1
|
Lim YC, Ong KH, Khor WC, Chua FYX, Lim JQ, Tan LK, Chen SL, Wong WK, Maiwald M, Barkham T, Koh TH, Khoo J, Chan JSH, Aung KT. Sequence Types and Antimicrobial Resistance Profiles of Salmonella Typhimurium in the Food Chain in Singapore. Microorganisms 2024; 12:1912. [PMID: 39338586 PMCID: PMC11434088 DOI: 10.3390/microorganisms12091912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Salmonella remains a significant foodborne pathogen globally with S. Typhimurium presenting as a frequently occurring serovar. This study aimed to characterize 67 S. Typhimurium isolates from humans, food, farms, and slaughterhouses collected in Singapore from 2016 to 2017. Using whole-genome sequencing analysis, the isolates were found to belong to either ST19 (n = 33) or ST36 (n = 34). ST36 predominated in human intestinal and chicken isolates, while human extra-intestinal and non-chicken food isolates belonged to ST19. Plasmids were predicted in 88.1% (n = 59) of the isolates with the most common incompatibility group profiles being IncFIB(S), IncFII(S) and IncQ1. IncFIB(S) (adjusted p-value < 0.05) and IncFII(S) (adjusted p-value < 0.05) were significantly more prevalent in ST19 isolates, while Col156 (adjusted p-value < 0.05) was more significantly found in ST36 isolates. ST36 isolates exhibited higher resistance to multiple antibiotic classes such as penicillins, phenicols, folate pathway inhibitors, aminoglycosides, β-lactam/β-lactamase inhibitor combinations, tetracyclines, and fluoroquinolones. Phylogenetics analysis suggested potential shared routes of transmission among human, chicken, farm and slaughterhouse environments. Taken together, this study offers a cross-sectional epidemiological insight into the genomic epidemiology and antimicrobial landscape of S. Typhimurium isolates in Singapore, informing strategies for future public health and food safety surveillance.
Collapse
Affiliation(s)
- Yen Ching Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Kar Hui Ong
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Favian Yue Xuan Chua
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Jia Qi Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Li Kiang Tan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Singapore 119228, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Wai Kwan Wong
- Centre for Animal & Veterinary Service, National Parks Board, Singapore 718827, Singapore
| | - Matthias Maiwald
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Timothy Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Tse Hsien Koh
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Department of Microbiology, Singapore General Hospital, Singapore 169856, Singapore
| | - Joanna Khoo
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Joanne Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| |
Collapse
|
2
|
Jia M, Li P, Zhang J, Chen Z, Gao L, Sun Y, Zhang X, Yan Y, Zhu G. Characteristics of Two mcr-1-Harboring IncHI2 Plasmids from Clinical Salmonella Isolates in Jiaxing City. Foodborne Pathog Dis 2023; 20:467-476. [PMID: 37699240 DOI: 10.1089/fpd.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Salmonella is a primary cause of foodborne diseases, and the increasing prevalence of mcr-1-carrying plasmids, which confer colistin resistance to Salmonella, poses significant global health concerns. As the frequency of occurrence of the mcr-1 gene is increasing globally, we studied the prevalence of mcr-1 in clinical Salmonella isolates by analyzing 195 clinical strains isolated in 2020. Of the 195 Salmonella isolates, 41 isolates were resistant to colistin. We found mcr-1 in two strains (Salmonella Typhimurium ZJJX20006 and Salmonella Kentucky ZJJX20014), which we analyzed in detail via whole-genome sequencing and antibiotic susceptibility testing. Two strains displayed resistance to ampicillin, ampicillin-sulbactam, tetracycline, chloramphenicol, and cotrimoxazole, while ZJJX20006 displayed resistance to colistin and ZJJX20014 was sensitive. Genomic analysis revealed that these strains had plasmid-encoded mcr-1 in IncHI2 plasmids, which were not similar to the mcr-1-IncX4 identified in 2016. These two strains also harbored other drug resistance genes, including blaOXA-1 and blaCTX-M-14. Our findings may help clarify the molecular mechanisms of mcr-1 dissemination among Salmonella strains in Jiaxing City and offer insights into the evolution of mcr-1 in Salmonella.
Collapse
Affiliation(s)
- Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Ping Li
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Junyan Zhang
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Lei Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Yangming Sun
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Xiaofei Zhang
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| |
Collapse
|
3
|
Talat A, Miranda C, Poeta P, Khan AU. Farm to table: colistin resistance hitchhiking through food. Arch Microbiol 2023; 205:167. [PMID: 37014461 DOI: 10.1007/s00203-023-03476-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Colistin is a high priority, last-resort antibiotic recklessly used in livestock and poultry farms. It is used as an antibiotic for treating multi-drug resistant Gram-negative bacterial infections as well as a growth promoter in poultry and animal farms. The sub-therapeutic doses of colistin exert a selection pressure on bacteria leading to the emergence of colistin resistance in the environment. Colistin resistance gene, mcr are mostly plasmid-mediated, amplifying the horizontal gene transfer. Food products such as chicken, meat, pork etc. disseminate colistin resistance to humans through zoonotic transfer. The antimicrobial residues used in livestock and poultry often leaches to soil and water through faeces. This review highlights the recent status of colistin use in food-producing animals, its association with colistin resistance adversely affecting public health. The underlying mechanism of colistin resistance has been explored. The prohibition of over-the-counter colistin sales and as growth promoters for animals and broilers has exhibited effective stewardship of colistin resistance in several countries.
Collapse
Affiliation(s)
- Absar Talat
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- Toxicology Research Unit (TOXRUN), IUCS, CESPU, CRL, Gandra, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD)UTAD, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Asad U Khan
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Li L, Wan X, Olsen RH, Xiao J, Wang C, Xu X, Meng H, Shi L. Genomic Characterization of mcr- 1-Carrying Foodborne Salmonella enterica serovar Typhimurium and Identification of a Transferable Plasmid Carrying mcr- 1, bla CTX-M-14 , qnrS2, and oqxAB Genes From Ready-to-Eat Pork Product in China. Front Microbiol 2022; 13:903268. [PMID: 35847096 PMCID: PMC9277226 DOI: 10.3389/fmicb.2022.903268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica resistant to colistin, third-generation cephalosporins (3GCs), and fluoroquinolones (FQs) has been deemed a high-priority pathogen by the World Health Organization (WHO). The objective of this study was to characterize 11 mcr-1-harboring Salmonella enterica serovar Typhimurium isolates from raw pork and ready-to-eat (RTE) pork products in Guangzhou, China. All isolates were multi-drug resistant and contained 6–24 antibiotic-resistant genes. The mcr-1 gene was localized in the most conserved structure (mcr-1-orf ) in eight isolates and in mobile structure (ISApl1-mcr-1-orf ) in three isolates. One raw pork isolate SH16SF0850, co-harbored mcr-1, blaCTX−M−14, and oqxAB genes. One isolate 17Sal008 carried mcr-1, blaCTX−M−14, qnrS2, and oqxAB genes located on a 298,622 bp IncHI2 plasmid pSal008, which was obtained from an RTE pork product for the first time. The pSal008 was closely related to a plasmid in an S. typhimurium isolate from a 1-year-old diarrheal outpatient in China and was found to be transferable to Escherichia coli J53 by conjugation. Genome sequence comparisons by core-genome Multi Locus Sequence Typing (cgMLST) based on all S. typhimurium isolates from China inferred highly probably epidemiological links between selected pork isolates and no possible epidemiologically links between RTE pork isolate 17Sal008 and other isolates. Our findings indicate that raw pork and pork products are potential reservoirs of mcr-1-harboring S. typhimurium and highlight the necessity for continuous monitoring of colistin, 3GCs, and FQs resistant S. typhimurium from different origins.
Collapse
Affiliation(s)
- Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiulin Wan
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jian Xiao
- Guangzhou Food Inspection Institute, Guangzhou, China
| | - Chong Wang
- Shandong New Hope Liuhe Group Ltd., Qingdao, China
| | - Xuebin Xu
- Department of Etiological Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Hernández-Díaz EA, Vázquez-Garcidueñas MS, Negrete-Paz AM, Vázquez-Marrufo G. Comparative Genomic Analysis Discloses Differential Distribution of Antibiotic Resistance Determinants between Worldwide Strains of the Emergent ST213 Genotype of Salmonella Typhimurium. Antibiotics (Basel) 2022; 11:925. [PMID: 35884180 PMCID: PMC9312005 DOI: 10.3390/antibiotics11070925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica constitutes a global public health concern as one of the main etiological agents of human gastroenteritis. The Typhimurium serotype is frequently isolated from human, animal, food, and environmental samples, with its sequence type 19 (ST19) being the most widely distributed around the world as well as the founder genotype. The replacement of the ST19 genotype with the ST213 genotype that has multiple antibiotic resistance (MAR) in human and food samples was first observed in Mexico. The number of available genomes of ST213 strains in public databases indicates its fast worldwide dispersion, but its public health relevance is unknown. A comparative genomic analysis conducted as part of this research identified the presence of 44 genes, 34 plasmids, and five point mutations associated with antibiotic resistance, distributed across 220 genomes of ST213 strains, indicating the MAR phenotype. In general, the grouping pattern in correspondence to the presence/absence of genes/plasmids that confer antibiotic resistance cluster the genomes according to the geographical origin where the strain was isolated. Genetic determinants of antibiotic resistance group the genomes of North America (Canada, Mexico, USA) strains, and suggest a dispersion route to reach the United Kingdom and, from there, the rest of Europe, then Asia and Oceania. The results obtained here highlight the worldwide public health relevance of the ST213 genotype, which contains a great diversity of genetic elements associated with MAR.
Collapse
Affiliation(s)
- Elda Araceli Hernández-Díaz
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma Tarímbaro, Morelia 58893, Michoacán, Mexico; (E.A.H.-D.); (A.M.N.-P.)
| | - Ma. Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Ave. Rafael Carrillo esq. Dr. Salvador González Herrejón, Col. Cuauhtémoc, Morelia 58020, Michoacán, Mexico;
| | - Andrea Monserrat Negrete-Paz
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma Tarímbaro, Morelia 58893, Michoacán, Mexico; (E.A.H.-D.); (A.M.N.-P.)
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Col. La Palma Tarímbaro, Morelia 58893, Michoacán, Mexico; (E.A.H.-D.); (A.M.N.-P.)
| |
Collapse
|
6
|
Hammerl JA. Editorial for the Special Issue: “Antimicrobial Resistance and Molecular Tracing of Foodborne Pathogens”. Microorganisms 2022; 10:microorganisms10020390. [PMID: 35208845 PMCID: PMC8879549 DOI: 10.3390/microorganisms10020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Jens André Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
7
|
Shi Q, Ye Y, Lan P, Han X, Quan J, Zhou M, Yu Y, Jiang Y. Prevalence and Characteristics of Ceftriaxone-Resistant Salmonella in Children's Hospital in Hangzhou, China. Front Microbiol 2021; 12:764787. [PMID: 34880840 PMCID: PMC8645868 DOI: 10.3389/fmicb.2021.764787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The non-Typhi Salmonella (NTS) infection is critical to children's health, and the ceftriaxone is the important empirical treatment choice. With the increase resistance rate of ceftriaxone in Salmonella, the molecular epidemiology and resistance mechanism of ceftriaxone-resistant Salmonella needs to be studied. From July 2019 to July 2020, a total of 205 NTS isolates were collected, 195 of which (95.1%) were cultured from stool, but 10 isolates were isolated from an extraintestinal site. Serogroup B accounted for the vast majority (137/205) among the isolates. Fifty-three isolates were resistant to ceftriaxone, and 50 were isolated from children younger than 4years of age. The resistance rates for ceftriaxone, ciprofloxacin, and levofloxacin were significantly higher in younger children than the older children. The resistance genes in the ceftriaxone-susceptible isolates were detected by PCR, and ceftriaxone-resistant Salmonella were selected for further whole-genome sequencing. Whole-genome analysis showed that serotype Typhimurium and its monophasic variant was the most prevalent in ceftriaxone-resistant isolates (37/53), which comprised ST34 (33/53), ST19 (2/53), and ST99 (2/53), and they were close related in the phylogenetic tree. However, the other isolates were diverse, which included one Enteritidis (ST11), one Indiana (ST17), one Derby (ST40), four Kentucky (ST198), two Goldcoast (ST2529, ST358), one Muenster (ST321), one Virchow (ST359), one Rissen (ST469), one Kedougou (ST1543), two Uganda (ST684), and one Kottbus (ST8839). Moreover, CTX-M-55 ESBLs production (33/53) was found to be mainly responsible for ceftriaxone resistance, followed by bla CTX-M-65 (12/53), bla CTX-M-14 (4/53), bla CTX-M-9 (2/53), bla CTX-M-64 (1/53), bla CTX-M-130 (1/53), and bla CMY-2 (1/53). ISEcp1, IS903B, IS Kpn26, IS1F, and IS26 were connected to antimicrobial resistance genes transfer. In conclusion, the dissemination of ESBL-producing Salmonella isolates resulted in an increased prevalence of ceftriaxone resistance in young children. The high rate of multidrug resistance should be given additional attention.
Collapse
Affiliation(s)
- Qiucheng Shi
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yihua Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Peng Lan
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingming Zhou
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Mobile Colistin Resistance Genetic Determinants of Non-Typhoid Salmonella enterica Isolates from Russia. Microorganisms 2021; 9:microorganisms9122515. [PMID: 34946117 PMCID: PMC8705591 DOI: 10.3390/microorganisms9122515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Polymyxin resistance, determined by mcr genes located on plasmid DNA, currently poses a high epidemiological threat. Non-typhoid Salmonella (NTS) are one of the key pathogens causing diarrheal diseases. Here, we report the isolation and whole genome sequencing of multidrug colistin-resistant/susceptible isolates of non-typhoid Salmonella enterica serovars carrying mcr genes. Non-typhoid strains of Salmonella enterica subsp. enterica were isolated during microbiological monitoring of the environment, food, and diarrheal disease patients between 2018 and 2020 in Russia (n = 586). mcr-1 genes were detected using a previously developed qPCR assay, and whole genome sequencing of mcr positive isolates was performed by both short-read (Illumina) and long-read (Oxford Nanopore) approaches. Three colistin-resistant isolates, including two isolates of S. Enteritidis and one isolate of S. Bovismorbificans, carried the mcr-1.1 gene located on IncX4 and IncI2 conjugative plasmids, respectively. The phenotypically colistin-susceptible isolate of S. Typhimurium carried a mcr-9 gene on plasmid IncHI2. In conclusion, we present the first three cases of mcr gene-carrying NTS isolates detected in Russia with both outbreak and sporadic epidemiological backgrounds.
Collapse
|
9
|
Imipenem Resistance Mediated by blaOXA-913 Gene in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10101188. [PMID: 34680769 PMCID: PMC8532623 DOI: 10.3390/antibiotics10101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Treatment of infectious diseases caused by carbapenem-resistant Pseudomonas aeruginosa is becoming a greater challenge. This study aimed to identify the imipenem resistance mechanism in P. aeruginosa isolated from a dog. Minimum Inhibitory Concentration (MIC) was determined by the broth microdilution method according to the Clinical and Laboratory Standards Institute recommendations. We performed polymerase chain reaction and whole-genome sequencing to detect carbapenem resistance genes. Genomic DNA of P. aeruginosa K19PSE24 was sequenced via the combined analysis of 20-kb PacBio SMRTbell and PacBio RS II. Peptide-Peptide Nucleic Acid conjugates (P-PNAs) targeting the translation initiation region of blaOXA-913 were synthesized. The isolate (K19PSE24) was resistant to imipenem and piperacillin/tazobactam yet was susceptible to most of the tested antimicrobials. Whole-genome sequencing revealed that the K19PSE24 genome comprised a single contig amounting to 6,815,777 base pairs, with 65 tRNA and 12 rRNA genes. K19PSE24 belonged to sequence type 313 and carried the genes aph(3)-IIb, fosA, catB7, crpP, and blaOXA-913 (an allele deposited in GenBank but not described in the literature). K19PSE24 also carried genes encoding for virulence factors (exoenzyme T, exotoxin A, and elastase B) that are associated with adhesion, invasion, and tissue lysis. Nevertheless, we did not detect any of the previously reported carbapenem resistance genes. This is the first report of the blaOXA-913 gene in imipenem-resistant P. aeruginosa in the literature. Notably, no viable colonies were found after co-treatment with imipenem (2 µg/mL) and either of the P-PNAs (12.5 µM or 25 µM). The imipenem resistance in K19PSE24 was primarily due to blaOXA-913 gene carriage.
Collapse
|