1
|
Wan Y, Kong Q, Du H, Yang W, Zha W, Li W. Effectiveness of artificial reefs in enhancing phytoplankton community dynamics: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174593. [PMID: 38997038 DOI: 10.1016/j.scitotenv.2024.174593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Artificial reefs (ARs) are widespread globally and play a positive role in enhancing fish communities and restoring habitat. However, the effect of ARs on phytoplankton, which are fundamental to the marine food chain, remains inconclusive. Conducting a literature review and meta-analysis, this study investigates how ARs influence phytoplankton community dynamics by comparing the biomass, density, and diversity of phytoplankton between ARs and natural water bodies across varying deployment durations, constituent materials, and climatic zones. The study findings suggest that, overall, ARs enhance the biomass, density, and diversity of phytoplankton communities, with no significant differences observed compared to natural water bodies. The enhancement effect of ARs on phytoplankton communities becomes progressively more pronounced with increasing deployment time, with the overall status of phytoplankton communities being optimal when artificial reefs are deployed for 5 years or longer. Concrete and stone ARs can significantly enhance the biomass and diversity of phytoplankton, respectively. The effect of ARs on phytoplankton diversity is unrelated to climatic zones. However, deploying ARs in temperate waters significantly enhances phytoplankton biomass, while in tropical waters, it significantly reduces phytoplankton density. The research findings provide practical implications for the formulation of artificial reef construction strategies tailored to the characteristics of different aquatic ecosystems, emphasizing the need for long-term deployment and appropriate material selection. This study offers a theoretical basis for optimizing AR design and deployment to achieve maximum ecological benefits.
Collapse
Affiliation(s)
- Yu Wan
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Qiaoling Kong
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Hongbo Du
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wei Yang
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wei Zha
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wenjie Li
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China.
| |
Collapse
|
2
|
Gaylarde CC, Ortega-Morales BO. Biodeterioration and Chemical Corrosion of Concrete in the Marine Environment: Too Complex for Prediction. Microorganisms 2023; 11:2438. [PMID: 37894096 PMCID: PMC10609443 DOI: 10.3390/microorganisms11102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Concrete is the most utilized construction material worldwide. In the marine environment, it is subject to chemical degradation through reactions with chloride (the most important ion), and sulfate and magnesium ions in seawater, and to biodeterioration resulting from biological (initially microbiological) activities, principally acid production. These two types of corrosions are reviewed and the failure of attempts to predict the degree of deterioration resulting from each is noted. Chemical (abiotic) corrosion is greatest in the splash zone of coastal constructions, while phenomenological evidence suggests that biodeterioration is greatest in tidal zones. There have been no comparative experiments to determine the rates and types of microbial biofilm formation in these zones. Both chemical and microbiological concrete deteriorations are complex and have not been successfully modeled. The interaction between abiotic corrosion and biofilm formation is considered. EPS can maintain surface hydration, potentially reducing abiotic corrosion. The early marine biofilm contains relatively specific bacterial colonizers, including cyanobacteria and proteobacteria; these change over time, producing a generic concrete biofilm, but the adhesion of microorganisms to concrete in the oceans has been little investigated. The colonization of artificial reefs is briefly discussed. Concrete appears to be a relatively prescriptive substrate, with modifications necessary to increase colonization for the required goal of increasing biological diversity.
Collapse
Affiliation(s)
- Christine C. Gaylarde
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
| | - Benjamin Otto Ortega-Morales
- Center of Environmental Microbiology and Biotechnology, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n entre Juan de la Barrera y Calle 20, Col. Buenavista, San Francisco de Campeche, Campeche 24039, Mexico;
| |
Collapse
|
3
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
4
|
Dobretsov S, Rittschof D. "Omics" Techniques Used in Marine Biofouling Studies. Int J Mol Sci 2023; 24:10518. [PMID: 37445696 DOI: 10.3390/ijms241310518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Biofouling is the growth of organisms on wet surfaces. Biofouling includes micro- (bacteria and unicellular algae) and macrofouling (mussels, barnacles, tube worms, bryozoans, etc.) and is a major problem for industries. However, the settlement and growth of some biofouling species, like oysters and corals, can be desirable. Thus, it is important to understand the process of biofouling in detail. Modern "omic" techniques, such as metabolomics, metagenomics, transcriptomics, and proteomics, provide unique opportunities to study biofouling organisms and communities and investigate their metabolites and environmental interactions. In this review, we analyze the recent publications that employ metagenomic, metabolomic, and proteomic techniques for the investigation of biofouling and biofouling organisms. Specific emphasis is given to metagenomics, proteomics and publications using combinations of different "omics" techniques. Finally, this review presents the future outlook for the use of "omics" techniques in marine biofouling studies. Like all trans-disciplinary research, environmental "omics" is in its infancy and will advance rapidly as researchers develop the necessary expertise, theory, and technology.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123, Muscat P.O. Box 34, Oman
| | - Daniel Rittschof
- Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| |
Collapse
|
5
|
Guo Z, Wang L, Song M, Jiang Z, Liang Z. The effects of flow field on the succession of the microbial community on artificial reefs. MARINE POLLUTION BULLETIN 2023; 191:114920. [PMID: 37060891 DOI: 10.1016/j.marpolbul.2023.114920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
The flow field is one of the most important external conditions affecting the development of biofouling community on artificial reefs (ARs), especially the microbial community. In this article, we investigated the temporal dynamics of microbial communities between the stoss side and the lee side of ARs. The results showed that the composition and structure of microbial and macrobenthic communities between the stoss side and the lee side both presented obvious temporal variations. Microbial diversity and richness were higher on the stoss side than that on the lee side. There was a greater impact on bacterial and archaeal communities on temporal scale compared to that on micro-spatial scale, which was not suitable for the fungal community. The organism biomass, abundance and coverage of macrobenthic community on the lee side were higher than those on the stoss side, and the microbial diversity on the stoss side increased significantly with the organism coverage.
Collapse
Affiliation(s)
- Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Minpeng Song
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
6
|
Song M, Wang J, Wang Y, Hu R, Wang L, Guo Z, Jiang Z, Liang Z. Response mechanism of meiofaunal communities to multi-type of artificial reef habitats from the perspective of high-throughput sequencing technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160927. [PMID: 36543272 DOI: 10.1016/j.scitotenv.2022.160927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Multiple types of artificial reefs have been widely deployed in the coast of northern Yellow Sea, which can enhance fishery resources, restore coastal habitats and improve the marine environment. Meiofauna plays important ecological roles in marine ecosystem, but the response mechanism of meiofaunal community to different types of artificial reef is still poorly understood. In this study, we characterized the meiofaunal communities of concrete artificial reef habitat (CAR), rocky artificial reef habitat (RAR), ship artificial reef habitat (SAR) and adjacent natural habitat (NH) using 18S rRNA gene high-throughput sequencing technology, and explored the relationship of community-environment. The results showed that the diversity and community structure of meiofauna differed significantly on both spatial and temporal scales. Spatial differences were mainly contributed to the flow field effects and biological effects generated by artificial habitats, while temporal differences were driven by temperature (T) and dissolved oxygen (DO). The dominant taxa of meiofauna included arthropods, annelids, platyhelminths and nematodes. Platyhelminths were mainly positively influenced by artificial habitats but annelids were the opposite. Co-occurrence network analysis revealed that NH was more sensitive to environmental change than artificial habitat, while the performance of CAR and SAR were more stable. These results indicated that meiofauna can respond accordingly to different types of artificial habitats, and could be superimposed over the normal seasonal effects. The current study could provide fundamental data for understanding the response mechanism of meiofaunal community to different types of artificial habitats and a reference for assessments of the impact of artificial reefs on the marine environment.
Collapse
Affiliation(s)
- Minpeng Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Jiahao Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Yuxin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Renge Hu
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, Shandong 264209, China.
| |
Collapse
|
7
|
Mohamed HF, Abd-Elgawad A, Cai R, Luo Z, Pie L, Xu C. Microbial community shift on artificial biological reef structures (ABRs) deployed in the South China Sea. Sci Rep 2023; 13:3456. [PMID: 36859411 PMCID: PMC9977770 DOI: 10.1038/s41598-023-29359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
Many Artificial Reefs (ARs) have been used worldwide for marine habitat and coral reef restoration. However, the microbial community structure that colonize the ARs and their progressive development have been seldom investigated. In this study, the successive development of the microbial communities on environmentally friendly Artificial Biological Reef structures (ABRs)R made of special concrete supported with bioactive materials collected from marine algal sources were studied. Three seasons (spring, summer and autumn), three coral reef localities and control models (SCE) without bioactive material and (NCE) made of normal cement were compared. The structure of the microbial pattern exhibited successive shifts from the natural environment to the ABRs supported with bioactive materials (ABAM). Cyanobacteria, Proteobacteria, and Planctomycetota were shown to be the most three dominant phyla. Their relative abundances pointedly increased on ABAM and SCE models compared to the environment. Amplicon Sequence Variant (ASV) Richness and Shannon index were obviously higher on ABAM models and showed significant positive relationship with that of macrobenthos than those on the controls and the natural reef (XR). Our results offer successful establishment of healthy microbial films on the ABR surfaces enhanced the restoration of macrobenthic community in the damaged coral reefs which better understands the ecological role of the ABRs.
Collapse
Affiliation(s)
- Hala F. Mohamed
- grid.453137.70000 0004 0406 0561Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 People’s Republic of China ,grid.411303.40000 0001 2155 6022Botany & Microbiology Department, (Girls Branch), Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Amro Abd-Elgawad
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China. .,Tourism Developing Authority, Central Administration for Environmental Affairs, Cairo, Egypt.
| | - Rongshuo Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China.
| | - Zhaohe Luo
- grid.453137.70000 0004 0406 0561Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 People’s Republic of China
| | - Lulu Pie
- grid.453137.70000 0004 0406 0561Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 People’s Republic of China
| | - Changan Xu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
8
|
Santos J, Cifrian E, Rodriguez-Romero A, Yoris-Nobile AI, Blanco-Fernandez E, Castro-Fresno D, Andres A. Assessment of the environmental acceptability of potential artificial reef materials using two ecotoxicity tests: Luminescent bacteria and sea urchin embryogenesis. CHEMOSPHERE 2023; 310:136773. [PMID: 36220438 DOI: 10.1016/j.chemosphere.2022.136773] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Ecotoxicological analysis of construction products is a relatively unexplored area at international level. Aquatic toxicity tests on construction products has been recommended recently for freshwater environment. However, the biological effects of alternative materials on marine ecosystem are still not considered. In this study, the main aim was to assess the environmental impact of alternative mortars proposed as artificial reefs (ARs) materials. The ARs specimens were developed by 3D printing, based on cement and geopolymer mortars using recycled sands of glass and seashells. For this purpose, a leaching test and two different toxicity bioassays, luminosity reduction of marine bacteria Vibrio fischeri (Microtox®) and the success of embryo-larval development of sea-urchin Paracentrotus lividus, were conducted. From the leaching results it should be noted that the mobility of all trace elements considered in both, raw materials and mortars, meet the inert landfill limits, except As, Mo, Se or Sb in the leachates geopolymer mortars. However, the results obtained from the both bioassays show low environmental acceptability for those mortars containing shell sand, probably due to the degradation of the organic matter adhered to the shells. On the other hand, cement mortars obtain better results than geopolymer mortars, regardless of the aggregate used, showing certain consistency with the leaching behaviour, since they present the lowest mobility of trace chemical elements. Therefore, the results supporting the environmental acceptability of its potential use as alternative materials in the production of ARs.
Collapse
Affiliation(s)
- Jorge Santos
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Cantabria, 39005, Spain
| | - Eva Cifrian
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Cantabria, 39005, Spain.
| | - Araceli Rodriguez-Romero
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real, Cádiz, 11510, Spain
| | | | | | | | - Ana Andres
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Cantabria, 39005, Spain
| |
Collapse
|
9
|
Microbial Networks Reveal the Structure of Water Microbial Communities in Kalamaili Mountain Ungulate Nature Reserve. WATER 2022. [DOI: 10.3390/w14142188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water microorganisms contribute to the key components of ecosystems in dryland waters, which are extremely important for wildlife. However, the distribution patterns of water microbes across different basal water sources are still largely unknown. This study was conducted to compare microorganisms in the water bodies of different types of water sources in the Kalamaili Mountain Ungulate Nature Reserve in China. Bioinformatic analysis revealed that the undirected microbial co-existence network consisted of 15 main modules referring to different water sources, which indicated specific molecular co-existence relationships. It was found that the most dominant phyla (namely Proteobacteria, Patescibacteria, Firmicutes, Bacteroidota, and Actinobacteriota) of the molecular ecological network shared the same structures as the microbial community, which justified the construction of the network via a random network formation. Principal coordinate analysis (PCoA) based on Bray–Curtis distances revealed that there were still considerable variations among different habitats, showing separate sample clusters. Additionally, the different topological roles of subnetworks trimmed to a uniform size indicated different co-existence patterns in the microbiome. The artificially recharged water from concrete pond substrate (ARC) subnetworks had a relatively discrete co-occurrence, while the natural water sources (NRE) and artificially recharged water from earthen pond substrate (ARE) groups were more compact with giant modules. The NRE and ARE groups were also richer in microbial composition and had a higher number of species with low abundance. Consequently, concrete substrates may contribute to dysfunction in water microbiomes. Moreover, the functional diversity of the NRE and ARE groups is due to more intra-module connections and more inter-module connections, indirectly leading to a stable function resilient to external environmental influences. In conclusion, the microecology of the NRE was more stable than that of the concrete substrate, and artificial transportation had less effect on the microbial community.
Collapse
|
10
|
Guo Z, Wang L, Jiang Z, Liang Z. Comparison studies of epiphytic microbial communities on four macroalgae and their rocky substrates. MARINE POLLUTION BULLETIN 2022; 176:113435. [PMID: 35183021 DOI: 10.1016/j.marpolbul.2022.113435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Macroalgae and their rocky substrates both support diverse and abundant microbiota, performing essential ecological functions in marine ecosystem. However, the differences in the epiphytic microbial communities on macroalgae and rocky substrate are still poorly understood. In this study, the epiphytic microbial communities on four macroalgae (Corallina officinalis, Rhodomela confervoides, Sargassum thunbergii, and Ulva linza) and their rocky substrates from Weihai coast zone were characterized using high-throughput sequencing technology. The results showed that the alpha diversity indices were greater in rocky substrates than that in macroalgae. The microbial similarities among macroalgae and rocky substrate groups tended to decrease from the high taxonomic ranks to lower ranks, only 22.69% of the total amplicon sequence variants (ASVs) were shared between them. The functional analysis revealed that the microbiotas were mainly involved in metabolic activities. This study would provide the theoretical foundation for macroalgal cultivation and algal reef applications.
Collapse
Affiliation(s)
- Zhansheng Guo
- Marine College, Shandong University, Weihai 264209, China
| | - Lu Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai 264209, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
11
|
Gad M, Hou L, Cao M, Adyari B, Zhang L, Qin D, Yu CP, Sun Q, Hu A. Tracking microeukaryotic footprint in a peri-urban watershed, China through machine-learning approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150401. [PMID: 34562761 DOI: 10.1016/j.scitotenv.2021.150401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Microeukaryotes play a significant role in biogeochemical cycling and can serve as bioindicators of water quality in freshwater ecosystems. However, there is a knowledge gap on how freshwater microeukaryotic communities are assembled, especially that how terrestrial microeukaryotes influence freshwater microeukaryotic assemblages. Here, we used a combination of 18S rRNA gene amplicon sequencing and community-based microbial source tracking (MST) approaches (i.e., SourceTracker and FEAST) to assess the contribution of microeukaryotes from surrounding environments (i.e., soils, river sediments, swine wastewater, influents and effluents of decentralized wastewater treatment plants) to planktonic microeukaryotes in the main channel, tributaries and reservoir of a peri-urban watershed, China in wet and dry seasons. The results indicated that SAR (~ 49% of the total communities), Opithokonta (~ 34%), Archaeplastida (~ 9%), and Amoebozoa (~ 2%) were dominant taxa in the watershed. The community-based MST analysis revealed that sewage effluents (7.96 - 21.84%), influents (2.23 - 13.97%), and river sediments (2.56 - 11.71%) were the major exogenous sources of riverine microeukaryotes. At the spatial scale, the downstream of the watershed (i.e., main channel and tributaries) received higher proportions of exogenous microeukaryotic OTUs compared to the upstream reservoirs, while at the seasonal scale, the sewage effluents and influents contributed higher exogenous microeukaryotes to river water in wet season than in dry season. Moreover, the swine and domestic wastewater led to the presence of Apicomplexa in wet season only, implying rainfall runoff may enhance the spread of parasitic microeukaryotes. Taken together, our study provides novel insights into the immigration patterns of microeukaryotes and their dominant supergroups between terrestrial and riverine habitats.
Collapse
Affiliation(s)
- Mahmoud Gad
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Liyuan Hou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meixian Cao
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bob Adyari
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Qian Sun
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
12
|
Sushmitha TJ, Rajeev M, Sriyutha Murthy P, Ganesh S, Toleti SR, Karutha Pandian S. Bacterial community structure of early-stage biofilms is dictated by temporal succession rather than substrate types in the southern coastal seawater of India. PLoS One 2021; 16:e0257961. [PMID: 34570809 PMCID: PMC8476003 DOI: 10.1371/journal.pone.0257961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial communities colonized on submerged substrata are recognized as a key factor in the formation of complex biofouling phenomenon in the marine environment. Despite massive maritime activities and a large industrial sector in the nearshore of the Laccadive Sea, studies describing pioneer bacterial colonizers and community succession during the early-stage biofilm are scarce. We investigated the biofilm-forming bacterial community succession on three substrata viz. stainless steel, high-density polyethylene, and titanium over 15 days of immersion in the seawater intake area of a power plant, located in the southern coastal region of India. The bacterial community composition of biofilms and peripheral seawater were analyzed by Illumina MiSeq sequenced 16S rRNA gene amplicons. The obtained metataxonomic results indicated a profound influence of temporal succession over substrate type on the early-stage biofilm-forming microbiota. Bacterial communities showed vivid temporal dynamics that involved variations in abundant bacterial groups. The proportion of dominant phyla viz. Proteobacteria decreased over biofilm succession days, while Bacteroidetes increased, suggesting their role as initial and late colonizers, respectively. A rapid fluctuation in the proportion of two bacterial orders viz. Alteromonadales and Vibrionales were observed throughout the successional stages. LEfSe analysis identified specific bacterial groups at all stages of biofilm development, whereas no substrata type-specific groups were observed. Furthermore, the results of PCoA and UPGMA hierarchical clustering demonstrated that the biofilm-forming community varied considerably from the planktonic community. Phylum Proteobacteria preponderated the biofilm-forming community, while the Bacteroidetes, Cyanobacteria, and Actinobacteria dominated the planktonic community. Overall, our results refute the common assumption that substrate material has a decisive impact on biofilm formation; rather, it portrayed that the temporal succession overshadowed the influence of the substrate material. Our findings provide a scientific understanding of the factors shaping initial biofilm development in the marine environment and will help in designing efficient site-specific anti-biofouling strategies.
Collapse
Affiliation(s)
- T. J. Sushmitha
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Meora Rajeev
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - P. Sriyutha Murthy
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - S. Ganesh
- Department of Chemistry, Scott Christian College, Nagercoil, Tamil Nadu, India
| | - Subba Rao Toleti
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | | |
Collapse
|