%. Antimicrobial tests and hemocompatibility tests showed that the formed CNF/AgNP-chitosan film successfully inhibited bacterial growth and was classified as a nonhemolytic material; thus, its potential as a wound dressing should be further studied.
Collapse
|
11
|
Mohamed H, Marusich E, Afanasev Y, Leonov S. Fatty Acids-Enriched Fractions of Hermetia illucens (Black Soldier Fly) Larvae Fat Can Combat MDR Pathogenic Fish Bacteria Aeromonas spp. Int J Mol Sci 2021; 22:ijms22168829. [PMID: 34445533 PMCID: PMC8396364 DOI: 10.3390/ijms22168829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
Aeromonas spp. cause many diseases in aquaculture habitats. Hermetia illucens (Hi) larvae were used as feed-in aquacultures and in eradicating pathogenic fish bacteria. In the present study, we applied consecutive extractions of the same biomass of BSFL fat using the acidic water–methanol solution. The major constituents of the sequential extracts (SEs) were free fatty acids (FFAs), and fatty acids derivatives as identified by gas chromatography spectrometry (GC-MS). Our improved procedure enabled gradual enrichment in the unsaturated fatty acids (USFAs) content in our SEs. The present study aimed to compare the composition and antimicrobial properties of SEs. Among actual fish pathogens, A. hydrophila and A. salmonicida demonstrated multiple drug resistance (MDR) against different recommended standard antibiotics: A. salmonicida was resistant to six, while A. hydrophila was resistant to four antibiotics from ten used in the present study. For the first time, we demonstrated the high dose-dependent antibacterial activity of each SE against Aeromonas spp., especially MDR A. salmonicida. The bacteriostatic and bactericidal (MIC/MBC) activity of SEs was significantly enhanced through the sequential extractions. The third sequential extract (AWME3) possessed the highest activity against Aeromonas spp.: inhibition zone diameters were in the range (21.47 ± 0.14–20.83 ± 0.22 mm) at a concentration of 40 mg/mL, MIC values ranged between 0.09 and 0.38 mg/mL for A. hydrophila and A. salmonicida, respectively. AWME3 MBC values recorded 0.19 and 0.38 mg/mL, while MIC50 values were 0.065 ± 0.004 and 0.22 ± 0.005 mg/mL against A. hydrophila and A. salmonicida, respectively. Thus, the larvae fat from Hermitia illucens may serve as an excellent reservoir of bioactive molecules with good capacity to eradicate the multidrug-resistant bacteria, having promising potential for practical application in the aquaculture field.
Collapse
Affiliation(s)
- Heakal Mohamed
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
| | - Elena Marusich
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
- Correspondence: (E.M.); (S.L.); Tel.: +7-965-247-1982 (E.M.); +7-915-055-5643 (S.L.)
| | - Yuriy Afanasev
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
| | - Sergey Leonov
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141700 Dolgoprudny, Russia; (H.M.); (Y.A.)
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: (E.M.); (S.L.); Tel.: +7-965-247-1982 (E.M.); +7-915-055-5643 (S.L.)
| |
Collapse
|
12
|
Vilharva KN, Leite DF, dos Santos HF, Antunes KÁ, da Rocha PDS, Campos JF, Almeida CV, Macedo MLR, Silva DB, Ramalho de Oliveira CF, dos Santos EL, de Picoli Souza K. Rhynchophorus palmarum (Linnaeus, 1758) (Coleoptera: Curculionidae): Guarani-Kaiowá indigenous knowledge and pharmacological activities. PLoS One 2021; 16:e0249919. [PMID: 33914744 PMCID: PMC8084164 DOI: 10.1371/journal.pone.0249919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/28/2021] [Indexed: 01/22/2023] Open
Abstract
Zootherapy is a traditional secular practice among the Guarani-Kaiowá indigenous ethnic group living in Mato Grosso do Sul, Brazil. My people use the oil extracted from larvae of the snout beetle Rhynchophorus palmarum (Linnaeus, 1758) to treat and heal skin wounds and respiratory diseases. Based on this ethnopharmacological knowledge, the chemical composition and antioxidant, antimicrobial, and healing properties of R. palmarum larvae oil (RPLO) were investigated, as well as possible toxic effects, through in vitro and in vivo assays. The chemical composition of the RPLO was determined using gas chromatography coupled with mass spectrometry. The antioxidant activity of RPLO was investigated through the direct 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and the antimicrobial activity was evaluated against Gram-positive and Gram-negative bacteria that are pathogenic to humans. The healing properties of RPLO were investigated by performing a cell migration assay using human lung fibroblasts (MRC-5), and the toxicity was analyzed, in vivo, using a Caenorhabditis elegans model and MRC-5 cells, in vitro. RPLO contains 52.2% saturated fatty acids and 47.4% unsaturated fatty acids, with palmitic acid (42.7%) and oleic acid (40%) representing its major components, respectively. RPLO possesses direct antioxidant activity, with a half-maximal inhibitory concentration (IC50) of 46.15 mg.ml-1. The antimicrobial activity of RPLO was not observed at a concentration of 1% (v/v). RPLO did not alter the viability of MRC-5 cells and did not exert toxic effects on C. elegans. Furthermore, MRC-5 cells incubated with 0.5% RPLO showed a higher rate of cell migration than that of the control group, supporting its healing properties. Taken together, RPLO possesses direct antioxidant activity and the potential to aid in the healing process and is not toxic toward in vitro and in vivo models, corroborating the safe use of the oil in traditional Guarani-Kaiowá medicine.
Collapse
Affiliation(s)
- Kellen Natalice Vilharva
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Daniel Ferreira Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Helder Freitas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Katia Ávila Antunes
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Paola dos Santos da Rocha
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Claudiane Vilharroel Almeida
- Protein Purification Laboratory and its Biological Functions, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Maria Lígia Rodrigues Macedo
- Protein Purification Laboratory and its Biological Functions, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
- Protein Purification Laboratory and its Biological Functions, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Dourados, Brazil
- * E-mail:
| |
Collapse
|
13
|
Saviane A, Tassoni L, Naviglio D, Lupi D, Savoldelli S, Bianchi G, Cortellino G, Bondioli P, Folegatti L, Casartelli M, Orlandi VT, Tettamanti G, Cappellozza S. Mechanical Processing of Hermetia illucens Larvae and Bombyx mori Pupae Produces Oils with Antimicrobial Activity. Animals (Basel) 2021; 11:783. [PMID: 33799904 PMCID: PMC8001418 DOI: 10.3390/ani11030783] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of this work was to develop processing methods that safeguard the quality and antimicrobial properties of H. illucens and B. mori oils. We adopted a vegetable diet for both insects: leftover vegetables and fruit for H. illucens and mulberry leaves for B. mori. First, alternative techniques to obtain a good oil extraction yield from the dried biomass of H. illucens larvae were tested. Traditional pressing resulted to be the best system to maximize the oil yield and it was successfully applied to B. mori pupae. Oil quality resulted comparable to that obtained with other extraction methods described in the literature. In the case of B. mori pupae, different treatments and preservation periods were investigated to evaluate their influence on the oil composition and quality. Interestingly, agar diffusion assays demonstrated the sensitivity of Gram-positive Bacillus subtilis and Staphylococcus aureus to H. illucens and B. mori derived oils, whereas the growth of Gram-negative Pseudomonas aeruginosa and Escherichia coli was not affected. This study confirms that fat and other active compounds of the oil extracted by hot pressing could represent effective antimicrobials against bacteria, a relevant result if we consider that they are by-products of the protein extraction process in the feed industry.
Collapse
Affiliation(s)
- Alessio Saviane
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy;
| | - Luca Tassoni
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, 35020 Padova, Italy;
| | - Daniele Naviglio
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, 80126 Napoli, Italy;
| | - Daniela Lupi
- Dipartimento Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, 20133 Milano, Italy; (D.L.); (S.S.)
| | - Sara Savoldelli
- Dipartimento Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, 20133 Milano, Italy; (D.L.); (S.S.)
| | - Giulia Bianchi
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), 20133 Milano, Italy; (G.B.); (G.C.)
| | - Giovanna Cortellino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), 20133 Milano, Italy; (G.B.); (G.C.)
| | | | - Liliana Folegatti
- Innovhub, Laboratorio Sostanze Grasse, Derivati e Tecnologie Olearie, 20133 Milano, Italy;
| | - Morena Casartelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Viviana Teresa Orlandi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, 21100 Varese, Italy; (V.T.O.); (G.T.)
| | - Gianluca Tettamanti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, 21100 Varese, Italy; (V.T.O.); (G.T.)
| | - Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy;
| |
Collapse
|