1
|
García-Martín J, García-Abad L, Santamaría RI, Díaz M. Functional connexion of bacterioferritin in antibiotic production and morphological differentiation in Streptomyces coelicolor. Microb Cell Fact 2024; 23:234. [PMID: 39182107 PMCID: PMC11344345 DOI: 10.1186/s12934-024-02510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Several two-component systems of Streptomyces coelicolor, a model organism used for studying antibiotic production in Streptomyces, affect the expression of the bfr (SCO2113) gene that encodes a bacterioferritin, a protein involved in iron storage. In this work, we have studied the effect of the deletion mutant ∆bfr in S. coelicolor. RESULTS The ∆bfr mutant exhibits a delay in morphological differentiation and produces a lesser amount of the two pigmented antibiotics (actinorhodin and undecylprodigiosin) compared to the wild type on complex media. The effect of iron in minimal medium was tested in the wild type and ∆bfr mutant. Consequently, we also observed different levels of production of the two pigmented antibiotics between the two strains, depending on the iron concentration and the medium (solid or liquid) used. Contrary to expectations, no differences in intracellular iron concentration were detected between the wild type and ∆bfr mutant. However, a higher level of reactive oxygen species in the ∆bfr mutant and a higher tolerance to oxidative stress were observed. Proteomic analysis showed no variation in iron response proteins, but there was a lower abundance of proteins related to actinorhodin and ribosomal proteins, as well as others related to secondary metabolite production and differentiation. Additionally, a higher abundance of proteins related to various types of stress, such as respiration and hypoxia among others, was also revealed. Data are available via ProteomeXchange with identifier PXD050869. CONCLUSION This bacterioferritin in S. coelicolor (Bfr) is a new element in the complex regulation of secondary metabolism in S. coelicolor and, additionally, iron acts as a signal to modulate the biosynthesis of active molecules. Our model proposes an interaction between Bfr and iron-containing regulatory proteins. Thus, identifying these interactions would provide new information for improving antibiotic production in Streptomyces.
Collapse
Affiliation(s)
- Javier García-Martín
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain
| | - Laura García-Abad
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain
| | - Ramón I Santamaría
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain.
| | - Margarita Díaz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain.
| |
Collapse
|
2
|
Wang C, Deng W, Huang Z, Li C, Wei R, Zhu Y, Wu K, Li C, Deng L, Wei M, Chen X, Li D. Nutrient Utilization and Gut Microbiota Composition in Giant Pandas of Different Age Groups. Animals (Basel) 2024; 14:2324. [PMID: 39199858 PMCID: PMC11350801 DOI: 10.3390/ani14162324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Proper feeding and nutrition are vital for maintaining the health of giant pandas (GPs), yet the impact of dietary changes and gut microbiota on their nutrient utilization remains unclear. To address these uncertainties, we investigated nutrient intake and apparent digestibility, as well as gut microbiota composition across different age groups of giant pandas: sub-adults (SGPs), adults (AGPs), and geriatrics (GGPs). Our findings revealed notable shifts in dietary patterns from SGPs to GGPs. As they aged, significantly more bamboo shoots and less bamboo were consumed. Consequently, GGPs showed significantly reduced crude fiber (CF) intake and digestibility, while crude protein (CP) did not alter significantly. In addition, 16S rRNA microbial sequencing results showed that unidentified_Enterobacteriaceae and Streptococcus were the dominant genera among all age groups. The relative abundance of the genus Enterococcus in GGPs was significantly higher than that in SGPs and AGPs (p < 0.05). Overall, our results indicated the importance of bamboo shoots as a major source of protein in GGPs' diet, which can effectively compensate for the certain nutritional loss caused by the reduction in bamboo intake. Age-related changes in bacterial abundance have an effect on specific nutrient apparent digestibility in the gut of GPs. The data presented in this study serve as a useful reference for nutritional management in different ages of GPs under healthy conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Desheng Li
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on the Giant Panda, Chengdu 610051, China (Z.H.)
| |
Collapse
|
3
|
Chavarría-Pizarro L, Núñez-Montero K, Gutiérrez-Araya M, Watson-Guido W, Rivera-Méndez W, Pizarro-Cerdá J. Novel strains of Actinobacteria associated with neotropical social wasps (Vespidae; Polistinae, Epiponini) with antimicrobial potential for natural product discovery. FEMS MICROBES 2024; 5:xtae005. [PMID: 38476864 PMCID: PMC10929769 DOI: 10.1093/femsmc/xtae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Antimicrobial resistance has been considered a public health threat. The World Health Organization has warned about the urgency of detecting new antibiotics from novel sources. Social insects could be crucial in the search for new antibiotic metabolites, as some of them survive in places that favor parasite development. Recent studies have shown the potential of social insects to produce antimicrobial metabolites (e.g. ants, bees, and termites). However, most groups of social wasps remain unstudied. Here, we explored whether Actinobacteria are associated with workers in the Neotropical Social Wasps (Epiponini) of Costa Rica and evaluated their putative inhibitory activity against other bacteria. Most isolated strains (67%) have antagonistic effects, mainly against Bacillus thuringensis and Escherichia coli ATCC 25992. Based on genome analysis, some inhibitory Actinobacteria showed biosynthetic gene clusters (BGCs) related to the production of antimicrobial molecules such as Selvamycin, Piericidin A1, and Nystatin. The Actinobacteria could be associated with social wasps to produce antimicrobial compounds. For these reasons, we speculate that Actinobacteria associated with social wasps could be a novel source of antimicrobial compounds, mainly against Gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Chavarría-Pizarro
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - Kattia Núñez-Montero
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Alemania 1090, 4810101 Temuco, Chile
| | - Mariela Gutiérrez-Araya
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - William Watson-Guido
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - William Rivera-Méndez
- Instituto Tecnológico de Costa Rica, Escuela de Biología-Centro de Investigación en Biotecnología, Calle 15, Avenida 14, 159-7050 Cartago, Costa Rica
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit - Institut Pasteur 28, rue du Docteur Roux - 75724 Paris Cedex 15, France
| |
Collapse
|
4
|
Matsuda K, Niikura S, Ichihara R, Fujita K, Strasser AM, Yoshikawa R, Yasuda J, Hiramatsu Y, Hayashi H, Kodama EN, Wakimoto T. Synthesis and Cytotoxicity of Cyclic Octapeptide Surugamides with Varied N-Acyl Moieties. Chem Pharm Bull (Tokyo) 2024; 72:826-830. [PMID: 39313387 DOI: 10.1248/cpb.c24-00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Surugamides are a group of non-ribosomal peptides produced by Streptomyces spp. Several derivatives possess acyl groups, which are proposed to be attached to a lysine side chain after backbone-macrocyclization during biosynthesis. To date, five different acyl groups have been identified in nature, yet their impacts on biological activity remain underexplored. Here we synthesized surugamide B derivatives with varied acyl moieties. Biological evaluations revealed that larger hydrophobic acyl groups on lysine ε-NH2 enhance cytotoxicity.
Collapse
Affiliation(s)
| | | | | | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | - Rokusuke Yoshikawa
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University
- Graduate School of Biomedical Sciences and Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University
| | | | - Hironori Hayashi
- Graduate School of Medicine, Tohoku University
- International Research Institute of Disaster Science, Tohoku University
| | - Eiichi N Kodama
- Graduate School of Medicine, Tohoku University
- International Research Institute of Disaster Science, Tohoku University
- Tohoku Medical Megabank Organization, Tohoku University
| | | |
Collapse
|
5
|
Santamaría RI, Martínez-Carrasco A, Tormo JR, Martín J, Genilloud O, Reyes F, Díaz M. Interactions of Different Streptomyces Species and Myxococcus xanthus Affect Myxococcus Development and Induce the Production of DK-Xanthenes. Int J Mol Sci 2023; 24:15659. [PMID: 37958645 PMCID: PMC10649082 DOI: 10.3390/ijms242115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The co-culturing of microorganisms is a well-known strategy to study microbial interactions in the laboratory. This approach facilitates the identification of new signals and molecules produced by one species that affects other species' behavior. In this work, we have studied the effects of the interaction of nine Streptomyces species (S. albidoflavus, S. ambofaciens, S. argillaceus, S. griseus, S. lividans, S. olivaceus, S. parvulus, S. peucetius, and S. rochei) with the predator bacteria Myxococcus xanthus, five of which (S. albidoflavus, S. griseus, S. lividans, S. olivaceus, and S. argillaceus) induce mound formation of M. xanthus on complex media (Casitone Yeast extract (CYE) and Casitone tris (CTT); media on which M. xanthus does not form these aggregates under normal culture conditions. An in-depth study on S. griseus-M. xanthus interactions (the Streptomyces strain producing the strongest effect) has allowed the identification of two siderophores produced by S. griseus, demethylenenocardamine and nocardamine, responsible for this grouping effect over M. xanthus. Experiments using pure commercial nocardamine and different concentrations of FeSO4 show that iron depletion is responsible for the behavior of M. xanthus. Additionally, it was found that molecules, smaller than 3 kDa, produced by S. peucetius can induce the production of DK-xanthenes by M. xanthus.
Collapse
Affiliation(s)
- Ramón I. Santamaría
- Instituto de Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González, nº 2, 37007 Salamanca, Spain;
| | - Ana Martínez-Carrasco
- Instituto de Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González, nº 2, 37007 Salamanca, Spain;
| | - José R. Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (J.R.T.); (J.M.); (O.G.); (F.R.)
| | - Margarita Díaz
- Instituto de Biología Funcional y Genómica (IBFG), Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González, nº 2, 37007 Salamanca, Spain;
| |
Collapse
|
6
|
Sánchez de la Nieta R, Santamaría RI, Díaz M. Two-Component Systems of Streptomyces coelicolor: An Intricate Network to Be Unraveled. Int J Mol Sci 2022; 23:ijms232315085. [PMID: 36499414 PMCID: PMC9739842 DOI: 10.3390/ijms232315085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria of the Streptomyces genus constitute an authentic biotech gold mine thanks to their ability to produce a myriad of compounds and enzymes of great interest at various clinical, agricultural, and industrial levels. Understanding the physiology of these organisms and revealing their regulatory mechanisms is essential for their manipulation and application. Two-component systems (TCSs) constitute the predominant signal transduction mechanism in prokaryotes, and can detect a multitude of external and internal stimuli and trigger the appropriate cellular responses for adapting to diverse environmental conditions. These global regulatory systems usually coordinate various biological processes for the maintenance of homeostasis and proper cell function. Here, we review the multiple TCSs described and characterized in Streptomyces coelicolor, one of the most studied and important model species within this bacterial group. TCSs are involved in all cellular processes; hence, unravelling the complex regulatory network they form is essential for their potential biotechnological application.
Collapse
|
7
|
Baranova AA, Zakalyukina YV, Ovcharenko AA, Korshun VA, Tyurin AP. Antibiotics from Insect-Associated Actinobacteria. BIOLOGY 2022; 11:1676. [PMID: 36421390 PMCID: PMC9687666 DOI: 10.3390/biology11111676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/10/2023]
Abstract
Actinobacteria are involved into multilateral relationships between insects, their food sources, infectious agents, etc. Antibiotics and related natural products play an essential role in such systems. The literature from the January 2016-August 2022 period devoted to insect-associated actinomycetes with antagonistic and/or enzyme-inhibiting activity was selected. Recent progress in multidisciplinary studies of insect-actinobacterial interactions mediated by antibiotics is summarized and discussed.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Yuliya V. Zakalyukina
- Department of Soil Science, Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia
| | - Anna A. Ovcharenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Higher Chemical College RAS, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
8
|
Suriyachadkun C, Ngaemthao W, Pujchakarn T, Chamroensaksri N, Niemhom N, Chunhametha S. Glycomyces amatae sp. nov., isolated from a yellow-ringed grass moth (Amata sperbius). Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel mycelium-forming actinomycete strain, designated A-F 0318T, was isolated from a yellow-ringed grass moth (Amata sperbius) collected from Phitsanulok Province, Thailand. Long chains of non-motile cylindrical spores with a smooth surface developed on aerial mycelia. The polyphasic taxonomic study suggested that strain A-F 0318T belonged to the genus
Glycomyces
. The 16S rRNA gene sequence analysis indicated that strain A-F 0318T was closely related to
Glycomyces harbinensis
LL-DO5139T with 97.94 % sequence similarity. The average nucleotide identity (ANI) based on blast, ANI based on the MUMmer algorithm and average amino acid identity values of strain A-F 0318T with
G. harbinensis
LL-DO5139T were 86.9, 89.1 and 84.24 %, respectively. The digital DNA–DNA hybridization value between A-F 0318T and its closest relative,
G. harbinensis
LL-DO5139T was 33.8 %. The digital G+C content of the genomic DNA was 71.7 mol%. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The whole-cell sugars contained ribose, xylose, glucose and galactose. The predominant menaquinone was MK-10(H4). The predominant fatty acids were iso-C16 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 1 G. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, two unknown phosphoglycolipids and one unknown phospholipid. Based on comparative analysis of genotypic, phenotypic and chemotaxonomic data, the novel actinomycete strain A-F 0318T (=TBRC 13612T=NBRC 115417T) represents the type strain of a novel species, for which the name Glycomyces amatae sp. nov. is proposed.
Collapse
Affiliation(s)
- Chanwit Suriyachadkun
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wipaporn Ngaemthao
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Tawanmol Pujchakarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Nitcha Chamroensaksri
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani 12120, Thailand
| | - Nantawan Niemhom
- Microbiological and Molecular Biological Laboratory, Scientific Instruments Center, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Suwanee Chunhametha
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
9
|
Hansen KA, Kim RR, Lawton ES, Tran J, Lewis SK, Deol AS, Van Arnam EB. Bacterial Associates of a Desert Specialist Fungus-Growing Ant Antagonize Competitors with a Nocamycin Analog. ACS Chem Biol 2022; 17:1824-1830. [PMID: 35730734 DOI: 10.1021/acschembio.2c00187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fungus-growing ants are defended by antibiotic-producing bacterial symbionts in the genus Pseudonocardia. Nutrients provisioned by the ants support these symbionts but also invite colonization and competition from other bacteria. As an arena for chemically mediated bacterial competition, this niche offers a window into ecological antibiotic function with well-defined competing organisms. From multiple colonies of the desert specialist ant Trachymyrmex smithi, we isolated Amycolatopsis bacteria that inhibit the growth of Pseudonocardia symbionts under laboratory conditions. Using bioassay-guided fractionation, we discovered a novel analog of the antibiotic nocamycin that is responsible for this antagonism. We identified the biosynthetic gene cluster for this antibiotic, which has a suite of oxidative enzymes consistent with this molecule's more extensive oxidative tailoring relative to similar tetramic acid antibiotics. High genetic similarity to globally distributed soil Amycolatopsis isolates suggest that this ant-derived Amycolatopsis strain may be an opportunistic soil strain whose antibiotic production allows for competition in this specialized niche. This nocamycin analog adds to the catalog of novel bioactive molecules isolated from bacterial associates of fungus-growing ants, and its activity against ant symbionts represents, to our knowledge, the first putative ecological function for the widely distributed enoyl tetramic acid family of antibiotics.
Collapse
Affiliation(s)
- Katherine A Hansen
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Rose R Kim
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Elisabeth S Lawton
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Janet Tran
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Stephanie K Lewis
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Arjan S Deol
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Ethan B Van Arnam
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| |
Collapse
|
10
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Santos-Beneit F, Ceniceros A, Nikolaou A, Salas JA, Gutierrez-Merino J. Identification of Antimicrobial Compounds in Two Streptomyces sp. Strains Isolated From Beehives. Front Microbiol 2022; 13:742168. [PMID: 35185841 PMCID: PMC8851239 DOI: 10.3389/fmicb.2022.742168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
The World Health Organization warns that the alarming increase in antibiotic resistant bacteria will lead to 2.7 million deaths annually due to the lack of effective antibiotic therapies. Clearly, there is an urgent need for short-term alternatives that help to alleviate these alarming figures. In this respect, the scientific community is exploring neglected ecological niches from which the prototypical antibiotic-producing bacteria Streptomycetes are expected to be present. Recent studies have reported that honeybees and their products carry Streptomyces species that possess strong antibacterial activity. In this study, we have investigated the antibiotic profile of two Streptomycetes strains that were isolated from beehives. One of the isolates is the strain Streptomyces albus AN1, which derives from pollen, and shows potent antimicrobial activity against Candida albicans. The other isolate is the strain Streptomyces griseoaurantiacus AD2, which was isolated from honey, and displays a broad range of antimicrobial activity against different Gram-positive bacteria, including pathogens such as Staphylococcus aureus and Enterococus faecalis. Cultures of S. griseoaurantiacus AD2 have the capacity to produce the antibacterial compounds undecylprodigiosin and manumycin, while those of S. albus AN1 accumulate antifungal compounds such as candicidins and antimycins. Furthermore, genome and dereplication analyses suggest that the number of putative bioactive metabolites produced by AD2 and AN1 is considerably high, including compounds with anti-microbial and anti-cancer properties. Our results postulate that beehives are a promising source for the discovery of novel bioactive compounds that might be of interest to the agri-food sector and healthcare pharmaceuticals.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid, Spain
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Ceniceros
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Athanasios Nikolaou
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - José A. Salas
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | |
Collapse
|
12
|
Cole ME, Ceja-Navarro JA, Mikaelyan A. The power of poop: Defecation behaviors and social hygiene in insects. PLoS Pathog 2021; 17:e1009964. [PMID: 34710195 PMCID: PMC8553070 DOI: 10.1371/journal.ppat.1009964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marissa E. Cole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Javier A. Ceja-Navarro
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Bioengineering and Biomedical Sciences Department, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California, United States of America
| | - Aram Mikaelyan
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Isolation, Characterization, and Efficacy of Actinobacteria Associated with Arbuscular Mycorrhizal Spores in Promoting Plant Growth of Chili ( Capsicum flutescens L.). Microorganisms 2021; 9:microorganisms9061274. [PMID: 34207987 PMCID: PMC8230694 DOI: 10.3390/microorganisms9061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
Nowadays, microorganisms that display plant growth promoting properties are significantly interesting for their potential role in reducing the use of chemical fertilizers. This research study proposed the isolation of the actinobacteria associated with arbuscular mycorrhizal fungi (AMF) spores and the investigation of their plant growth promoting properties in the in vitro assay. Three actinobacterial strains were obtained and identified to the genus Streptomyces (GETU-1 and GIG-1) and Amycolatopsis (GLM-2). The results indicated that all actinobacterial strains produced indole-3-acetic acid (IAA) and were positive in terms of siderophore, endoglucanase, and ammonia productions. In the in vitro assay, all strains were grown in the presence of water activity within a range of 0.897 to 0.998, pH values within a range of 5–11, and in the presence of 2.5% NaCl for the investigation of drought, pH, and salt tolerances, respectively. Additionally, all strains were able to tolerate commercial insecticides (propargite and methomyl) and fungicides (captan) at the recommended dosages for field applications. Only, Amycolatopsis sp. GLM-2 showed tolerance to benomyl at the recommended dose. All the obtained actinobacteria were characterized as plant growth promoting strains by improving the growth of chili plants (Capsicum flutescens L.). Moreover, the co-inoculation treatment of the obtained actinobacteria and AMF (Claroideoglomus etunicatum) spores could significantly increase plant growth, contribute to the chlorophyll index, and enhance fruit production in chili plants. Additionally, the highest value of AMF spore production and the greatest percentage of root colonization were observed in the treatment that had been co-inoculated with Streptomyces sp. GETU-1.
Collapse
|