1
|
Karadayı S, Yılmaz İ, Özbek T, Karadayı B. Transfer and persistence of microbiota markers from the human hand to the knife: A preliminary study. J Forensic Leg Med 2024; 107:102757. [PMID: 39298862 DOI: 10.1016/j.jflm.2024.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
New scientific techniques and methods are always needed to link the perpetrators to the incident or the crime scene. Recent microbiota studies based on NGS (Next-generation sequencing) show that various biological samples from crime scenes have the potential to be used in forensic investigations. Especially when DNA traces belonging to more than one person are insufficient to fully determine the genetic profile, a secret sample, such as a microbiota sample created by the suspect's touch, can be used. In this preliminary study, a fictionalized experimental model was designed to investigate the transfer and persistence of the hand microbiome on the knife handle, which has a high potential to be used in criminal incidents, by metagenomic analysis methods. In addition, it was aimed to determine the transfer of specific bacterial species identified only to the person among the five participants onto the knife handle and their persistence over time. In the first stage of the research, samples were collected from the hands of 5 volunteer participants using the swap method, including their palms. Then, after each participant held a different knife, samples were collected from the knife handles via swabs from different angles of the knives at 4 and 24 h and analyzed by metagenomic methods. The findings of this preliminary study showed that the heatmap graphs generated after UniFrac distance analysis were not successful in establishing any similarity between the hand samples and the post-transfer knife handle samples. Nonetheless, it was observed that the transfer of bacterial species detected in the hand samples to knives differed according to the individuals and some bacterial species were transferred to the knife samples held by the participants. The number of bacterial species detected that are specific to each participant's hand sample was 302 in total, and it was determined that a total of 8.28 % of these bacterial species were transferred to the knife handle samples of the 4th hour and 6.95 % to the knife samples of the 24th hour. In the presented study, considering the transfer of some bacterial species in the hand microbiome, which are effective in the variation between individuals, onto the knife; It has been evaluated that some rare bacterial species can be important potential markers to associate the object with the perpetrator.
Collapse
Affiliation(s)
- Sukriye Karadayı
- Department of Medical Laboratory Techniques, Altınbaş University, Istanbul, Turkey.
| | - İlknur Yılmaz
- Department of Molecular Biology and Genetics, Graduate School of Science & Engineering, Yıldız Technical University, Istanbul, Turkey.
| | - Tülin Özbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey.
| | - Beytullah Karadayı
- Department of Forensic Sciences, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
2
|
Karadayı B, Karaismailoğlu B, Karadayı S, Arslan A, Gözen ED, Özbek T. The uselessness of using salivary microbiota in forensic identification purposes of a person with recent antibiotic use. Leg Med (Tokyo) 2024; 69:102338. [PMID: 37884410 DOI: 10.1016/j.legalmed.2023.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The detection of microbial flora changes in saliva samples because of antibiotic use through advanced molecular genetic analysis is important for forensic and clinical applications. This study aims to reveal the variability in the microbial structure of human saliva after antibiotic use with metagenomic analysis techniques from a forensic point of view. Within the scope of the study, saliva samples were collected from patients who were under the effect of regional anesthesia to be administered a standardized course of antibiotic therapy that lasted for a week. The analysis was conducted on 56 saliva samples from 14 individuals over four different time intervals. Isolation of the 16S rRNA region and PCR analysis were performed prior to sequence analysis to determine the microbiome structure of the samples at phylum, genus, and species levels. As expected, changes were observed in bacterial species found in saliva samples after administration of antibiotics and this was linked to the specific type of antibiotics that were administered. This change was statistically significant for Firmicutes, Spirochetes, and Verrucomicrobiota. Furthermore, although the oral microbiome tends to return to its former state at the phylum and genus level within a 4-week period after the start of antibiotic use, it is observed that the change, especially in some bacterial species, still continues. The findings of this study show that because of the inability of stabilization at species-level in a period of 4 weeks from the start of antibiotic use, it is not suitable to assess saliva samples at species-level for forensic identification.
Collapse
Affiliation(s)
- Beytullah Karadayı
- Department of Forensic Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Bedri Karaismailoğlu
- Department of Orthopaedics and Traumatology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Sukriye Karadayı
- Department of Medical Laboratory Techniques, Altınbaş University, Istanbul, Turkey.
| | - Ali Arslan
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey.
| | - Emine Deniz Gözen
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Tülin Özbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey.
| |
Collapse
|
3
|
Wang S, Song F, Guo X, Gu L, Tan W, Wu P, Liang W, Luo H, Wang Y. A preliminary report on the exploration of salivary bacterial diversity by the multiplex SNaPshot assay. Forensic Sci Int Genet 2024; 70:103032. [PMID: 38503203 DOI: 10.1016/j.fsigen.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Salivary bacterial community composition is associated with the host's internal and environmental factors, which have potential applications in forensic practice. The 16S rRNA gene sequencing is the most commonly used strategy for detecting salivary bacterial diversity; however, its platforms are not compatible with capillary electrophoresis (CE) platforms commonly used for forensic applications. Therefore, we attempted to detect the salivary bacterial diversity using a single nucleotide polymorphism (SNP) assay. Salivary bacterial diversity varies among diverse geographic locations, making it a potential supplementary biomarker for forensic geographic sourcing. To evaluate the performance of the multiplex SNaPshot assay, saliva samples from three geographic locations in China were analyzed using the multiplex SNaPshot assay and 16S rRNA gene sequencing. We screened SNPs from two high-relative-abundance salivary genera (Streptococcus and Veillonella) to construct a multiplex SNaPshot system that can be used on the CE platform. The stability and sensitivity of the multiplex SNaPshot system were also tested. A random forest classification model was used to classify samples from different regions to explore the ability of salivary bacteria to discriminate between geographic sources. Six bacterial SNPs were screened and a multiplex SNaPshot system was constructed. The stability results showed that the typing of salivary stains that were placed indoors for different days was not affected in this study. Two-thirds of mocked salivary stain samples showed more than 90% of typing results obtained for salivary stain samples with an input of 0.1 µl saliva. The results of principal coordinate analysis based on salivary bacterial diversity showed significant differences between samples from the three different geographic locations. The accuracy of the random forest classification was 66.67% based on the multiplex SNaPshot assay and 83.33% based on the 16S rRNA gene sequencing. In conclusion, this is the first attempt to detect salivary bacterial diversity using a multiplex SNaPshot bacterial SNP assay. The geographic difference in human salivary bacterial community composition was significant, as revealed by the multiplex SNaPshot assay; however, its performance in discriminating geographic sources was lower than that of 16S rRNA gene sequencing. This strategy based on bacterial SNP loci may favor the detection of human bacterial diversity in common forensic laboratories but requires further exploration in larger sample sizes and more bacterial SNP loci.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangnan Guo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Liya Gu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Weijia Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Peiyan Wu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Dou S, Ma G, Liang Y, Fu G, Shen J, Fu L, Wang Q, Li T, Cong B, Li S. Preliminary exploratory research on the application value of oral and intestinal meta-genomics in predicting subjects' occupations-A case study of the distinction between students and migrant workers. Front Microbiol 2024; 14:1330603. [PMID: 38390220 PMCID: PMC10883652 DOI: 10.3389/fmicb.2023.1330603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/26/2023] [Indexed: 02/24/2024] Open
Abstract
Background In the field of forensic science, accurately determining occupation of an individual can greatly assist in resolving cases such as criminal investigations or disaster victim identifications. However, estimating occupation can be challenging due to the intricate relationship between occupation and various factors, including gender, age, living environment, health status, medication use, and lifestyle habits such as alcohol consumption and smoking. All of these factors can impact the composition of oral or gut microbial community of an individual. Methods and results In this study, we collected saliva and feces samples from individuals representing different occupational sectors, specifically students and manual laborers. We then performed metagenomic sequencing on the DNA extracted from these samples to obtain data that could be analyzed for taxonomic and functional annotations in five different databases. The correlation between occupation with microbial information was assisted from the perspective of α and β diversity, showing that individuals belonging to the two occupations hold significantly different oral and gut microbial communities, and that this correlation is basically not affected by gender, drinking, and smoking in our datasets. Finally, random forest (RF) models were built with recursive feature elimination (RFE) processes. Models with 100% accuracy in both training and testing sets were constructed based on three species in saliva samples or on a single pathway annotated by the KEGG database in fecal samples, namely, "ko04145" or Phagosome. Conclusion Although this study may have limited representativeness due to its small sample size, it provides preliminary evidence of the potential of using microbiome information for occupational inference.
Collapse
Affiliation(s)
- Shujie Dou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Guanju Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Yu Liang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Guangping Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Jie Shen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Tao Li
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, China
| | - Shujin Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
5
|
Yang MQ, Wang ZJ, Zhai CB, Chen LQ. Research progress on the application of 16S rRNA gene sequencing and machine learning in forensic microbiome individual identification. Front Microbiol 2024; 15:1360457. [PMID: 38371926 PMCID: PMC10869621 DOI: 10.3389/fmicb.2024.1360457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Forensic microbiome research is a field with a wide range of applications and a number of protocols have been developed for its use in this area of research. As individuals host radically different microbiota, the human microbiome is expected to become a new biomarker for forensic identification. To achieve an effective use of this procedure an understanding of factors which can alter the human microbiome and determinations of stable and changing elements will be critical in selecting appropriate targets for investigation. The 16S rRNA gene, which is notable for its conservation and specificity, represents a potentially ideal marker for forensic microbiome identification. Gene sequencing involving 16S rRNA is currently the method of choice for use in investigating microbiomes. While the sequencing involved with microbiome determinations can generate large multi-dimensional datasets that can be difficult to analyze and interpret, machine learning methods can be useful in surmounting this analytical challenge. In this review, we describe the research methods and related sequencing technologies currently available for application of 16S rRNA gene sequencing and machine learning in the field of forensic identification. In addition, we assess the potential value of 16S rRNA and machine learning in forensic microbiome science.
Collapse
Affiliation(s)
- Mai-Qing Yang
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| | - Zheng-Jiang Wang
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| | - Chun-Bo Zhai
- Department of Second Ward of Thoracic Surgery, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| | - Li-Qian Chen
- Department of Pathology, Weifang People's Hospital (First Affiliated Hospital of Shandong Second Medical University), Weifang, China
| |
Collapse
|
6
|
Yu KM, Cho HS, Lee AM, Lee JW, Lim SK. Analysis of the influence of host lifestyle (coffee consumption, drinking, and smoking) on Korean oral microbiome. Forensic Sci Int Genet 2024; 68:102942. [PMID: 37862769 DOI: 10.1016/j.fsigen.2023.102942] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
If a DNA sample collected in the field is old or degraded, short tandem repeat analysis is difficult to perform, a representative analysis method currently used for individual identification. Given that microorganisms exist everywhere and within the human body, in similar amounts to human cells, microbial analysis could be used to identify individuals even in cases in which human DNA-based identification is difficult. Research has demonstrated that the types of microorganisms within the human body differ depending on various internal or external factors, such as body part or bodily fluid type, lifestyle, geographical area of residence, sex, and age. In this study, we aimed to examine the relationship between lifestyle factors and the composition and diversity of the oral microbiome in individuals living in Korea. We collected 43 saliva samples from Korean individuals and analyzed the oral microbiome and its variations due to external factors, such as coffee consumption, drinking, and smoking. Linear discriminant analysis effect size revealed that Oribacterium, Campylobacter, and Megasphaera were abundant in coffee consumers, whereas Saccharimonadales, Clostridia, and Catonella were abundant in alcohol non-drinkers. We found increased levels of Stomatobaculum in the saliva of smokers, compared with that of non-smokers. Thus, our analysis revealed characteristic microorganisms for each parameter that was evaluated (coffee consumption, smoking, drinking). Consequently, our study provides insight into the oral microbiome in the Korean population and lays the foundation for developing the Korean Forensic Microbiome Database.
Collapse
Affiliation(s)
- Kyeong-Min Yu
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Hye-Seon Cho
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - A-Mi Lee
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Ji-Woo Lee
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Si-Keun Lim
- Department of Forensic Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
7
|
Dass M, Singh Y, Ghai M. A Review on Microbial Species for Forensic Body Fluid Identification in Healthy and Diseased Humans. Curr Microbiol 2023; 80:299. [PMID: 37491404 PMCID: PMC10368579 DOI: 10.1007/s00284-023-03413-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Microbial communities present in body fluids can assist in distinguishing between types of body fluids. Metagenomic studies have reported bacterial genera which are core to specific body fluids and are greatly influenced by geographical location and ethnicity. Bacteria in body fluids could also be due to bacterial infection; hence, it would be worthwhile taking into consideration bacterial species associated with diseases. The present review reports bacterial species characteristic of diseased and healthy body fluids across geographical locations, and bacteria described in forensic studies, with the aim of collating a set of bacteria to serve as the core species-specific markers for forensic body fluid identification. The most widely reported saliva-specific bacterial species are Streptococcus salivarius, Prevotella melaninogenica, Neisseria flavescens, with Fusobacterium nucleatum associated with increased diseased state. Lactobacillus crispatus and Lactobacillus iners are frequently dominant in the vaginal microbiome of healthy women. Atopobium vaginae, Prevotella bivia, and Gardnerella vaginalis are more prevalent in women with bacterial vaginosis. Semen and urine-specific bacteria at species level have not been reported, and menstrual blood bacteria are indistinguishable from vaginal fluid. Targeting more than one bacterial species is recommended for accurate body fluid identification. Although metagenomic sequencing provides information of a broad microbial profile, the specific bacterial species could be used to design biosensors for rapid body fluid identification. Validation of microbial typing methods and its application in identifying body fluids in a mixed sample would allow regular use of microbial profiling in a forensic workflow.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Yashna Singh
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| |
Collapse
|
8
|
Ogbanga N, Nelson A, Ghignone S, Voyron S, Lovisolo F, Sguazzi G, Renò F, Migliario M, Gino S, Procopio N. The Oral Microbiome for Geographic Origin: An Italian Study. Forensic Sci Int Genet 2023; 64:102841. [PMID: 36774834 DOI: 10.1016/j.fsigen.2023.102841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The human oral microbiome has primarily been studied in clinical settings and for medical purposes. More recently, oral microbial research has been incorporated into other areas of study. In forensics, research has aimed to exploit the variation in composition of the oral microbiome to answer forensic relevant topics, such as human identification and geographical provenience. Several studies have focused on the use of microbiome for continental, national, or ethnic origin evaluations. However, it is not clear how the microbiome varies between similar ethnic populations across different regions in a country. We report here a comparison of the oral microbiomes of individuals living in two regions of Italy - Lombardy and Piedmont. Oral samples were obtained by swabbing the donors' oral mucosa, and the V4 region of the 16S rRNA gene was sequenced from the extracted microbial DNA. Additionally, we compared the oral and the skin microbiome from a subset of these individuals, to provide an understanding of which anatomical region may provide more robust results that can be useful for forensic human identification. Initial analysis of the oral microbiota revealed the presence of a core oral microbiome, consisting of nine taxa shared across all oral samples, as well as unique donor characterising taxa in 31 out of 50 samples. We also identified a trend between the abundance of Proteobacteria and Bacteroidota and the smoking habits, and of Spirochaetota and Synergistota and the age of the enrolled participants. Whilst no significant differences were observed in the oral microbial diversity of individuals from Lombardy or Piedmont, we identified two bacterial families - Corynebacteriaceae and Actinomycetaceae - that showed abundance trends between the two regions. Comparative analysis of the skin and oral microbiota showed significant differences in the alpha (p = 0.0011) and beta (Pr(>F)= 9.999e-05) diversities. Analysis of skin and oral samples from the same donor further revealed that the skin microbiome contained more unique donor characterising taxa than the oral one. Overall, this study demonstrates that whilst the oral microbiome of individuals from the same country and of similar ethnicity are largely similar, there may be donor characterising taxa that might be useful for identification purposes. Furthermore, the bacterial signatures associated with certain lifestyles could provide useful information for investigative purposes. Finally, additional studies are required, the skin microbiome may be a better discriminant for human identification than the oral one.
Collapse
Affiliation(s)
- Nengi Ogbanga
- Faculty of Health and Life Sciences - Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences - Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP) - Turin Unit - National Research Council (CNR), 10125 Turin, Italy
| | - Samuele Voyron
- Institute for Sustainable Plant Protection (IPSP) - Turin Unit - National Research Council (CNR), 10125 Turin, Italy; Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy
| | - Flavia Lovisolo
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Giulia Sguazzi
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy; CRIMEDIM - Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, Via Lanino, 1-28100 Novara, Italy
| | - Filippo Renò
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Mario Migliario
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Noemi Procopio
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy; School of Natural Sciences, University of Central Lancashire, PR1 2HE Preston, UK.
| |
Collapse
|
9
|
Tozzo P, Amico I, Delicati A, Toselli F, Caenazzo L. Post-Mortem Interval and Microbiome Analysis through 16S rRNA Analysis: A Systematic Review. Diagnostics (Basel) 2022; 12:2641. [PMID: 36359484 PMCID: PMC9689864 DOI: 10.3390/diagnostics12112641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/12/2023] Open
Abstract
The determination of the Post-Mortem Interval (PMI) is an issue that has always represented a challenge in the field of forensic science. Different innovative approaches, compared to the more traditional ones, have been tried over the years, without succeeding in being validated as successful methods for PMI estimation. In the last two decades, innovations in sequencing technologies have made it possible to generate large volumes of data, allowing all members of a bacterial community to be sequenced. The aim of this manuscript is to provide a review regarding new advances in PMI estimation through cadaveric microbiota identification using 16S rRNA sequencing, in order to correlate specific microbiome profiles obtained from different body sites to PMI. The systematic review was performed according to PRISMA guidelines. For this purpose, 800 studies were identified through database searching (Pubmed). Articles that dealt with PMI estimation in correlation with microbiome composition and contained data about species, body site of sampling, monitoring time and sequencing method were selected and ultimately a total of 25 studies were considered. The selected studies evaluated the contribution of the various body sites to determine PMI, based on microbiome sequencing, in human and animal models. The results of this systematic review highlighted that studies conducted on both animals and humans yielded results that were promising. In order to fully exploit the potential of the microbiome in the estimation of PMI, it would be desirable to identify standardized body sampling sites and specific sampling methods in order to align data obtained by different research groups.
Collapse
Affiliation(s)
- Pamela Tozzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
10
|
Gül F, Karadayı S, Yurdabakan Z, Özbek T, Karadayı B. Investigating changes in salivary microbiota due to dental treatment: A metagenomic analysis study for forensic purposes. Forensic Sci Int 2022; 340:111447. [PMID: 36116269 DOI: 10.1016/j.forsciint.2022.111447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022]
Abstract
The advent of next generation sequencing techniques as well as the existing traditional culture methods has enabled metagenomic studies on the usability of microbiomes for the forensic identification of individuals to gain momentum. However, before the utilization of microbiomes as a potential technique for real forensic case resolutions, it is necessary to understand the stability of the microbiota compositions in an individual's biological samples and the factors responsible for their variations. In the present study, we compared the microbiota compositions present in the saliva of individuals with active dental caries before and after treatment from a forensic and clinical perspective using an approach based on the sequencing of all the variable regions (V1-V9) of the bacterial 16 S rRNA gene. For this purpose, 10 individuals were included in the study comprising of 8 individuals between the ages of 18-50 years with at least 3 deep dentin caries as patients and 2 healthy individuals without any dental or gingival diseases as controls. Saliva samples were collected from the patients at two timepoints, before and after treatment, as well as from the healthy individuals (before and after control) at an interval of 1 month. The collected 20 saliva samples were subjected to metagenomic analysis using the MinION device, which was developed by Oxford Nanopore Technologies (ONT Oxford, UK). Bioinformatic analyses were performed on the obtained data and the results were evaluated using statistical comparison methods and alpha/beta diversity analyses within the scope of the study objective. On evaluation using the distance metrics, it was observed that the microbial compositions in the saliva of individuals with active caries remained relatively stable after treatment. However, the relative abundance levels of bacteria of 28 genera and species showed statistically significant differences before and after treatment (p < 0.05). As a result, although the composition of salivary microbiome remained relatively stable after caries treatment, there were significant changes in many types of bacteria, especially at the species level, between the BT and AT samples. Our results provide a framework for further forensic and clinical investigations regarding the factors that affect human salivary microbiome diversity.
Collapse
Affiliation(s)
- Feyza Gül
- Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Sukriye Karadayı
- Department of Medical Laboratory Techniques, Altınbaş University, Istanbul, Turkey.
| | - Zuhal Yurdabakan
- Department of Oral and Dentomaxillofacial Radiology, Faculty of Dentistry, Altınbaş University, Istanbul, Turkey.
| | - Tülin Özbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey.
| | - Beytullah Karadayı
- Department of Forensic Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
11
|
Lovisolo F, Ogbanga N, Sguazzi G, Renò F, Migliario M, Nelson A, Procopio N, Gino S. ORAL AND SKIN MICROBIOME AS POTENTIAL TOOLS IN FORENSIC FIELD. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2022. [DOI: 10.1016/j.fsigss.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Caenazzo L, Tozzo P. Microbiome Forensic Biobanking: A Step toward Microbial Profiling for Forensic Human Identification. Healthcare (Basel) 2021; 9:1371. [PMID: 34683051 PMCID: PMC8544459 DOI: 10.3390/healthcare9101371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years many studies have highlighted the great potential of microbial analysis in human identification for forensic purposes, with important differences in microbial community composition and function across different people and locations, showing a certain degree of uncertainty. Therefore, further studies are necessary to enable forensic scientists to evaluate the risk of microbial transfer and recovery from various items and to further critically evaluate the suitability of current human DNA recovery protocols for human microbial profiling for identification purposes. While the establishment and development of microbiome research biobanks for clinical applications is already very structured, the development of studies on the applicability of microbiome biobanks for forensic purposes is still in its infancy. The creation of large population microbiome biobanks, specifically dedicated to forensic human identification, could be worthwhile. This could also be useful to increase the practical applications of forensic microbiology for identification purposes, given that this type of evidence is currently absent from most real casework investigations and judicial proceedings in courts.
Collapse
Affiliation(s)
| | - Pamela Tozzo
- Laboratory of Forensic Genetics, Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| |
Collapse
|
13
|
Procopio N, Lovisolo F, Sguazzi G, Ghignone S, Voyron S, Migliario M, Renò F, Sellitto F, D'Angiolella G, Tozzo P, Caenazzo L, Gino S. "Touch microbiome" as a potential tool for forensic investigation: A pilot study. J Forensic Leg Med 2021; 82:102223. [PMID: 34343925 DOI: 10.1016/j.jflm.2021.102223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Human skin hosts a variety of microbes that can be transferred to surfaces ("touch microbiome"). These microorganisms can be considered as forensic markers similarly to "touch DNA". With this pilot study, we wanted to evaluate the transferability and persistence of the "touch microbiome" on a surface after the deposition of a fingerprint and its exposure for 30 days at room temperature. Eleven volunteers were enrolled in the study. Skin microbiome samples were collected by swabbing the palm of their hands; additionally, donors were asked to touch a glass microscope slide to deposit their fingerprints, that were then swabbed. Both human and microbial DNA was isolated and quantified. Amelogenin locus and 16 human STRs were amplified, whereas the V4 region of 16 S rRNA gene was sequenced using Illumina MiSeq platform. STR profiles were successfully typed for 5 out of 22 "touch DNA" samples, while a microbiome profile was obtained for 20 out of 22 "touch microbiome" samples. Six skin core microbiome taxa were identified, as well as unique donor characterizing taxa. These unique taxa may have relevance for personal identification studies and may be useful to provide forensic intelligence information also when "touch DNA" fails. Additional future studies including greater datasets, additional time points and a greater number of surfaces may clarify the applicability of "touch microbiome" studies to real forensic contexts.
Collapse
Affiliation(s)
- Noemi Procopio
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Flavia Lovisolo
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Giulia Sguazzi
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Stefano Ghignone
- Istituto per La Protezione Sostenibile Delle Piante - SS Torino - Consiglio Nazionale Delle Ricerche, C/o Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy.
| | - Mario Migliario
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Filippo Renò
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| | - Federica Sellitto
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| | - Gabriella D'Angiolella
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Pamela Tozzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Luciana Caenazzo
- Department of Molecular Medicine, Laboratory of Forensic Genetics, University of Padova, Via Falloppio 50, 35121 Padova, Italy.
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
14
|
Karadayı S, Arasoglu T, Akmayan İ, Karadayı B. Assessment of the exclusion potential of suspects by using microbial signature in sexual assault cases: A scenario-based experimental study. Forensic Sci Int 2021; 325:110886. [PMID: 34192646 DOI: 10.1016/j.forsciint.2021.110886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023]
Abstract
Sexual assault offences are one of the most serious crimes committed against a person, typically rank only second to homicide, and represent one of the major challenges in forensic sciences. In some cases of sexual assault, there may be more than one suspect and the analysis of the biological evidence with currently available methods such as human DNA analysis may not yield results. In this study using the designed experimental model (with different experimental scenarios that can be designed), it was aimed to investigate the effectiveness of the microbiome profile for the identification of the offender by comparing the microbiome structures of the suspects' saliva samples with the mixed samples on the victim (saliva transmitted on breast skin) within the first 48 h after a sexual assault. For this purpose, a total of 44 samples was collected from four healthy females and four healthy males aged 20-50 years. Microbiome profiles of 44 samples in four groups containing saliva, breast skin and mixed samples were determined with the IIlumina HiSeq platform. Differentiation between samples were calculated by beta-diversity analysis methods by using QIIME software (v1.80). To compare the differentiation among samples and groups, unweighted UniFrac distance values were applied. Eight dominant microbial genera accounted for 86.15% of the total bacterial population in male saliva samples and were composed of Fusobacterium, Haemophilus, Neisseria, Porphyromonas, Prevotella, Rothia, Streptococcus and Veillonella. These genera constituted 76.72% of the bacterial population in mixed samples, whereas they constituted 34.40% of the bacterial population in the breast skin samples. Results of this study show that bacterial DNA in saliva can be recovered from saliva transmitted breast skin within at least 48 h. In conclusion, it has been found that examination of the microbiota of the saliva transmitted to breast skin of a sexual assault victim as a forensic tool may have the potential to determine the offender of the incident among the suspects or to reduce the number of suspects. Supporting the results of this study with further studies using parameters such as different case models, different body regions, larger time periods and a higher number of participants will be beneficial to draw accurate conclusion of the judicial case.
Collapse
Affiliation(s)
- Sukriye Karadayı
- Vocational School of Health Services, Altınbaş University, Istanbul, Turkey.
| | - Tulin Arasoglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, İstanbul, Turkey.
| | - İlkgül Akmayan
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, İstanbul, Turkey.
| | - Beytullah Karadayı
- Department of Forensic Sciences, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
15
|
Salivary Microbiome Diversity in Kuwaiti Adolescents with Varied Body Mass Index-A Pilot Study. Microorganisms 2021; 9:microorganisms9061222. [PMID: 34200004 PMCID: PMC8228046 DOI: 10.3390/microorganisms9061222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
The potential role of the salivary microbiome in human diseases has increasingly been explored. The salivary microbiome has been characterized in several global populations, except the Arabian Gulf region. Hence, in this pilot study, we profiled the salivary microbiome of Kuwaiti adolescents with varied body mass indexes (BMI). The analyses of core microbiome composition showed Firmicutes, Bacteroidota, Proteobacteria, Patescibacteria, Fusobacteriota, Actinobacteriota, and Campylobacterota as the common phylum found in the Kuwaiti adolescent population. We also illustrated a diverse microbial community among the sampled individuals grouped according to their BMI. Notably, the overweight group was found with a higher number of distinct taxa than other groups. As such, the core microbiome composition was found to be significantly different (p-value < 0.001) across different BMI groups. Overall, this pilot investigation outlined the microbial diversity and suggested that changes in salivary microbiome composition in people with obese or overweight BMI might reflect their susceptibility to oral diseases.
Collapse
|
16
|
Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters TA, Taliaferro LP. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front Pharmacol 2021; 12:643283. [PMID: 34084131 PMCID: PMC8167050 DOI: 10.3389/fphar.2021.643283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.
Collapse
Affiliation(s)
- Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|