1
|
Zheng G, Tao D, Ren N. Hydrogen-producing conditions and mutation mechanisms of a highly efficient mutant strain Ethanoligenens harbinense YR-3. J Biosci Bioeng 2024; 138:399-405. [PMID: 39174378 DOI: 10.1016/j.jbiosc.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 08/24/2024]
Abstract
In this study, the optimal hydrogen (H2) production conditions of the high-efficiency H2-producing mutant strain Ethanoligenens harbinense YR-3 (carbon-nitrogen ratio 5.5, phosphate buffer 80 mM, initial pH 6.0, biotin 1.4 mg/L) are obtained by intermittent experiments. The maximum specific H2 production rate of YR-3 (2.85 mol H2/mol glucose) was 1.4 times that of the wild strain ZGX4 (2.04 mol H2/mol glucose). The liquid-phase products are mainly ethanol and acetic acid, indicating that the metabolic pathway has not changed. Two-dimensional electrophoresis and mass spectrometry were used to compare and analyze the protein map differences between YR-3 and ZGX4. The results show that 1,6-fructose diphosphate aldolase and the flavoprotein in hydrogenase are highly expressed. This study will provide a theoretical basis for the genetic modification of high-efficiency H2-producing strains and the improvement of H2 production capacity.
Collapse
Affiliation(s)
- Guoxiang Zheng
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; School of Environment, Harbin Institute of Technology, Harbin 150001, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China
| | - Dongxu Tao
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China
| | - Nanqi Ren
- School of Environment, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
2
|
Soder-Walz JM, Deobald D, Vicent T, Marco-Urrea E, Adrian L. MecE, MecB, and MecC proteins orchestrate methyl group transfer during dichloromethane fermentation. Appl Environ Microbiol 2024; 90:e0097824. [PMID: 39320083 PMCID: PMC11497818 DOI: 10.1128/aem.00978-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Dichloromethane (DCM), a common hazardous industrial chemical, is anaerobically metabolized by four bacterial genera: Dehalobacter, Dehalobacterium, Ca. Dichloromethanomonas, and Ca. Formimonas. However, the pivotal methyltransferases responsible for DCM transformation have remained elusive. In this study, we investigated the DCM catabolism of Dehalobacterium formicoaceticum strain EZ94, contained in an enriched culture, using a combination of biochemical approaches. Initially, enzymatic assays were conducted with cell-free protein extracts, after protein separation by blue native polyacrylamide gel electrophoresis. In the slices with the highest DCM transformation activity, a high absolute abundance of the methyltransferase MecC was revealed by mass spectrometry. Enzymatic activity assays with heterologously expressed MecB, MecC, and MecE from strain EZ94 showed complete DCM transformation only when all three enzymes were present. Our experimental results, coupled with the computational analysis of MecB, MecC, and MecE sequences, enabled us to assign specific roles in DCM transformation to each of the proteins. Our findings reveal that both MecE and MecC are zinc-dependent methyltransferases responsible for DCM demethylation and re-methylation of a product, respectively. MecB functions as a cobalamin-dependent shuttle protein transferring the methyl group between MecE and MecC. This study provides the first biochemical evidence of the enzymes involved in the anaerobic metabolism of DCM.IMPORTANCEDichloromethane (DCM) is a priority regulated pollutant frequently detected in groundwater. In this work, we identify the proteins responsible for the transformation of DCM fermentation in Dehalobacterium formicoaceticum strain EZ94 using a combination of biochemical approaches, heterologous expression of proteins, and computational analysis. These findings provide the basis to apply these proteins as biological markers to monitor bioremediation processes in the field.
Collapse
Affiliation(s)
- Jesica M. Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Darja Deobald
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Liu C, Chen X, Wang S, Luo Y, Du W, Yin Y, Guo H. A field study of a novel permeable-reactive-biobarrier to remediate chlorinated hydrocarbons contaminated groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124042. [PMID: 38679128 DOI: 10.1016/j.envpol.2024.124042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Chlorinated hydrocarbons (CHs) pose significant health risks due to their suspected carcinogenicity, necessitating urgent remediation efforts. While the combination of zero-valent iron (Fe0) and microbial action shows promise in mitigating CH contamination, field studies on this approach are scarce. We devised a novel three-layer permeable reactive barrier (PRB) material incorporating Fe0 and coconut shell biochar, effectively implemented at a typical CH-contaminated site. Field monitoring data revealed conducive conditions for reductive dechlorination of CHs, characterized by low oxygen levels and a relatively neutral pH in the groundwater. The engineered PRB material consistently released organic carbon and iron, fostering the proliferation of CH-dechlorinating bacteria. Over a 250-day operational period, the pilot-scale PRB demonstrated remarkable efficacy in CH removal, achieving removal efficiencies ranging from 21.9% to 99.6% for various CH compounds. Initially, CHs were predominantly eliminated through adsorption and iron-mediated reductive dechlorination. However, microbial reductive dechlorination emerged as the predominant mechanism for sustained and long-term CHs removal. These findings underscore the economic viability and effectiveness of our approach in treating CH-contaminated groundwater, offering promising prospects for broader application in environmental remediation efforts.
Collapse
Affiliation(s)
- Cuicui Liu
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Xiaohui Chen
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Shui Wang
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Wenchao Du
- School of the Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Liang Y, Ma A. Investigating the degradation potential of microbial consortia for perfluorooctane sulfonate through a functional "top-down" screening approach. PLoS One 2024; 19:e0303904. [PMID: 38758752 PMCID: PMC11101035 DOI: 10.1371/journal.pone.0303904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024] Open
Abstract
Perfluorooctane sulfonate (PFOS) is a prominent perfluorinated compound commonly found in the environment, known to pose various risks to human health. However, the removal of PFOS presents significant challenges, primarily due to the limited discovery of bacteria capable of effectively degrading PFOS. Moreover, single degradation bacteria often encounter obstacles in individual cultivation and the breakdown of complex pollutants. In contrast, microbial consortia have shown promise in pollutant degradation. This study employed a continuous enrichment method, combined with multiple co-metabolic substrates, to investigate a microbial consortium with the potential for PFOS degradation. By employing this methodology, we effectively identified a microbial consortium that demonstrated the capacity to reduce PFOS when exposed to an optimal concentration of methanol. The consortium predominantly comprised of Hyphomicrobium species (46.7%) along with unclassified microorganisms (53.0%). Over a duration of 20 days, the PFOS concentration exhibited a notable decrease of 56.7% in comparison to the initial level, while considering the exclusion of adsorption effects. Furthermore, by comparing the predicted metabolic pathways of the microbial consortium with the genome of a known chloromethane-degrading bacterium, Hyphomicrobium sp. MC1, using the KEGG database, we observed distinct variations in the metabolic pathways, suggesting the potential role of the unclassified microorganisms. These findings underscore the potential effectiveness of a "top-down" functional microbial screening approach in the degradation of stubborn pollutants.
Collapse
Affiliation(s)
- Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Yousaf T, Saleem F, Andleeb S, Ali M, Farhan Ul Haque M. Methylotrophic bacteria from rice paddy soils: mineral-nitrogen-utilizing isolates richness in bulk soil and rhizosphere. World J Microbiol Biotechnol 2024; 40:188. [PMID: 38702590 DOI: 10.1007/s11274-024-04000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Methanol, the second most abundant volatile organic compound, primarily released from plants, is a major culprit disturbing atmospheric chemistry. Interestingly, ubiquitously found methanol-utilizing bacteria, play a vital role in mitigating atmospheric methanol effects. Despite being extensively characterized, the effect of nitrogen sources on the richness of methanol-utilizers in the bulk soil and rhizosphere is largely unknown. Therefore, the current study was planned to isolate, characterize and explore the richness of cultivable methylotrophs from the bulk soil and rhizosphere of a paddy field using media with varying nitrogen sources. Our data revealed that more genera of methylotrophs, including Methylobacterium, Ancylobacter, Achromobacter, Xanthobacter, Moraxella, and Klebsiella were enriched with the nitrate-based medium compared to only two genera, Hyphomicrobium and Methylobacterium, enriched with the ammonium-based medium. The richness of methylotrophic bacteria also differed substantially in the bulk soil as compared to the rhizosphere. Growth characterization revealed that majority of the newly isolated methanol-utilizing strains in this study exhibited better growth at 37 °C instead of 30 or 45 °C. Moreover, Hyphomicrobium sp. FSA2 was the only strain capable of utilizing methanol even at elevated temperature 45 °C, showing its adaptability to a wide range of temperatures. Differential carbon substrate utilization profiling revealed the facultative nature of all isolated methanol-utilizer strains with Xanthobacter sp. TS3, being an important methanol-utilizer capable of degrading toxic compounds such as acetone and ethylene glycol. Overall, our study suggests the role of nutrients and plant-microbial interaction in shaping the composition of methanol-utilizers in terrestrial environment.
Collapse
Affiliation(s)
- Tabassum Yousaf
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Fatima Saleem
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sahar Andleeb
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Ali
- Faculty of Agriculture Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | | |
Collapse
|
6
|
Wu M, Zhao D, Gu B, Wang Z, Hu J, Yu Z, Yu J. Efficient degradation of aqueous dichloromethane by an enhanced microbial electrolysis cell: Degradation kinetics, microbial community and metabolic mechanisms. J Environ Sci (China) 2024; 139:150-159. [PMID: 38105043 DOI: 10.1016/j.jes.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 12/19/2023]
Abstract
Dichloromethane (DCM) has been listed as a toxic and harmful water pollutant, and its removal needs attention. Microbial electrolysis cells (MECs) are viewed as a promising alternative for pollutant removal, which can be strengthened from two aspects: microbial inoculation and acclimation. In this study, the MEC for DCM degradation was inoculated with the active sludge enhanced by Methylobacterium rhodesianum H13 (strain H13) and then acclimated in the form of a microbial fuel cell (MFC). Both the introduction of strain H13 and the initiation in MFC form significantly promoted DCM degradation. The degradation kinetics were fitted by the Haldane model, with Vmax, Kh, Ki and vmax values of 103.2 mg/L/hr, 97.8 mg/L, 268.3 mg/L and 44.7 mg/L/hr/cm2, respectively. The cyclic voltammogram implies that DCM redox reactions became easier with the setup of MEC, and the electrochemical impedance spectrogram shows that the acclimated and enriched microbes reduced the charge transfer resistance from the electrode to the electrolyte. In the biofilm, the dominant genera shifted from Geobacter to Hyphomicrobium in acclimation stages. Moreover, Methylobacterium played an increasingly important role. DCM metabolism mainly occurred through the hydrolytic glutathione S-transferase pathway, given that the gene dcmA was identified rather than the dhlA and P450/MO. The exogenous electrons facilitated the reduction of GSSG, directly or indirectly accelerating the GSH-catalyzed dehalogenation. This study provides support for the construction of an efficient and stable MEC for DCM removal in water environment.
Collapse
Affiliation(s)
- Meng Wu
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Di Zhao
- Shentuo Environment (Hangzhou) Co. Ltd., Hangzhou 311121, China
| | - Bing Gu
- Zhejiang Tianyi Environmental Co. Ltd., Hangzhou 310000, China
| | - Ziru Wang
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Hu
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhiliang Yu
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianming Yu
- College of Environment, College of Biotechnology and Bioengineering, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Miyoshi SI, Amako K, Muraoka M, Morinaga H, Ueba S. Mobile genetic elements associated with utilization of dichloromethane and methanol as energy sources in Cupriavidus metallidurans. JOURNAL OF MICROORGANISM CONTROL 2024; 29:55-65. [PMID: 38880617 DOI: 10.4265/jmc.29.2_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cupriavidus metallidurans strain PD11 isolated from laboratory waste drainage can use C1 compounds, such as dichloromethane (DCM) and methanol, as a sole carbon and energy source. However, strain CH34 (a type-strain) cannot grow in the medium supplemented with DCM. In the present study, we aimed to unravel the genetic elements underlying the utilization of C1 compounds by strain PD11. The genome subtraction approach indicated that only strain PD11 had several genes highly homologous to those of Herminiimonas arsenicoxydans strain ULPAs1. Moreover, a series of polymerase chain reaction (PCR) to detect the orthologs of H. arsenicoxydans genes and the comparative study of the genomes of three strains revealed that the 87.9 kb DNA fragment corresponding to HEAR1959 to HEAR2054 might be horizontally transferred to strain PD11. The 87.9 kb DNA fragment identified was found to contain three genes whose products were putatively involved in the metabolism of formaldehyde, a common intermediate of DCM and methanol. In addition, reverse transcription PCR analysis showed that all three genes were significantly expressed when strain PD11 was cultivated in the presence of DCM or methanol. These findings suggest that strain PD11 can effectively utilize the C1 compounds because of transfer of the mobile genetic elements from other bacterial species, for instance, from H. arsenicoxydans.
Collapse
Affiliation(s)
- Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Keita Amako
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Mika Muraoka
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Hiroko Morinaga
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Saaya Ueba
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
8
|
Li X, Lu C, Dai Y, Yu Z, Gu W, Li T, Li X, Li X, Wang X, Su Z, Xu M, Zhang H. Characterizing the Microbial Consortium L1 Capable of Efficiently Degrading Chlorimuron-Ethyl via Metagenome Combining 16S rDNA Sequencing. Front Microbiol 2022; 13:912312. [PMID: 35814706 PMCID: PMC9260513 DOI: 10.3389/fmicb.2022.912312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive application of the herbicide chlorimuron-ethyl (CE) severely harms subsequent crops and poses severe risks to environmental health. Therefore, methods for efficiently decreasing and eliminating CE residues are urgently needed. Microbial consortia show potential for bioremediation due to their strong metabolic complementarity and synthesis. In this study, a microbial consortium entitled L1 was enriched from soil contaminated with CE by a “top-down” synthetic biology strategy. The consortium could degrade 98.04% of 100 mg L−1 CE within 6 days. We characterized it from the samples at four time points during the degradation process and a sample without degradation activity via metagenome and 16S rDNA sequencing. The results revealed 39 genera in consortium L1, among which Methyloversatilis (34.31%), Starkeya (28.60%), and Pseudoxanthomonas (7.01%) showed relatively high abundances. Temporal succession and the loss of degradability did not alter the diversity and community composition of L1 but changed the community structure. Taxon-functional contribution analysis predicted that glutathione transferase [EC 2.5.1.18], urease [EC 3.5.1.5], and allophanate hydrolase [EC 3.5.1.54] are relevant for the degradation of CE and that Methyloversatilis, Pseudoxanthomonas, Methylopila, Hyphomicrobium, Stenotrophomonas, and Sphingomonas were the main degrading genera. The degradation pathway of CE by L1 may involve cleavage of the CE carbamide bridge to produce 2-amino-4-chloro-6-methoxypyrimidine and ethyl o-sulfonamide benzoate. The results of network analysis indicated close interactions, cross-feeding, and co-metabolic relationships between strains in the consortium, and most of the above six degrading genera were keystone taxa in the network. Additionally, the degradation of CE by L1 required not only “functional bacteria” with degradation capacity but also “auxiliary bacteria” without degradation capacity but that indirectly facilitate/inhibit the degradation process; however, the abundance of “auxiliary bacteria” should be controlled in an appropriate range. These findings improve the understanding of the synergistic effects of degrading bacterial consortia, which will provide insight for isolating degrading bacterial resources and constructing artificial efficient bacterial consortia. Furthermore, our results provide a new route for pollution control and biodegradation of sulfonylurea herbicides.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changming Lu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong Yu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wu Gu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- Shenyang Research Institute of Chemical Industry, Shenyang, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiujuan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhencheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Mingkai Xu
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- *Correspondence: Huiwen Zhang
| |
Collapse
|
9
|
Murdoch RW, Chen G, Kara Murdoch F, Mack EE, Villalobos Solis MI, Hettich RL, Löffler FE. Identification and widespread environmental distribution of a gene cassette implicated in anaerobic dichloromethane degradation. GLOBAL CHANGE BIOLOGY 2022; 28:2396-2412. [PMID: 34967079 DOI: 10.1111/gcb.16068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities and natural processes release dichloromethane (DCM, methylene chloride), a toxic chemical with substantial ozone-depleting capacity. Specialized anaerobic bacteria metabolize DCM; however, the genetic basis for this process has remained elusive. Comparative genomics of the three known anaerobic DCM-degrading bacterial species revealed a homologous gene cluster, designated the methylene chloride catabolism (mec) gene cassette, comprising 8-10 genes encoding proteins with 79.6%-99.7% amino acid identities. Functional annotation identified genes encoding a corrinoid-dependent methyltransferase system, and shotgun proteomics applied to two DCM-catabolizing cultures revealed high expression of proteins encoded on the mec gene cluster during anaerobic growth with DCM. In a DCM-contaminated groundwater plume, the abundance of mec genes strongly correlated with DCM concentrations (R2 = 0.71-0.85) indicating their potential value as process-specific bioremediation biomarkers. mec gene clusters were identified in metagenomes representing peat bogs, the deep subsurface, and marine ecosystems including oxygen minimum zones (OMZs), suggesting a capacity for DCM degradation in diverse habitats. The broad distribution of anaerobic DCM catabolic potential infers a role for DCM as an energy source in various environmental systems, and implies that the global DCM flux (i.e., the rate of formation minus the rate of consumption) might be greater than emission measurements suggest.
Collapse
Affiliation(s)
- Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Fadime Kara Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - E Erin Mack
- Corteva Environmental Remediation, Corteva Agriscience, Wilmington, Delaware, USA
| | | | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
10
|
Boada E, Santos-Clotas E, Cabrera-Codony A, Martín MJ, Bañeras L, Gich F. The core microbiome is responsible for volatile silicon and organic compounds degradation during anoxic lab scale biotrickling filter performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149162. [PMID: 34333428 DOI: 10.1016/j.scitotenv.2021.149162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Volatile silicon compounds present in the biogas of anaerobic digesters can cause severe problems in the energy recovery systems, inducing costly damages. Herein, the microbial community of a lab-scale biotrickling filter (BTF) was studied while testing its biodegradation capacity on octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5), in the presence of toluene, limonene and hexane. The reactor performance was tested at different empty bed residence times (EBRT) and packing materials. Community structure was analysed by bar-coded amplicon sequencing of the 16S rRNA gene. Microbial diversity and richness were higher in the inoculum and progressively decreased during BTF operation (Simpson's diversity index changing from 0.98-0.90 and Richness from 900 to 200 OTUs). Minimum diversity was found when reactor was operated at relatively low EBRT (7.3 min) using a multicomponent feed. The core community was composed of 36 OTUs (accounting for 55% of total sequences). Packing material played a key role in the community structure. Betaproteobacteriales were dominant in the presence of lava rock and were partially substituted by Corynebacteriales and Rhizobiales when activated carbon was added to the BTF. Despite these changes, a stable and resilient core microbiome was selected defining a set of potentially degrading bacteria for siloxane bioremoval as a complementary alternative to non-regenerative adsorption onto activated carbon.
Collapse
Affiliation(s)
- Ellana Boada
- Molecular Microbial Ecology Group (gEMM), Institute of Aquatic Ecology, Faculty of Sciences, University of Girona, 17003 Girona, Spain.
| | - Eric Santos-Clotas
- LEQUIA, Institute of the Environment, University of Girona, 17003 Girona, Spain.
| | - Alba Cabrera-Codony
- LEQUIA, Institute of the Environment, University of Girona, 17003 Girona, Spain.
| | - Maria J Martín
- LEQUIA, Institute of the Environment, University of Girona, 17003 Girona, Spain.
| | - Lluís Bañeras
- Molecular Microbial Ecology Group (gEMM), Institute of Aquatic Ecology, Faculty of Sciences, University of Girona, 17003 Girona, Spain.
| | - Frederic Gich
- Molecular Microbial Ecology Group (gEMM), Institute of Aquatic Ecology, Faculty of Sciences, University of Girona, 17003 Girona, Spain.
| |
Collapse
|