1
|
McSweeney AM, Eruera AR, McKenzie-Goldsmith GM, Bouwer JC, Brown SHJ, Stubbing LA, Hubert JG, Shrestha R, Sparrow KJ, Brimble MA, Harris LD, Evans GB, Bostina M, Krause KL, Ward VK. Activity and cryo-EM structure of the polymerase domain of the human norovirus ProPol precursor. J Virol 2024; 98:e0119324. [PMID: 39475276 PMCID: PMC11575396 DOI: 10.1128/jvi.01193-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Human norovirus (HuNV) is a leading cause of acute gastroenteritis worldwide with most infections caused by genogroup I and genogroup II (GII) viruses. Replication of HuNV generates both precursor and mature proteins during processing of the viral polyprotein that are essential to the viral lifecycle. One such precursor is protease-polymerase (ProPol), a multi-functional enzyme comprised of the norovirus protease and polymerase proteins. This work investigated HuNV ProPol by determining the de novo polymerase activity, protein structure, and antiviral inhibition profile. The GII ProPol de novo enzymatic efficiencies (kcat/Km) for RNA templates and ribonucleotides were equal or superior to those of mature GII Pol on all templates measured. Furthermore, GII ProPol was the only enzyme form active on a poly(A) template. The first structure of the polymerase domain of HuNV ProPol in the unliganded state was determined by cryo-electron microscopy at a resolution of 2.6 Å. The active site and overall architecture of ProPol are similar to those of mature Pol. In addition, both galidesivir triphosphate and PPNDS inhibited polymerase activity of GII ProPol, with respective half-maximal inhibitory concentration (IC50) values of 247.5 µM and 3.8 µM. In both instances, the IC50 obtained with ProPol was greater than that of mature Pol, indicating that ProPol can exhibit different responses to antivirals. This study provides evidence that HuNV ProPol possesses overlapping and unique enzyme properties compared with mature Pol and will aid our understanding of the replication cycle of the virus.IMPORTANCEDespite human norovirus (HuNV) being a leading cause of acute gastroenteritis, the molecular mechanisms surrounding replication are not well understood. Reports have shown that HuNV replication generates precursor proteins from the viral polyprotein, one of which is the protease-polymerase (ProPol). This precursor is important for viral replication; however, the polymerase activity and structural differences between the precursor and mature forms of the polymerase remain to be determined. We show that substrate specificity and polymerase activity of ProPol overlap with, but is distinct from, the mature polymerase. We employ cryo-electron microscopy to resolve the first structure of the polymerase domain of ProPol. This shows a polymerase architecture similar to mature Pol, indicating that the interaction of the precursor with substrates likely defines its activity. We also show that ProPol responds differently to antivirals than mature polymerase. Altogether, these findings enhance our understanding of the function of the important norovirus ProPol precursor.
Collapse
Affiliation(s)
- Alice M McSweeney
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Geena M McKenzie-Goldsmith
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - James C Bouwer
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Simon H J Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Louise A Stubbing
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jonathan G Hubert
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Rinu Shrestha
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kevin J Sparrow
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Gary B Evans
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kurt L Krause
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Gomes KA, Degiuseppe JI, Stupka JA. Norovirus outbreaks in a nursery school in Buenos Aires, Argentina. Rev Argent Microbiol 2024; 56:373-379. [PMID: 39227266 DOI: 10.1016/j.ram.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/11/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
Norovirus (NoV) is the leading cause of outbreaks of acute gastroenteritis worldwide. These are non-enveloped viruses that are classified into 10 genogroups, of which genogroup I (GI), II (GII), IV (GIV), VIII (GVIII), and IX (GIX) are the ones that infect humans. Two outbreaks (A and B) of acute gastroenteritis that occurred in a nursery school are described. The first outbreak (A) occurred in November 2018, and the second (B) in February 2020. The detection of viral and bacterial pathogens was performed to study both outbreaks. Additionally, an epidemiological investigation of the outbreaks was conducted. In the analyzed fecal and vomit samples from both children and adults in the nursery school, NoV GII.4 [P16] Sydney 2012 and NoV GI.3 [P13] were detected in outbreaks A and B, respectively. Since the study of acute gastroenteritis outbreaks is underestimated in Argentina, it is necessary to design prevention, study, and control protocols, as well as to improve the outbreak notification system in our country.
Collapse
Affiliation(s)
- Karina A Gomes
- Viral Gastroenteritis Laboratory, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.
| | - Juan I Degiuseppe
- Viral Gastroenteritis Laboratory, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Juan A Stupka
- Viral Gastroenteritis Laboratory, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| |
Collapse
|
3
|
Carlson KB, Dilley A, O'Grady T, Johnson JA, Lopman B, Viscidi E. A narrative review of norovirus epidemiology, biology, and challenges to vaccine development. NPJ Vaccines 2024; 9:94. [PMID: 38811605 PMCID: PMC11137017 DOI: 10.1038/s41541-024-00884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Norovirus is a leading cause of acute gastroenteritis (AGE) globally. AGE resulting from norovirus causes significant morbidity and mortality in countries of all income levels, particularly among young children and older adults. Prevention of norovirus AGE represents a unique challenge as the virus is genetically diverse with multiple genogroups and genotypes cocirculating globally and causing disease in humans. Variants of the GII.4 genotype are typically the most common genotype, and other genotypes cause varying amounts of disease year-to-year, with GII.2, GII.3, and GII.6 most prevalent in recent years. Noroviruses are primarily transmitted via the fecal-oral route and only a very small number of virions are required for infection, which makes outbreaks of norovirus extremely difficult to control when they occur. Settings like long-term care facilities, daycares, and hospitals are at high risk of outbreaks and can have very high attack rates resulting in substantial costs and disease burden. Severe cases of norovirus AGE are most common in vulnerable patient populations, such as infants, the elderly, and immunocompromised individuals, with available treatments limited to rehydration therapies and supportive care. To date, there are no FDA-approved norovirus vaccines; however, several candidates are currently in development. Given the substantial human and economic burden associated with norovirus AGE, a vaccine to prevent morbidity and mortality and protect vulnerable populations could have a significant impact on global public health.
Collapse
Affiliation(s)
| | - Anne Dilley
- Epidemiologic Research & Methods, LLC, Atlanta, GA, USA
| | | | - Jordan A Johnson
- Epidemiologic Research & Methods, LLC, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ben Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
4
|
Vielot NA, Zepeda O, Reyes Y, González F, Toval-Ruíz C, Munguia N, Picado Y, Becker-Dreps S, Bucardo F. Transmission Patterns of Norovirus From Infected Children to Household Members in León, Nicaragua. J Pediatric Infect Dis Soc 2024; 13:148-151. [PMID: 38168703 PMCID: PMC10896256 DOI: 10.1093/jpids/piad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Norovirus is a common and highly transmissible gastrointestinal pathogen. Among 34 Nicaraguan households with a norovirus-infected child, 48% experienced norovirus transmission within 1 week, infecting 18% of household members; GII norovirus was more commonly transmitted than GI. Pediatric norovirus vaccines could prevent both index cases and transmission to close contacts.
Collapse
Affiliation(s)
- Nadja A Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Omar Zepeda
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Yaoska Reyes
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fredman González
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Christian Toval-Ruíz
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Nancy Munguia
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Yorling Picado
- Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Filemon Bucardo
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Lo M, Doan YH, Mitra S, Saha R, Miyoshi SI, Kitahara K, Dutta S, Oka T, Chawla-Sarkar M. Comprehensive full genome analysis of norovirus strains from eastern India, 2017-2021. Gut Pathog 2024; 16:3. [PMID: 38238807 PMCID: PMC10797879 DOI: 10.1186/s13099-023-00594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Worldwide, noroviruses are the leading cause of acute gastroenteritis (AGE) in people of all age groups. In India, norovirus rates between 1.4 to 44.4% have been reported. Only a very few complete norovirus genome sequences from India have been reported. OBJECTIVE To perform full genome sequencing of noroviruses circulating in India during 2017-2021, identify circulating genotypes, assess evolution including detection of recombination events. METHODOLOGY Forty-five archived norovirus-positive samples collected between October 2017 to July 2021 from patients with AGE from two hospitals in Kolkata, India were processed for full genome sequencing. Phylogenetic analysis, recombination breakpoint analysis and comprehensive mutation analysis were also performed. RESULTS Full genome analysis of norovirus sequences revealed that strains belonging to genogroup (G)I were genotyped as GI.3[P13]. Among the different norovirus capsid-polymerase combinations, GII.3[P16], GII.4 Sydney[P16], GII.4 Sydney[P31], GII.13[P16], GII.16[P16] and GII.17 were identified. Phylogenetic analysis confirmed phylogenetic relatedness with previously reported norovirus strains and all viruses were analyzed by Simplot. GII[P16] viruses with multiple residue mutations within the non-structural region were detected among circulating GII.4 and GII.3 strains. Comprehensive mutation analysis and selection pressure analysis of GII[P16] viruses showed positive as well as negative selection sites. A GII.17 strain (NICED-BCH-11889) had an untypeable polymerase type, closely related to GII[P38]. CONCLUSION This study highlights the circulation of diverse norovirus strains in eastern India. These findings are important for understanding norovirus epidemiology in India and may have implications for future vaccine development.
Collapse
Affiliation(s)
- Mahadeb Lo
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-Murayama, Tokyo, Japan
| | - Suvrotoa Mitra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India
| | - Ritubrita Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Center of Okayama University for Infectious Diseases in India, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kei Kitahara
- Collaborative Research Center of Okayama University for Infectious Diseases in India, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Regional Virus Research and Diagnostic Laboratory, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, West Bengal, India
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-Murayama, Tokyo, Japan.
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India.
| |
Collapse
|
6
|
Kabue JP, Khumela R, Meader E, Baroni de Moraes MT, Traore AN, Potgieter N. Norovirus-Associated Gastroenteritis Vesikari Score and Pre-Existing Salivary IgA in Young Children from Rural South Africa. Viruses 2023; 15:2185. [PMID: 38005863 PMCID: PMC10674611 DOI: 10.3390/v15112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Norovirus (NoV) is the leading cause of viral gastroenteritis, mostly affecting young children worldwide. However, limited data are available to determine the severity of norovirus-associated AGE (acute gastroenteritis) and to correlate it with the NoV-specific IgA antibodies' level. Between October 2019 and September 2021, two hundred stool samples were randomly collected from symptomatic cases for the vesikari score and NoV-specific IgA assessment in young children from rural South Africa. Additionally, one hundred saliva specimens were concomitantly sampled within the same cohort to evaluate the NoV-specific salivary IgA levels. In addition, 50 paired saliva and stool samples were simultaneously collected from asymptomatic children to serve as controls. NoV strains in stool samples were detected using real-time RT-PCR, amplified, and genotyped with RT-PCR and Sanger sequencing. ELISA using NoV VLP (virus-like particles) GII.4 as antigens was performed on the saliva specimens. Dehydrated children were predominantly those with NoV infections (65/74, 88%; p < 0.0001). NoV-positive infections were significantly associated with the severe diarrhea cases having a high vesikari score (55%, 33/60) when compared to the non-severe diarrheal score (29.3%, 41/140; p < 0.0308). NoV of the GII genogroup was mainly detected in severe diarrhea cases (50.9%, 30/59; p = 0.0036). The geometric means of the NoV-specific IgA level were higher in the asymptomatic NoV-infected group (0.286) as compared to the symptomatic group (0.174). This finding suggests that mucosal immunity may not protect the children from the NoV infection. However, the findings indicated the contribution of the pre-existing NoV-specific IgA immune response in reducing the severity of diarrheal disease. A high vesikari score of AGE associated with the NoV GII genogroup circulating in the study area underscores the need for an appropriate treatment of AGE based on the severity level of NoV-associated clinical symptoms in young children.
Collapse
Affiliation(s)
- Jean-Pierre Kabue
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Ronewa Khumela
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Emma Meader
- Clinical Microbiology, Pathology Department, East Kent Hospitals University NHS Foundation Trust, Ashford TN24 OLZ, UK;
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brazil, 4365-Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Afsatou Ndama Traore
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Natasha Potgieter
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| |
Collapse
|
7
|
Alsedà M, Godoy P, Bach P, Soldevila N, Cornejo T, Corominas L, Grau M, Domínguez À. Two successive outbreaks of acute gastroenteritis due to norovirus GII.6 in a holiday camp house. Sci Rep 2023; 13:15558. [PMID: 37730810 PMCID: PMC10511710 DOI: 10.1038/s41598-023-42622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
When two outbreaks occur in the same institution within a short period of time, an important health and social concern is generated. Two gastroenteritis outbreaks occurring a week apart in the same facility were reported in Lleida, Spain, in 2018. The objective of this study was to describe the clinical, epidemiological and microbiological investigation carried out and to determine the risk factors. Demographic data, food consumption and symptoms were collected. Health inspections of the facility were carried out. Risk ratio and their 95% confidence intervals were estimated for the implication of each food consumed. The attack rate was 89.7% in the first outbreak and 69.6% in the second outbreak. The most frequent symptoms in the first and second outbreak were abdominal pain (88.5% and 100%, respectively), vomiting (80.8% and 87.5%, respectively) and nausea (69.2% and 81.3%, respectively). The first outbreak was associated with the consumption of a salad and the second with a cheese omelet. Norovirus GII.6 was detected by RT-PCR and sequenced in both groups of students and in the food handlers who prepared the meals. These results highlight the importance of exclusion from work of food handlers with gastroenteritis, the adequate availability of mechanisms for correct hand washing and the correct cleaning of surfaces.
Collapse
Affiliation(s)
- Miquel Alsedà
- Agència de Salut Pública de Catalunya, Lleida, Spain
- Institut de Recerca Biomédica de Lleida, IRB Lleida, Lleida, Spain
| | - Pere Godoy
- Institut de Recerca Biomédica de Lleida, IRB Lleida, Lleida, Spain
- CIBER Epidemiología Y Salut Pública (CIBERESP), Madrid, Spain
| | - Pilar Bach
- Agència de Salut Pública de Catalunya, Lleida, Spain
| | - Núria Soldevila
- CIBER Epidemiología Y Salut Pública (CIBERESP), Madrid, Spain.
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain.
| | - Thais Cornejo
- Laboratori de Microbiologia, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Laura Corominas
- Laboratori Salut Pública, Agència de Salut Pública de Catalunya, Girona, Spain
| | - Maria Grau
- CIBER Epidemiología Y Salut Pública (CIBERESP), Madrid, Spain
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Àngela Domínguez
- CIBER Epidemiología Y Salut Pública (CIBERESP), Madrid, Spain
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Takahashi T, Kimura R, Shirai T, Sada M, Sugai T, Murakami K, Harada K, Ito K, Matsushima Y, Mizukoshi F, Okayama K, Hayashi Y, Kondo M, Kageyama T, Suzuki Y, Ishii H, Ryo A, Katayama K, Fujita K, Kimura H. Molecular Evolutionary Analyses of the RNA-Dependent RNA Polymerase ( RdRp) Region and VP1 Gene in Human Norovirus Genotypes GII.P6-GII.6 and GII.P7-GII.6. Viruses 2023; 15:1497. [PMID: 37515184 PMCID: PMC10383674 DOI: 10.3390/v15071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
To understand the evolution of GII.P6-GII.6 and GII.P7-GII.6 strains, the prevalent human norovirus genotypes, we analysed both the RdRp region and VP1 gene in globally collected strains using authentic bioinformatics technologies. A common ancestor of the P6- and P7-type RdRp region emerged approximately 50 years ago and a common ancestor of the P6- and P7-type VP1 gene emerged approximately 110 years ago. Subsequently, the RdRp region and VP1 gene evolved. Moreover, the evolutionary rates were significantly faster for the P6-type RdRp region and VP1 gene than for the P7-type RdRp region and VP1 genes. Large genetic divergence was observed in the P7-type RdRp region and VP1 gene compared with the P6-type RdRp region and VP1 gene. The phylodynamics of the RdRp region and VP1 gene fluctuated after the year 2000. Positive selection sites in VP1 proteins were located in the antigenicity-related protruding 2 domain, and these sites overlapped with conformational epitopes. These results suggest that the GII.6 VP1 gene and VP1 proteins evolved uniquely due to recombination between the P6- and P7-type RdRp regions in the HuNoV GII.P6-GII.6 and GII.P7-GII.6 virus strains.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
- Iwate Prefectural Research Institute for Environmental Science and Public Health, Morioka-shi, Iwate 020-0857, Japan
| | - Ryusuke Kimura
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma 371-8514, Japan
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Mitaka-shi, Tokyo 181-8611, Japan
| | - Mitsuru Sada
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Mitaka-shi, Tokyo 181-8611, Japan
| | - Toshiyuki Sugai
- Department of Nursing Science, Graduate School of Health Science, Hiroshima University, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Kazuhiko Harada
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
| | - Kazuto Ito
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
| | - Yuki Matsushima
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya-shi, Tochigi 329-1196, Japan
| | - Kaori Okayama
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| | - Yuriko Hayashi
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| | - Mayumi Kondo
- Department of Clinical Engineering, Faculty of Medical Technology, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| | - Tsutomu Kageyama
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Yoshiyuki Suzuki
- Division of Biological Science, Department of Information and Basic Science, Graduate School of Natural Sciences, Nagoya City University, Nagoya-shi, Aichi 467-8501, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Mitaka-shi, Tokyo 181-8611, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Graduate School of Infection Control Sciences, Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Kiyotaka Fujita
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
- Department of Clinical Engineering, Faculty of Medical Technology, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| |
Collapse
|
9
|
López P, López-Medina E, Sáez-Llorens X, deAntonio R, Masuda T, Mendelman PM, Sherwood J, Baehner F, Borkowski A. Immunogenicity and tolerability of a bivalent virus-like particle norovirus vaccine candidate in children from 6 months up to 4 years of age: A phase 2 randomized, double-blind trial. Hum Vaccin Immunother 2023:2204787. [PMID: 37140558 DOI: 10.1080/21645515.2023.2204787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
We conducted a dose-finding phase 2 study of the HilleVax bivalent virus-like particle (VLP) vaccine candidate (HIL-214) in two cohorts of children, 6-≤12 months and 1-≤4 years of age (N = 120 per cohort), in Panama and Colombia (ClinicalTrials.gov, identifier NCT02153112). On Day 1, children randomized to one of the four equal groups received intramuscular injections of four different HIL-214 formulations containing 15/15, 15/50, 50/50, or 50/150 μg of GI.1/GII.4c genotype VLPs and 0.5 mg Al(OH)3. On Day 29, half the children in each group received a second vaccination (N = 60), while the other half received saline placebo injections to maintain the blind. VLP-specific ELISA Pan-Ig and histo-blood group binding antigen-blocking antibodies (HBGA) were measured on Days 1, 29, 57 and 210. On Day 29, after one dose, there were large Pan-Ig and HBGA responses in both age cohorts with some indication of dose-dependence, and higher geometric mean titers (GMT) in the older children. A further increase in titers was observed 28 days after a second dose in the 6-≤12-month-old groups, but less so in the 1-≤4-year-old groups; GMTs at Day 57 were broadly similar across doses and in both age groups. GMTs of Pan-Ig and HBGA persisted above baseline up to Day 210. All formulations were well tolerated with mostly mild-to-moderate transient solicited adverse events reported by parents/guardians, and no vaccine-related serious adverse events occurred. Further development of HIL-214 is warranted to protect the most susceptible young children against norovirus.
Collapse
Affiliation(s)
- Pio López
- Department of Pediatrics, Centro de Estudios en Infectología Pediátrica S.A.S., Cali, Colombia
| | - Eduardo López-Medina
- Department of Pediatrics, Centro de Estudios en Infectología Pediátrica S.A.S., Cali, Colombia
| | - Xavier Sáez-Llorens
- Department of Infectology, Cevaxin, The Panama Clinic, Panama City, Panama
- Infectious Diseases, Hospital del Niño Dr. José Renán Esquivel, Panama City, Panama
- Medicine (Pediatrics and Infectious Diseases), SNI, National Secretariat of Science, Technology and Innovation (SENACYT), Panama City, Panama
| | - Rodrigo deAntonio
- Department of Infectology, Cevaxin, The Panama Clinic, Panama City, Panama
| | - Taisei Masuda
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - James Sherwood
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
- Clinical Development, HilleVax GmbH, Glattpark-Zurich, Switzerland
| | - Frank Baehner
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Astrid Borkowski
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
- Clinical Development, HilleVax GmbH, Glattpark-Zurich, Switzerland
| |
Collapse
|
10
|
Vielot NA, Zepeda O, Reyes Y, González F, Vinjé J, Becker-Dreps S, Bucardo F. Household Surveillance for Norovirus Gastroenteritis in a Nicaraguan Birth Cohort: A Nested Case-Control Analysis of Norovirus Risk Factors. Pathogens 2023; 12:505. [PMID: 36986427 PMCID: PMC10054596 DOI: 10.3390/pathogens12030505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Norovirus causes a large proportion of pediatric acute gastroenteritis (AGE) worldwide, and no vaccines are currently available. To inform public health measures against norovirus gastroenteritis, we assessed risk factors in a case-control study nested in a birth cohort study in Nicaragua. Between June 2017 and January 2022, we followed children weekly for AGE episodes, and collected stool specimens from symptomatic children. Risk factors for AGE were collected during routine weekly visits. Norovirus was detected in stools using real-time reverse transcriptase polymerase chain reaction and positive specimens were genotyped using Sanger sequencing. We included 40 norovirus-positive AGE children matched 1:2 to controls and conducted bivariate and multivariable analyses of norovirus AGE risk factors. Among typeable norovirus infections, GII.4 were more severe than non-GII.4 (four/twenty-one vs. one/nine) and accounted for all emergency visits and hospitalizations. Adjusted conditional logistic regression found that female sex and higher length-for-age Z score were protective against norovirus AGE; a dirt floor in the home, sharing cups or bottles, and recent contact with someone with AGE symptoms were associated with norovirus AGE, though estimates were highly imprecise. Reducing contact with symptomatic persons and with saliva or other bodily fluids on cups or floors could reduce infant norovirus incidence.
Collapse
Affiliation(s)
- Nadja Alexandra Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Omar Zepeda
- Department of Microbiology, National Autonomous University of Nicaragua, Leon 21000, Nicaragua
| | - Yaoska Reyes
- Department of Microbiology, National Autonomous University of Nicaragua, Leon 21000, Nicaragua
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, Leon 21000, Nicaragua
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sylvia Becker-Dreps
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, Leon 21000, Nicaragua
| |
Collapse
|
11
|
Inaida S, Mizukoshi A, Azuma K, Okumura J. Reduced norovirus epidemic follows increased sales of hand hygiene products in Japan, 2020-2021. Environ Health Prev Med 2023; 28:18. [PMID: 36878577 PMCID: PMC10025861 DOI: 10.1265/ehpm.22-00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
During the recent emergence of COVID-19, an increased practice of hand hygiene coincided with the reduced incidence of the norovirus epidemic in Japan, which is similar to experience with the pandemic flu in 2009. We investigated the relationship between the sales of hand hygiene products, including liquid hand soap and alcohol-based hand sanitizer, and the trend of norovirus epidemic. We used national gastroenteritis surveillance data across Japan in 2020 and 2021 and compared the base statistics of incidence of these two years with the average of the previous 10 years (2010-2019). We calculated the correlations (Spearman's Rho) between monthly sales of hand hygiene products and monthly norovirus cases and fitted them to a regression model. In 2020, there was no epidemic, and the incidence peak was the lowest in recent norovirus epidemics. In 2021, the incidence peak was delayed for five weeks to the usual epidemic seasons. Correlation coefficients between monthly sales of liquid hand soap and skin antiseptics and norovirus incidence showed a significantly negative correlation (Spearman's Rho = -0.88 and p = 0.002 for liquid hand soap; Spearman's Rho = -0.81 and p = 0.007 for skin antiseptics). Exponential regression models were fitted between the sales of each hand hygiene product and norovirus cases, respectively. The results suggest hand hygiene using these products is a potentially useful prevention method against norovirus epidemics. Effective ways of hand hygiene for increasing the prevention of norovirus should therefore be studied.
Collapse
Affiliation(s)
- Shinako Inaida
- Department of Environmental Medicine and Behavioral Science, Faculty of Medicine, Kindai University
| | - Atsushi Mizukoshi
- Department of Environmental Medicine and Behavioral Science, Faculty of Medicine, Kindai University
| | - Kenich Azuma
- Department of Environmental Medicine and Behavioral Science, Faculty of Medicine, Kindai University
| | - Jiro Okumura
- Department of Environmental Medicine and Behavioral Science, Faculty of Medicine, Kindai University
| |
Collapse
|
12
|
The Importance of Secretor-Status in Norovirus Infection Following Allogeneic Hematopoietic Stem Cell Transplantation. Viruses 2022; 14:v14071350. [PMID: 35891335 PMCID: PMC9318794 DOI: 10.3390/v14071350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Background. Human secretor-status is a strong susceptibility factor for norovirus infection in immunocompetent people. The predominant norovirus genotype GII.4 almost exclusively infects secretors and is also associated with more severe symptoms. However, it is not known to what extent this also applies to immunocompromised individuals. Our objective was to determine the importance of secretor-status and norovirus genotype for the susceptibility and/or the clinical course of norovirus infection in allogeneic hematopoietic stem cell transplant (HCT) patients. Methods: This was a retrospective study of 89 HCT patients diagnosed with norovirus infection. Secretor-status and norovirus genotype were determined using stored extracted DNA or blood (n = 89) and fecal samples (n = 22), respectively. Results: Seven of eighty-nine (8%) of the patients were secretor-negative, a small proportion compared to the expected rate of at least 20% non-secretors in the general Swedish population. Among the genotyped samples, norovirus genotype GII.4 was predominant (n = 12) and only detected in secretor-positive individuals. Patients with norovirus GII.4 had a median symptom duration of 36 (3–681) days compared to 15 (1–94) days in patients infected with other norovirus genotypes (n = 10, p = 0.1). Conclusions: The results suggest that secretor-status affects the susceptibility to norovirus infection even when the immune system is severely compromised. The norovirus genotype may also be a risk factor for chronic norovirus symptoms in immunocompromised patients.
Collapse
|
13
|
Dong L, Jia T, Yu Y, Wang Y. Updating a New Semi-nested PCR Primer Pair for the Specific Detection of GII Norovirus in Oysters. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:149-156. [PMID: 35099705 PMCID: PMC8802746 DOI: 10.1007/s12560-022-09511-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Oysters are major transmission vectors of noroviruses (NoVs) in the environment. Outbreaks of NoVs are often associated with the consumption of NoV-contaminated oysters. Laboratory confirmation of suspected oyster samples is a critical step in the surveillance and control of NoVs. Because of non-specific amplification, false-positive results are frequently obtained by semi-nested RT-PCR with the presently widely used primer set (G2SKF/G2SKR). Here, a novel universal PCR primer set N (NG2OF/NG2OR) specific for genogroup II (GII) NoVs was designed based on all GII NoV sequences available in public databases. Specific products were obtained with the primer set N when the NoV-positive oysters, spiked with each of five representative genotypes of GII NoVs (GII.17, GII.13, GII.4, GII.3, and GII.12), were subjected to analyzing. No products were detected with the primer set N for the NoV-negative oysters, while the primer set C gave various non-specific bands. Twenty-three out of 156 fresh oyster samples were NoV-positive with both the primer set N and the classic primer set, while eight were NoV-positive solely with the primer set N. Compared with the classic primer set, the newly designed primer set N had a higher detection rate and improved specificity for GII NoVs in oyster samples. These results show that the novel PCR primer pair is specific and applicable for the detection of GII NoVs in oysters.
Collapse
Affiliation(s)
- Lei Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tianhui Jia
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
14
|
Immunogenicity of a bivalent virus-like particle norovirus vaccine in children from 1 to 8 years of age: A phase 2 randomized, double-blind study. Vaccine 2022; 40:3588-3596. [PMID: 35595661 DOI: 10.1016/j.vaccine.2022.04.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Young children can suffer severe consequences of norovirus gastroenteritis. We performed a dose-finding study of a bivalent virus-like particle (VLP) vaccine candidate (TAK-214) in healthy 1-8-year-old children. METHODS In this phase 2 study two age cohorts (1-3 and 4-8 years of age inclusive, N = 120 per cohort) of children enrolled from Finland, Panama and Colombia were initially randomized 1:1:1:1 to four groups which were further split into two equal subgroups, to receive one or two intramuscular doses of four TAK-214 formulations containing 15/15, 15/50, 50/50 or 50/150 μg of GI.1/GII.4c genotype VLPs and 0.5 mg Al(OH)3 at 28 days interval. ELISA Pan-Ig and histoblood group antigen-blocking (HBGA) antibodies against each VLP were measured on days 1, 29, 57 and 210. Parents/guardians recorded solicited local and systemic adverse events (AE) and any unsolicited or serious AEs (SAE). RESULTS All formulations were well-tolerated across both age cohorts and dosage groups with no vaccine-related SAEs reported. Solicited AEs were mostly mild-to-moderate, resolved quickly, and did not increase after the second dose. Pan-Ig and HBGA responses induced after one dose were only slightly increased by the second dose. Across dose groups at Day 29 after one dose GI.1 Pan Ig seroresponse rates (SRR) were 82-97% and 81-96% and GII.4c SRR were 79-97% and 80-91% in 1-3 and 4-8 year-olds, respectively. Respective rates were to 92-93% and 73-92% for GI.1, and 77-100% and 62-83% for GII.4c at Day 57 following two doses. HBGA responses had similar profiles. Both Pan Ig and HBGA geometric mean titers persisted above baseline up to Day 210. CONCLUSIONS All dosages of TAK-214 displayed acceptable reactogenicity in 1-8-year-old children and induced robust, durable immune responses after one dose which are further increased after two doses.
Collapse
|
15
|
Li W, Yan H, Liu B, Tian Y, Chen Y, Jia L, Gao Z, Wang Q. Epidemiological characteristics and genetic diversity of norovirus infections among outpatient children with diarrhea under 5 years of age in Beijing, China, 2011-2018. Gut Pathog 2021; 13:77. [PMID: 34952625 PMCID: PMC8709959 DOI: 10.1186/s13099-021-00473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Human noroviruses are the leading cause of sporadic cases and outbreaks of viral acute gastroenteritis in all age groups worldwide. Methods Epidemiological data and fecal specimens were collected between January 2011 and December 2018 from 4911 children < 5 years of age with diarrhea in three districts of Beijing. From 2011 to 2013, One-Step Reverse Transcription Polymerase Chain Reaction (RT-PCR) was used to detect noroviruses, and from January 2014 to December 2018, norovirus GI and GII were screened using duplex quantitative real-time RT-PCR (qRT-PCR). One-Step RT-PCR and RT-seminested PCR were performed to amplify the RNA-dependent polymerase and capsid genes of noroviruses in positive sample. Amplified products were sequenced directly; norovirus was typed using the online Norovirus Genotyping Tool v2.0 and phylogenetic analyses were conducted using MEGA-X. Results From 2011 to 2018, noroviruses were detected in 16.5% of specimens from children with diarrhea. The highest prevalence was observed in children aged 12 to 23 months (22.4%, 319/1421), followed by children aged 6 to 11 months (17.6%, 253/1441). The highest prevalence of norovirus infections occurred in autumn followed by winter, spring, and summer. From 2011 to 2018, the most prevalent dual types (genotype and polymerase type) were GII.4 Sydney[P31] (51.6%, 239/463), followed by GII.3[P12] (24.0%, 111/463), GII.4 2006b[P4 2006b] (7.3%, 34/463), GII.2[P16] (5.0%, 23/463), GII.17[P17] (2.6%, 12/463) and GII.6[P7] (2.6%, 12/463). GII.4 2006b[P4 2006b] predominated in 2011 and 2012. GII.4 Sydney[P31] predominated from 2013 to 2018. In total, 15 genotypes, 15 P-types and 19 dual types were detected in this study, reflecting the genetic diversity. Conclusions There were significant epidemiological characteristics and genetic diversity among outpatient children with norovirus infections < 5 years of age in Beijing from 2011 to 2018. These characteristics differ from those of norovirus outbreaks in Beijing. The complete genome sequences of each genotype are needed to better understand norovirus evolutionary mechanisms.
Collapse
Affiliation(s)
- Weihong Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Hanqiu Yan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Baiwei Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yi Tian
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yanwei Chen
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Lei Jia
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China
| | - Zhiyong Gao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China.
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control and Beijing Research Center for Preventive Medicine, Beijing, China.
| |
Collapse
|
16
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
17
|
Xu Z, Liu Z, Chen J, Zou S, Jin Y, Zhang R, Sheng Y, Liao N, Hu B, Cheng D. Effect of Direct Viral-Bacterial Interactions on the Removal of Norovirus From Lettuce. Front Microbiol 2021; 12:731379. [PMID: 34557176 PMCID: PMC8453150 DOI: 10.3389/fmicb.2021.731379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Norovirus (NoV) is the main non-bacterial pathogen causing outbreaks of gastroenteritis and is considered to be the leading cause of foodborne illness. This study aims to determine whether lettuce-encapsulated bacteria can express histo-blood group antigen (HBGA)–like substances to bind to NoV and, if so, to explore its role in protecting NoV from disinfection practices. Fifteen bacterial strains (HBGA-SEBs) were isolated from the lettuce microbiome and studied as they were proved to have the ability to express HBGA-like substances through indirect ELISA detection. By using attachment assay, HBGA-SEBs showed great abilities in carrying NoVs regarding the evaluation of binding capacity, especially for the top four strains from genera Wautersiella, Sphingobacterium, and Brachybacterium, which could absorb more than 60% of free-flowing NoVs. Meanwhile, the direct viral–bacterial binding between HBGA-like substance-expressing bacteria (HBGA-SEB) and NoVs was observed by TEM. Subsequently, results of simulated environmental experiments showed that the binding of NoVs with HBGA-SEBs did have detrimental effects on NoV reduction, which were evident in short-time high-temperature treatment (90°C) and UV exposure. Finally, by considering the relative abundance of homologous microorganisms of HBGA-SEBs in the lettuce microbiome (ca. 36.49%) and the reduction of NoVs in the simulated environments, we suggested putting extra attention on the daily disinfection of foodborne-pathogen carriers to overcome the detrimental effects of direct viral–bacterial interactions on the reduction of NoVs.
Collapse
Affiliation(s)
- Zhangkai Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songyan Zou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ronghua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yaqi Sheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ningbo Liao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Duan L, Yang X, Xie J, Zhan W, Zhang C, Liu H, Wei M, Tang Y, Zhao H, Luo M. Prevalence of GII.4 Sydney Norovirus Strains and Associated Factors of Acute Gastroenteritis in Children: 2019/2020 Season in Guangzhou, China. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:357-367. [PMID: 34152535 PMCID: PMC8215640 DOI: 10.1007/s12560-021-09482-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/08/2021] [Indexed: 05/17/2023]
Abstract
Norovirus, the leading cause of non-bacterial acute gastroenteritis (AGE) worldwide, is constantly mutating. Continuous monitoring of the evolution of epidemic genotypes and emergence of novel genotypes is, therefore, necessary. This study determined the prevalence and clinical characteristics of norovirus strains in AGE in Guangzhou, China in 2019/2020 season. This study included children aged 2-60 months diagnosed with AGE in Guangzhou Women and Children Hospital, from August 2019 to January 2020. Norovirus was detected by real-time polymerase chain reaction and clinical data were obtained. Genotyping and phylogenetic analyses were performed with partial gene sequence fragments located within the open reading frames 1 and 2. During the study period, 168 children (61.3% males) were confirmed as norovirus infectious AGE. The main symptoms were diarrhoea and vomiting and 38 patients (22.6%) had seizures. Norovirus was mainly prevalent in October and November, and GII.4 Sydney[P31] was the major genotype circulating in Guangzhou. The phylogenetic tree showed that the Guangzhou strains had high homology with the strains circulating in 2017-2019 worldwide. GII.4 Sydney was the main prevalent norovirus genotype in Guangzhou from August 2019 to January 2020, which had more severe diarrhoea than those of other genotypes. These findings provide a valuable reference for the prevention, control, and treatment of norovirus in the future.
Collapse
Affiliation(s)
- Lei Duan
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
| | - Xiaohan Yang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Jia Xie
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
| | - Wenli Zhan
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Changbin Zhang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Hong Liu
- Department of Paediatrics, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Mengru Wei
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Yuan Tang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
| | - Hongyu Zhao
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Mingyong Luo
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China.
| |
Collapse
|
19
|
Misumi M, Nishiura H. Long-term dynamics of Norovirus transmission in Japan, 2005-2019. PeerJ 2021; 9:e11769. [PMID: 34306831 PMCID: PMC8280881 DOI: 10.7717/peerj.11769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
Norovirus continues to evolve, adjusting its pathogenesis and transmissibility. In the present study, we systematically collected datasets on Norovirus outbreaks in Japan from 2005 to 2019 and analyzed time-dependent changes in the asymptomatic ratio, the probability of virus detection, and the probability of infection given exposure. Reports of 1,728 outbreaks were published, and feces from all involved individuals, including those with asymptomatic infection, were tested for virus in 434 outbreaks. We found that the outbreak size did not markedly change over this period, but the variance in outbreak size increased during the winter (November–April). Assuming that natural history parameters did not vary over time, the asymptomatic ratio, the probability of virus detection, and the probability of infection given exposure were estimated to be 18.6%, 63.3% and 84.5%, respectively. However, a model with time-varying natural history parameters yielded better goodness-of-fit and suggested that the asymptomatic ratio varied by year. The asymptomatic ratio was as high as 25.8% for outbreaks caused by genotype GII.4 noroviruses. We conclude that Norovirus transmissibility has not changed markedly since 2005, and that yearly variation in the asymptomatic ratio could potentially be explained by the circulating dominant genotype.
Collapse
Affiliation(s)
- Megumi Misumi
- Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,Rumoi City Hospital, Rumoi, Hokkaido, Japan
| | - Hiroshi Nishiura
- Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.,School of Public Health, Kyoto University, Kyoto, Japan
| |
Collapse
|