2
|
Asbury MR, Shama S, Sa JY, Bando N, Butcher J, Comelli EM, Copeland JK, Forte V, Kiss A, Sherman PM, Stintzi A, Taibi A, Tomlinson C, Unger S, Wang PW, O'Connor DL. Human milk nutrient fortifiers alter the developing gastrointestinal microbiota of very-low-birth-weight infants. Cell Host Microbe 2022; 30:1328-1339.e5. [PMID: 35987195 DOI: 10.1016/j.chom.2022.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/14/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Nutrient fortifiers are added to human milk to support the development of very-low-birth-weight infants. Currently, bovine-milk-based fortifiers (BMBFs) are predominantly administered, with increasing interest in adopting human-milk-based fortifiers (HMBFs). Although beneficial for growth, their effects on the gastrointestinal microbiota are unclear. This triple-blind, randomized clinical trial (NCT02137473) tested how nutrient-enriching human milk with HMBF versus BMBF affects the gastrointestinal microbiota of infants born < 1,250 g during hospitalization. HMBF-fed infants (n = 63, n = 269 stools) showed lower microbial diversity, altered microbial community structure, and changes in predicted microbial functions compared with BMBF-fed infants (n = 56, n = 239 stools). HMBF-fed infants had higher relative and normalized abundances of unclassified Enterobacteriaceae and lower abundances of Clostridium sensu stricto. Post hoc analyses identified dose-dependent relationships between individual feed components (volumes of mother's milk, donor milk, and fortifiers) and the microbiota. These results highlight how nutrient fortifiers impact the microbiota of very-low-birth-weight infants during a critical developmental window.
Collapse
Affiliation(s)
- Michelle R Asbury
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sara Shama
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jong Yup Sa
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nicole Bando
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa ON, K1H 8M5, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Victoria Forte
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alex Kiss
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON M5T 3M6, Canada; Evaluative and Clinical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Philip M Sherman
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Cell Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa ON, K1H 8M5, Canada
| | - Amel Taibi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Christopher Tomlinson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Pediatrics, Sinai Health, Toronto, ON M5G 1X5, Canada; Rogers Hixon Ontario Human Milk Bank, Toronto, ON M5G 1X5, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Pediatrics, Sinai Health, Toronto, ON M5G 1X5, Canada; Rogers Hixon Ontario Human Milk Bank, Toronto, ON M5G 1X5, Canada.
| | | |
Collapse
|
3
|
Aguilar-Lopez M, Wetzel C, MacDonald A, Ho TTB, Donovan SM. Metagenomic profile of the fecal microbiome of preterm infants consuming mother's own milk with bovine milk-based fortifier or infant formula: a cross-sectional study. Am J Clin Nutr 2022; 116:435-445. [PMID: 35383822 PMCID: PMC9638768 DOI: 10.1093/ajcn/nqac081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Preterm (PT) infants harbor a different gut microbiome than full-term infants. Multiple factors affect gut microbial colonization of PT infants, including low gestational age, high rates of Cesarean section, exposure to antibiotics, and diet. Human milk, whether it's mother's own milk (MOM) or donor human milk, is the preferred feeding mode for PT infants but needs to be fortified to achieve adequate nutrient content. Infant formulas are introduced at later stages if human milk is insufficient or unavailable. How these dietary exposures affect the gut microbiome of PT infants is poorly understood. OBJECTIVES The goal of this study was to evaluate the metagenomic potential of the fecal microbiome of PT infants consuming MOM with bovine milk-based fortifier compared with PT formula alone. METHODS Forty-two stool samples, from 27 infants consuming MOM or formula (21 samples in each group) were included. Twelve infants had repeated sampling (2-3 samples). Shotgun genomic DNA sequencing was performed and analyzed using MetaPhlAn and HUMAnN2. Multivariate regression analysis, adjusting by the repeated sampling, was used to identify the features that differed between PT infants consuming MOM compared with formula. RESULTS The primary function of the fecal microbiome of PT infants was characterized by a high abundance of biosynthesis pathways. A set of core features was identified; these belonged to pathways for amino acid metabolism and vitamin K-2 biosynthesis. Five pathways significantly differed between the MOM and formula group. Pathways for fatty acid and carbohydrate degradation were significantly higher in the MOM group. Taxonomically, members of the phylum Actinobacteria and the genus Bifidobacterium were higher in PT infants exposed to MOM. CONCLUSIONS This study provides insight into the influence of feeding MOM compared with infant formula on the structure and function of the fecal microbiome of PT infants.
Collapse
Affiliation(s)
- Miriam Aguilar-Lopez
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | - Thao T B Ho
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
4
|
Tadros JS, Llerena A, Sarkar A, Johnson R, Miller EM, Gray HL, Ho TTB. Postnatal growth and gut microbiota development influenced early childhood growth in preterm infants. Front Pediatr 2022; 10:850629. [PMID: 36016882 PMCID: PMC9395978 DOI: 10.3389/fped.2022.850629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Preterm infants are at high risk for growth failure and childhood weight problems due to the disruption of normal intrauterine growth and nutrition. Early nutritional support and microbiome acquisition can play an important role in childhood growth. OBJECTIVE Our study examined potential postnatal indicators, including gut bacterial compositions, macronutrients, and catch-up growth, of growth pattern from infancy into early childhood. METHODS This is a retrospective study of preterm infants born < 35 weeks who were followed up in the university complex care clinic from 2012-2018. Weight and length z-scores at birth, 1, 2, 4, 6, 12 and 15 months, and body mass index (BMI) and length z-scores from 2 to 5 years of age were collected. Catch-up growths were calculated by changes in z-scores and divided into early (birth-4 months) and late (4-18 months). Postnatal nutritional data and fecal samples were collected. Fecal microbiome data obtained from 16S RNA V4 sequencing was analyzed against clinical and growth data using a regression model. RESULTS 160 infants included in the final analysis had birth weight and gestational age of 1,149 ± 496 grams and 28 ± 3 weeks. Early weight gain positively correlated with length z-scores but not with BMI at 2 years of age. BMI at 2 years of age strongly correlated with BMI at 3, 4, and 5 years of age. Postnatal abundance of Gammaproteobacteria was negatively associated with early growth while Bacteroides and Lactobacillus were positively associated with childhood BMI. CONCLUSION Our findings suggest that optimal postnatal nutrition promoted early catch-up growth in weight as well as improved linear growth without influence on childhood BMI. Postnatal gut microbial colonization, which is a modifiable factor, was associated with childhood growth in preterm infants.
Collapse
Affiliation(s)
- Jocelyne S Tadros
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Amelia Llerena
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anujit Sarkar
- College of Public Health, University of South Florida, Tampa, FL, United States
| | - Reynold Johnson
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Elizabeth M Miller
- Department of Anthropology, College of Arts and Sciences, University of South Florida, Tampa, FL, United States
| | - Heewon L Gray
- College of Public Health, University of South Florida, Tampa, FL, United States
| | - Thao T B Ho
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Widodo AD. How Gut Microbiota Supports Immunity, Growth and Development of Preterm Infants: A Narrative Review. AMERTA NUTRITION 2021. [DOI: 10.20473/amnt.v5i1sp.2021.14-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACTBackground: Gut microbiota, a complex ecosystem consisting of abundant microorganisms, plays a role in preterm infants’ immunity, growth, and development. Dysbiosis or disruption of the gut microbiota can precipitate various diseases, such as allergy or autoimmune disorders in premature infants. Purpose: This study aimed to review gut microbiota in preterm infants and its role in supporting the infants’ immunity, growth, and development. Discussion: Bifidobactericeae is the predominant microbiota in GI tract of preterm infants. However, various factors can influence this gut microbiota e.g., genetics, lifestyle of the mothers (smoking, diet, use of antibiotic, obesity), birth mode, type of feeding, and environmental factors. Gut dysbiosis can result in impaired immune system which predisposes the preterm infants to infections, even fatal adverse event. Furthermore, the growth and development might be affected as well as lead to various neurodevelopmental and psychiatric disorders. Human milk is a prebiotic source which can stimulate the growth of Baifidobactericeae and Bacteroidetes. If the human milk is inadequate or unavailable, the recommended interventions for gut dysbiosis in premature infants are probiotics, prebiotics, or both supplementations (synbiotics). The administration of prebiotics and probiotics associates with lower morbidity and death rates in preterm infants, as well as shorter duration of hospital stay and duration to achieve full enteral feeding. Conclusions: Immunity as well as growth and development of preterm infants are affected greatly by gut microbiota The less diverse microbiota in preterm infants’ gut predispose them to various health problems. Hence, this problem should be managed properly, one of which is prebiotic and probiotic supplementation Keywords: Gastrointestinal Microbiome, Premature, Immunity, Growth, Development
Collapse
|
7
|
Aguilar-Lopez M, Wetzel C, MacDonald A, Ho TTB, Donovan SM. Human Milk-Based or Bovine Milk-Based Fortifiers Differentially Impact the Development of the Gut Microbiota of Preterm Infants. Front Pediatr 2021; 9:719096. [PMID: 34917555 PMCID: PMC8669825 DOI: 10.3389/fped.2021.719096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm infants are exposed to different dietary inputs during their hospitalization in the neonatal intensive care unit (NICU). These include human milk (HM), with a human milk-based (HMF) or a bovine milk-based (BMF) fortifier, or formula. Milk consumption and the type of fortification will cause changes in the gut microbiota structure of preterm infants. This study aimed to characterize the gut microbiota of PT infant according to the type of feeding and the type of HM fortification and its possible association with infant's growth. Methods: Ninety-seven infants born ≤33 wks of gestation or <1,500 g were followed during the hospitalization period in the NICU after birth until discharge. Clinical and dietary information was collected, including mode of delivery, pregnancy complications, mechanical ventilation, use of antibiotics, weight, and type and amount of milk consumed. To characterize the gut microbiota composition, weekly stool samples were collected from study participants. The V3-V4 region of the 16S rRNA bacterial gene was Sequenced using Illumina MiSeq technology. Results: After birth, black maternal race, corrected gestational age (GA) and exposure to pregnancy complications, had a significant effect on gut microbial diversity and the abundance of Enterococcus, Veillonella, Bifidobacterium, Enterobacter, and Bacteroides. Over the course of hospitalization, corrected GA and exposure to chorioamnionitis remained to have an effect on gut microbial composition. Two different enterotypes were found in the gut microbiota of preterm infants. One enriched in Escherichia-Shigella, and another enriched in uncharacterized Enterobacteriaceae, Klebsiella and Clostridium sensu stricto 1. Overall, HM and fortification with HMF were the most common feeding strategies. When consuming BMF, PT infants had higher growth rates than those consuming HMF. Milk and type of fortification were significantly associated with the abundance of Clostridium sensu stricto 1, Bifidobacterium and Lactobacillus. Conclusions: This observational study shows the significant association between milk consumption and the exposure to HMF or BMF fortification in the fecal microbiota composition of preterm infants. Additionally, these results show the effect of other perinatal factors in the establishment and development of PT infant's gut microbiota.
Collapse
Affiliation(s)
- Miriam Aguilar-Lopez
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | | | | | - Thao T B Ho
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|