1
|
Geng J, Zhang W, Liang S, Xue N, Song W, Yang Y. Diversity and biogeography of bacterial community in the Ili River network varies locally and regionally. WATER RESEARCH 2024; 256:121561. [PMID: 38581986 DOI: 10.1016/j.watres.2024.121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Microorganisms in rivers indeed play a crucial role in nutrient cycling within aquatic ecosystems. Understanding the assembly mechanisms of bacterial communities in river networks is essential for predicting their special composition and functional characteristics in natural rivers. This study employed 16S rRNA gene amplicon sequence variation (ASVs) to scrutinize the bacterial community within the uniquely topographical Ili River network. The bacterial community composition varied across the three tributaries with distinct sources and the mainstream. The confluence of various sources diminished the diversity of the bacterial community and altered the functionality of within mainstream. We suggest that strong dispersal limitation predominantly shaped the community at the regional scale (46.6 %), underscoring the significant contribution of headwater sites to bacterial community composition. Contrary to expectation, the bacterial resources in the mainstream were not enriched by the higher diversity in three tributaries. Instead, confluence disturbance potentially increased the undominated processes (36.7 %) and alter the bacterial community composition at the local scale of the mainstream. The intricate coalescence at the confluence could potentially be an intriguing causative factor. Our research indicates that the composition of bacterial communities within intricate river networks exhibits biogeographic patterns, simultaneously influenced by river confluence and geographical features, necessitating multi-scale analysis.
Collapse
Affiliation(s)
- Jun Geng
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, China
| | - Weihong Zhang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, China
| | - Shuxin Liang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Nana Xue
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wenjuan Song
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; Xinjiang Laboratory of Environmental Pollution and Ecological Remediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Rivera-Galindo MA, Aguirre-Garrido F, Garza-Ramos U, Villavicencio-Pulido JG, Fernández Perrino FJ, López-Pérez M. Relevance of the Adjuvant Effect between Cellular Homeostasis and Resistance to Antibiotics in Gram-Negative Bacteria with Pathogenic Capacity: A Study of Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:490. [PMID: 38927157 PMCID: PMC11200652 DOI: 10.3390/antibiotics13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic resistance has become a global issue. The most significant risk is the acquisition of these mechanisms by pathogenic bacteria, which can have a severe clinical impact and pose a public health risk. This problem assumes that bacterial fitness is a constant phenomenon and should be approached from an evolutionary perspective to develop the most appropriate and effective strategies to contain the emergence of strains with pathogenic potential. Resistance mechanisms can be understood as adaptive processes to stressful conditions. This review examines the relevance of homeostatic regulatory mechanisms in antimicrobial resistance mechanisms. We focus on the interactions in the cellular physiology of pathogenic bacteria, particularly Gram-negative bacteria, and specifically Klebsiella pneumoniae. From a clinical research perspective, understanding these interactions is crucial for comprehensively understanding the phenomenon of resistance and developing more effective drugs and treatments to limit or attenuate bacterial sepsis, since the most conserved adjuvant phenomena in bacterial physiology has turned out to be more optimized and, therefore, more susceptible to alterations due to pharmacological action.
Collapse
Affiliation(s)
- Mildred Azucena Rivera-Galindo
- Doctorado en Ciencias Biológicas y de la Salud Universidad Autónoma Metropolitana, Ciudad de México, México Universidad Autónoma Metropolitana-Unidad Xochimilco Calz, del Hueso 1100, Coapa, Villa Quietud, Coyoacán CP 04960, Mexico;
| | - Félix Aguirre-Garrido
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| | - Ulises Garza-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca CP 62100, Mexico;
| | - José Geiser Villavicencio-Pulido
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| | - Francisco José Fernández Perrino
- Department of Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma, México City CP 09340, Mexico;
| | - Marcos López-Pérez
- Environmental Sciences Department, Division of Biological and Health Sciences, Autonomous Metropolitan University (Lerma Unit), Av. de las Garzas N◦ 10, Col. El Panteón, Lerma de Villada CP 52005, Mexico; (F.A.-G.); (J.G.V.-P.)
| |
Collapse
|
3
|
Pino-Otín MR, Lorca G, Langa E, Roig F, Terrado EM, Ballestero D. Assessing the Ecotoxicity of Eight Widely Used Antibiotics on River Microbial Communities. Int J Mol Sci 2023; 24:16960. [PMID: 38069283 PMCID: PMC10707202 DOI: 10.3390/ijms242316960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Global prevalence of antibiotic residues (ABX) in rivers requires ecotoxicological impact assessment. River microbial communities serve as effective bioindicators for this purpose. We quantified the effects of eight commonly used ABXs on a freshwater river microbial community using Biolog EcoPlates™, enabling the assessment of growth and physiological profile changes. Microbial community characterization involved 16S rRNA gene sequencing. The river community structure was representative of aquatic ecosystems, with the prevalence of Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. Our findings reveal that all ABXs at 100 µg/mL reduced microbial community growth and metabolic capacity, particularly for polymers, carbohydrates, carboxylic, and ketonic acids. Chloramphenicol, erythromycin, and gentamicin exhibited the highest toxicity, with chloramphenicol notably impairing the metabolism of all studied metabolite groups. At lower concentrations (1 µg/mL), some ABXs slightly enhanced growth and the capacity to metabolize substrates, such as carbohydrates, carboxylic, and ketonic acids, and amines, except for amoxicillin, which decreased the metabolic capacity across all metabolites. We explored potential correlations between physicochemical parameters and drug mechanisms to understand drug bioavailability. Acute toxicity effects at the river-detected low concentrations (ng/L) are unlikely. However, they may disrupt microbial communities in aquatic ecosystems. The utilization of a wide array of genetically characterized microbial communities, as opposed to a single species, enables a better understanding of the impact of ABXs on complex river ecosystems.
Collapse
Affiliation(s)
- María Rosa Pino-Otín
- Faculty of Health Sciences, San Jorge University, 50830 Zaragoza, Spain; (G.L.); (E.L.); (F.R.); (E.M.T.); (D.B.)
| | | | | | | | | | | |
Collapse
|
4
|
O'Brien L, Siboni N, Seymour JR, Balzer M, Mitrovic S. Tributary Inflows to a Regulated River Influence Bacterial Communities and Increase Bacterial Carbon Assimilation. MICROBIAL ECOLOGY 2023; 86:2642-2654. [PMID: 37480518 PMCID: PMC10640455 DOI: 10.1007/s00248-023-02271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Inflows from unregulated tributaries change the physical, chemical, and biotic conditions in receiving regulated rivers, impacting microbial community structure and metabolic function. Understanding how tributary inflows affect bacterial carbon production (BCP) is integral to understanding energy transfer in riverine ecosystems. To investigate the role of tributary inflows on bacterial community composition and BCP, a ~90th percentile natural flow event was sampled over 5 days along the Lachlan River and its tributaries within the Murray-Darling Basin of eastern Australia. Increased tributary inflows after rainfall corresponded with a significantly different and more diverse bacterial community in the regulated mainstem. The major contributor to this difference was an increase in relative abundance of bacterial groups with a potential metabolic preference for humic substances (Burkholderiaceae Polynucleobacter, Alcaligenaceae GKS98 freshwater group, Saccharimonadia) and a significant decrease in Spirosomaceae Pseudarcicella, known to metabolise algal exudates. Increases in orthophosphate and river discharge explained 31% of community change, suggesting a combination of resource delivery and microbial community coalescence as major drivers. BCP initially decreased significantly with tributary inflows, but the total load of carbon assimilated by bacteria increased by up to 20 times with flow due to increased water volume. The significant drivers of BCP were dissolved organic carbon, water temperature, and conductivity. Notably, BCP was not correlated with bacterial diversity or community composition. Tributary inflows were shown to alter mainstem bacterial community structure and metabolic function to take advantage of fresh terrestrial dissolved organic material, resulting in substantial changes to riverine carbon assimilation over small times scales.
Collapse
Affiliation(s)
- Lauren O'Brien
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Matthew Balzer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Simon Mitrovic
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
5
|
Villeneuve K, Turcotte-Blais V, Lazar CS. Effect of Snowmelt on Groundwater Bacterial Community Composition and Potential Role of Surface Environments as Microbial Seed Bank in Two Distinct Aquifers from the Region of Quebec, Canada. Microorganisms 2023; 11:1526. [PMID: 37375028 DOI: 10.3390/microorganisms11061526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Events of groundwater recharge are associated with changes in the composition of aquifer microbial communities but also abiotic conditions. Modification in the structure of the community can be the result of different environmental condition favoring or hindering certain taxa, or due to the introduction of surface-derived taxa. Yet, in both cases, the local hydrogeochemical settings of the aquifer is likely to affect the amount of variation observed. Therefore, in our study, we used 16S rRNA gene sequencing to assess how microbial communities change in response to snowmelt and the potential connectivity between subsurface and surface microbiomes in two distinct aquifers located in the region of Vaudreuil-Soulanges (Québec, Canada). At both sites, we observed an increase in groundwater level and decrease in temperature following the onset of snow melt in March 2019. Bacterial community composition of each aquifer was significantly different (p < 0.05) between samples collected prior and after groundwater recharge. Furthermore, microbial source tracking results suggested a low contribution of surface environments to the groundwater microbiome except for in the months associated with recharge (March 2019 and April 2019). Overall, despite differences in soil permeability between both sites, the period of snow melt was followed by important changes in the composition of microbial communities from aquifers.
Collapse
Affiliation(s)
- Karine Villeneuve
- Department of Biological Sciences, University of Québec at Montréal, UQAM, C.P. 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada
| | - Valérie Turcotte-Blais
- Department of Biological Sciences, University of Québec at Montréal, UQAM, C.P. 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada
| | - Cassandre Sara Lazar
- Department of Biological Sciences, University of Québec at Montréal, UQAM, C.P. 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
6
|
Wang H, Zhang W, Li Y, Gao Y, Yang N, Niu L, Zhang H, Wang L. Trophic interactions regulate microbial responses to environmental conditions and partially counteract nitrogen transformation potential in urban river bends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116889. [PMID: 36462486 DOI: 10.1016/j.jenvman.2022.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
River bends are distinguished by high biodiversity and elevated rates of biogeochemical activities due to complex hydromorphological processes that form diverse geomorphic units, making it challenging to elucidate the impact of trophic interactions on community assembly and biogeochemical processes. Here, we clarify the effect of trophic interactions in determining the assembly of multi-trophic microbial communities and the impact on nitrogen transformation potential by distinguishing the direct and cascading effects of environmental conditions based on 32 samples collected from a typical urban river bends. It was found that both bacterial and micro-eukaryotic communities were determined by homogeneous selection (indicated by β-nearest taxon index, accounted for 85% and 48.3%, respectively), whereas the dominant environmental factors were different, being sediment particle size (P < 0.05) and nitrogen (P < 0.05), respectively. Both the microbial co-occurrence network and the significant association (P < 0.05) between β-nearest taxon index and trophic transfer efficiency changes showed that the trophic interactions strongly shaped microbial communities in the urban river bends. The path modeling suggested that environmental conditions resulted in an increase in abundance of multi-trophic microbial communities via direct effects (mean standardized effects = 0.21), but reductions in abundance of bacteria via cascading effects, i.e., trophic interaction (mean standardized effects = -0.1). When considering direct and cascading effects together, environmental conditions in urban river bends were found to enhance the abundance of microbial communities, with decreasing magnitude at the higher trophic level. Analogously, the path modeling also indicated the nitrogen transformation potential enhanced by environmental conditions via direct effects, but partly counteracted by trophic interactions via cascading effects. The obtained results could provide a theoretical basis for the regulation and restoration of urban rivers.
Collapse
Affiliation(s)
- Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
7
|
Villeneuve K, Violette M, Lazar CS. From Recharge, to Groundwater, to Discharge Areas in Aquifer Systems in Quebec (Canada): Shaping of Microbial Diversity and Community Structure by Environmental Factors. Genes (Basel) 2022; 14:1. [PMID: 36672742 PMCID: PMC9858702 DOI: 10.3390/genes14010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Groundwater recharge and discharge rates and zones are important hydrogeological characteristics of aquifer systems, yet their impact on the formation of both subterranean and surface microbiomes remains largely unknown. In this study, we used 16S rRNA gene sequencing to characterize and compare the microbial community of seven different aquifers, including the recharge and discharge areas of each system. The connectivity between subsurface and surface microbiomes was evaluated at each site, and the temporal succession of groundwater microbial communities was further assessed at one of the sites. Bacterial and archaeal community composition varied between the different sites, reflecting different geological characteristics, with communities from unconsolidated aquifers being distinct from those of consolidated aquifers. Our results also revealed very little to no contribution of surface recharge microbial communities to groundwater communities as well as little to no contribution of groundwater microbial communities to surface discharge communities. Temporal succession suggests seasonal shifts in composition for both bacterial and archaeal communities. This study demonstrates the highly diverse communities of prokaryotes living in aquifer systems, including zones of groundwater recharge and discharge, and highlights the need for further temporal studies with higher resolution to better understand the connectivity between surface and subsurface microbiomes.
Collapse
Affiliation(s)
| | | | - Cassandre Sara Lazar
- Department of Biological Sciences, University of Québec at Montréal, UQAM, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
8
|
Pitt A, Koll U, Schmidt J, Neumann-Schaal M, Wolf J, Krausz S, Hahn MW. Aquirufa lenticrescens sp. nov. and Aquirufa aurantiipilula sp. nov.: two new species of a lineage of widespread freshwater bacteria. Arch Microbiol 2022; 204:356. [PMID: 35654990 PMCID: PMC9163014 DOI: 10.1007/s00203-022-02950-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023]
Abstract
Two bacterial strains, 9H-EGSET and 15D-MOBT, were isolated from small freshwater habitats located near Salzburg, Austria. They showed the highest 16S rRNA sequence similarities of 100% and 99.9%, respectively, with type strains of species of the genus Aquirufa (Bacteroidota). Genome-based phylogenetic reconstructions with 119 amino acid sequences assigned the new taxa to the two distinct branches of the genus Aquirufa. Whole-genome average nucleotide identities were calculated with all possible pairs belonging to the genus. Values between 75.4% and 88.6% revealed that the two new strains represent each a new species. Like all, so far described members of the genus, they grew aerobically and chemoorganotrophically, were rod-shaped, red-pigmented, and motile by gliding, and showed genome sizes of about 3 Mbp and G + C values of about 40%. They could be distinguished by some phenotypic and chemotaxonomic features from their nearest related species. Until now, strain 9H-EGSET is the only one among the Aquirufa strains which contained traces of MK8 as respiratory quinone, and strain 15D-MOBT is the only one that formed tiny orange globules in liquid medium. The genome of strain 9H-EGSET comprised genes for the complete light-harvesting rhodopsin / retinal system, in the case of 15D-MOBT genes predicted for a nitrous oxide reductase were present. For the two new species of the genus Aquirufa, we propose to establish the names Aquirufa lenticrescens for strain 9H-EGSET (= JCM 34077 T = CIP 111926 T) and Aquirufa aurantiipilula for strain 15D-MOBT (= JCM 34078 T = CIP 111925 T).
Collapse
|
9
|
Bischofberger AM, Hall AR. Community Composition of Bacteria Isolated from Swiss Banknotes Varies Depending on Collection Environment. Mol Ecol 2022; 32:2619-2632. [PMID: 35377495 DOI: 10.1111/mec.16456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Humans interact constantly with surfaces and associated microbial communities in the environment. The factors shaping the composition of these communities are poorly understood: some proposed explanations emphasize the influence of local habitat conditions (niche-based explanations), while others point to geographic structure and the distance among sampled locations (dispersal-based explanations). However, the relative roles of these different drivers for microbial community assembly on human-associated surfaces are not clear. Here, we used a combination of sampling, sequencing (16S rRNA) and culturing to show that the composition of banknote-associated bacterial communities varies depending on the local collection environment. Using banknotes collected from various locations and types of shops across Switzerland, we found taxonomic diversity dominated by families such as Pseudomonadaceae and Staphylococcaceae, but with banknote samples from particular types of shops (especially butcher shops) having distinct community structure. By contrast, we found no evidence of geographic structure: similarity of community composition did not decrease with increasing distance among sampled locations. These results show that microbial communities associated with banknotes, one of the most commonly encountered and exchanged human-associated surfaces, can reflect the local environmental conditions (in this case, the type of shop), and the signal for this type of variation was stronger than that for geographic structure among the locations sampled here.
Collapse
Affiliation(s)
| | - Alex R Hall
- Institute of Integrative Biology, ETH Zurich, Switzerland
| |
Collapse
|
10
|
Zhang W, Yang G, Wang H, Li Y, Niu L, Zhang H, Wang L. Predicting bend-induced heterogeneity in sediment microbial communities by integrating bacteria-based index of biotic integrity and supervised learning algorithms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114267. [PMID: 34896801 DOI: 10.1016/j.jenvman.2021.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Prioritizing the relationship between heterogeneity of sediment habitats and river bends is critical when planning and reconstructing urban rivers. However, the exact relationship between ecological heterogeneity and river bends remains ambiguous. Therefore, this research proposed a new approach to quantify and predict bend-induced ecological heterogeneity, incorporating the bacteria-based index of biotic integrity (Ba-IBI), path model, and random forest regression model. The developed Ba-IBI quantified heterogeneity in sediment microbial communities, ranging from low (1.40) to high (3.97). A path model was developed and validated in order to further investigate the relative contributions of environmental factors to the Ba-IBI. The established path model, which was considered acceptable with a CMIN/df = 1.949 < 4, suggested that primary environmental factors affecting the sediment bacterial communities were flow velocity and ammonium concentration in sediment. To further characterize the relationship between environmental factors and the Ba-IBI, a function was constructed using the random forest regression model that predicts the responses of sediment bacterial communities to environmental factors with R2 = 0.6126. The proposed approach and prediction tools will provide knowledge to improve natural channel design and post-project evaluations in river restoration projects.
Collapse
Affiliation(s)
- Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Gang Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
11
|
Caillon F, Besemer K, Peduzzi P, Schelker J. Soil microbial inoculation during flood events shapes headwater stream microbial communities and diversity. MICROBIAL ECOLOGY 2021; 82:591-601. [PMID: 33532913 PMCID: PMC8463373 DOI: 10.1007/s00248-021-01700-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/21/2021] [Indexed: 05/10/2023]
Abstract
Flood events are now recognized as potentially important occasions for the transfer of soil microbes to stream ecosystems. Yet, little is known about these "dynamic pulses of microbial life" for stream bacterial community composition (BCC) and diversity. In this study, we explored the potential alteration of stream BCC by soil inoculation during high flow events in six pre-alpine first order streams and the larger Oberer Seebach. During 1 year, we compared variations of BCC in soil water, stream water and in benthic biofilms at different flow conditions (low to intermediate flows versus high flow). Bacterial diversity was lowest in biofilms, followed by soils and highest in headwater streams and the Oberer Seebach. In headwater streams, bacterial diversity was significantly higher during high flow, as compared to low flow (Shannon diversity: 7.6 versus 7.9 at low versus high flow, respectively, p < 0.001). Approximately 70% of the bacterial operational taxonomic units (OTUs) from streams and stream biofilms were the same as in soil water, while in the latter one third of the OTUs were specific to high flow conditions. These soil high-flow OTUs were also found in streams and biofilms at other times of the year. These results demonstrate the relevance of floods in generating short and reoccurring inoculation events for flowing waters. Moreover, they show that soil microbial inoculation during high flow enhances microbial diversity and shapes fluvial BCC even during low flow. Hence, soil microbial inoculation during floods could act as a previously overlooked driver of microbial diversity in headwater streams.
Collapse
Affiliation(s)
- Florian Caillon
- WasserCluster Lunz/Biological Station GmbH, A-3293, Lunz am See, Austria.
- Division of Limnology, Department of Functional and Evolutionary Ecology, University of Vienna, A-1090, Vienna, Austria.
| | - Katharina Besemer
- Division of Limnology, Department of Functional and Evolutionary Ecology, University of Vienna, A-1090, Vienna, Austria
| | - Peter Peduzzi
- Division of Limnology, Department of Functional and Evolutionary Ecology, University of Vienna, A-1090, Vienna, Austria
| | - Jakob Schelker
- WasserCluster Lunz/Biological Station GmbH, A-3293, Lunz am See, Austria
- Division of Limnology, Department of Functional and Evolutionary Ecology, University of Vienna, A-1090, Vienna, Austria
| |
Collapse
|
12
|
Betiku OC, Sarjeant KC, Ngatia LW, Aghimien MO, Odewumi CO, Latinwo LM. Evaluation of microbial diversity of three recreational water bodies using 16S rRNA metagenomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144773. [PMID: 33548724 DOI: 10.1016/j.scitotenv.2020.144773] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Surface water plays a significant role in world development by promoting economic growth and health benefits to humans and animals whose lives depend on good water quality in the ecosystem. Thus, this study investigated the differences in physical and chemical properties of surface water from two lakes (Lakes Jackson and Talquin) and a pond (Pedrick Pond). Also, the influence of environmental factors on the microbial communities that live within the water environment was examined. Genomic DNA was extracted from the water samples collected and 16S rRNA sequencing method was employed to characterize the microbial community compositions across the three locations. The results obtained suggest that the water sources met the recommended recreational water quality criteria standard for clean water. Overall, Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes were the main bacterial phyla present in the communities, while Archaea was mainly dominated by Euryachaeota. Pressure, conductivity, temperature, dissolved oxygen (DO), and pH accounted for 74.2% of the variation in the distribution of the microbial community in the three locations (P < 0.05), while 58.2% of the variation in the microbial community distribution was accounted for by pressure and conductivity. The high temperature observed in the Pedrick Pond correlated with the distribution of genera hgcl_clades and Legionella. While in Lake Talquin, water conductivity was significantly associated with the abundance of Cyanobium_PCC_6307, Sediminibacterium, and Conexibacter. The results from this study indicate that the microbial communities in the two lakes are different from the pond and all the environmental variables accounted for a significant portion of the total variation, but pressure, conductivity, and temperature are more important factors due to significant correlation with the distribution of the microbial communities.
Collapse
Affiliation(s)
- Omolola C Betiku
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA; Division of Agriculture Science, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| | - Keawin C Sarjeant
- Division of Agriculture Science, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Lucy W Ngatia
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Monica O Aghimien
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Caroline O Odewumi
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Lekan M Latinwo
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|