1
|
Ang WX, Tan SL, Al Quwatli L, Lee MF, Sekar M, Sarker MMR, Subramaniyan V, Fuloria NK, Fuloria S, Gopinath SCB, Wu YS. Embelin Inhibits Dengue Virus Serotype 2 Infectivity with Nonstructural Protein Helicase as a Potential Molecular Target. REVISTA BRASILEIRA DE FARMACOGNOSIA 2024. [DOI: 10.1007/s43450-024-00608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/11/2024] [Indexed: 12/27/2024]
|
2
|
Kapoor D, Sharma P, Shukla D. Emerging drugs for the treatment of herpetic keratitis. Expert Opin Emerg Drugs 2024; 29:113-126. [PMID: 38603466 DOI: 10.1080/14728214.2024.2339899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Herpes simplex keratitis stands as a prominent factor contributing to infectious blindness among developed nations. On a global scale, over 60% of the population tests positive for herpes simplex virus type-1 (HSV-1). Despite these statistics, there is currently no vaccine available for the virus. Moreover, the conventional nucleoside drugs prescribed to patients are proving ineffective in addressing issues related to drug resistance, recurrence, latency, and the escalating risk of vision loss. Hence, it is imperative to continually explore all potential avenues to restrict the virus. This review article centers on the present treatment methods for HSV-1 keratitis (HSK), highlighting the ongoing clinical trials. It delves into the emerging drugs, their mode-of-action and future therapeutics. AREAS COVERED The review focuses on the significance of a variety of small molecules targeting HSV-1 lifecycle at multiple steps. Peer-reviewed articles and abstracts were searched in MEDLINE, PubMed, Embase, and clinical trial websites. EXPERT OPINION The exploration of small molecules that target specific pathways within the herpes lifecycle holds the potential for substantial impact on the antiviral pharmaceutical market. Simultaneously, the pursuit of disease-specific biomarkers has the capacity to usher in a transformative era in diagnostics within the field.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Rambaran N, Naidoo Y, Mohamed F, Chenia HY, Baijnath H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. PLANTS (BASEL, SWITZERLAND) 2024; 13:168. [PMID: 38256722 PMCID: PMC10821412 DOI: 10.3390/plants13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
The rise in antibiotic resistance (AR) poses an imminent threat to human health. Nanotechnology, together with mechanisms such as quorum sensing (QS), which relies on communication between bacterial cells, may decrease the selective pressure for AR. Thus, this study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) synthesized at room temperature (Rt) and 80 °C using Embelia ruminata leaf, stem-bark, and fruit extracts as antibacterial and anti-QS agents. The phytosynthesized AgNPs solutions were subjected to various characterization assays and assessed for their antibacterial activities. Quantitative QS assays were performed using Chromobacterium subtsugae CV017 and Chromobacterium violaceum ATCC 12472. Synthesized AgNPs were spherical-to-near-spherical in shape, poly-dispersed, and crystalline, with a size range of 21.06-32.15 nm. Fruit AgNPs showed stronger antibacterial activity than AgNPs from other plant organs against selected bacterial strains. In the QS assays, fruit 80 °C AgNPs demonstrated the most significant violacein inhibition in an assay performed using the short-chain acyl homoserine lactone CV017 biosensor, while the leaf and fruit Rt AgNPs demonstrated the most violacein inhibition in an assay performed using the long-chain acyl homoserine lactone ATCC 12472 biosensor. The investigations carried out in this study lay the groundwork for future innovative research into antibacterial and anti-QS strategies using E. ruminata.
Collapse
Affiliation(s)
- Neervana Rambaran
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Yougasphree Naidoo
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Farzana Mohamed
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Hafizah Y. Chenia
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Himansu Baijnath
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| |
Collapse
|
4
|
Hussain MS, Gupta G, Samuel VP, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Khan R, Altwaijry N, Patel S, Patel A, Singh SK, Dua K. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries. Rev Med Virol 2024; 34:e2491. [PMID: 37985599 DOI: 10.1002/rmv.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The immunopathology of herpes simplex virus (HSV)-associated neuroinflammation is a captivating and intricate field of study within the scientific community. HSV, renowned for its latent infection capability, gives rise to a spectrum of neurological expressions, ranging from mild symptoms to severe encephalitis. The enigmatic interplay between the virus and the host's immune responses profoundly shapes the outcome of these infections. This review delves into the multifaceted immune reactions triggered by HSV within neural tissues, intricately encompassing the interplay between innate and adaptive immunity. Furthermore, this analysis delves into the delicate equilibrium between immune defence and the potential for immunopathology-induced neural damage. It meticulously dissects the roles of diverse immune cells, cytokines, and chemokines, unravelling the intricacies of neuroinflammation modulation and its subsequent effects. By exploring HSV's immune manipulation and exploitation mechanisms, this review endeavours to unveil the enigmas surrounding the immunopathology of HSV-associated neuroinflammation. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of HSV infections.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samir Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Archita Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, New South Wales, Australia
| |
Collapse
|
5
|
Zhou N, Zheng D, You Q, Chen T, Jiang J, Shen W, Zhang D, Liu J, Chen D, Hu K. Therapeutic Potential of Biochanin A in Herpes Simplex Keratitis. Pharmaceuticals (Basel) 2023; 16:1240. [PMID: 37765049 PMCID: PMC10536220 DOI: 10.3390/ph16091240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Herpes simplex keratitis (HSK) is a blinding eye disease that is initiated by the herpes simplex virus type 1 (HSV-1). Resistance to acyclovir (ACV) and the side effects of corticosteroid drugs have become concerning issues, so it is crucial to develop new antivirals for treating HSK. In this study, we report that biochanin A (BCA), a naturally occurring flavonoid compound, provides multifaceted protective effects with anti-viral, anti-inflammatory, anti-oxidative stress and anti-apoptotic activities to alleviate HSK. The results show that BCA significantly inhibited HSV-1 replication in vitro and further proved that BCA principally influenced the early stage of virus infection. We reveal that BCA downregulated the expression of pro-inflammatory factors triggered by HSV-1, including TNF-α, RANTES, IL-1β and IL-6. Furthermore, BCA treatment alleviated oxidative stress and apoptotic arising from HSV-1 infection. Lastly, we induced HSK in male C57BL/6 mice and treated them with either BCA or phosphate buffer solution (PBS) eye drops. We observed the ocular surface lesions; determined the virus load in the tear fluid, corneas as well as trigeminal ganglions (TGs); and detected the levels of inflammation and apoptosis in the corneas simultaneously. These results show that BCA inhibits HSV-1 and alleviates the corneal lesion degree. Our study illustrates that BCA is a promising therapeutic approach for application in treating HSK.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Deyuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Taige Chen
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Jiaxuan Jiang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Wenhao Shen
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Di Zhang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Junpeng Liu
- Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Kai Hu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| |
Collapse
|
6
|
Lince KC, DeMario VK, Yang GT, Tran RT, Nguyen DT, Sanderson JN, Pittman R, Sanchez RL. A Systematic Review of Second-Line Treatments in Antiviral Resistant Strains of HSV-1, HSV-2, and VZV. Cureus 2023; 15:e35958. [PMID: 37041924 PMCID: PMC10082683 DOI: 10.7759/cureus.35958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
Drug-resistant variants of herpes simplex viruses (HSV) have been reported that are not effectively treated with first-line antiviral agents. The objective of this study was to evaluate available literature on the possible efficacy of second-line treatments in HSV and the use of second-line treatments in HSV strains that are resistant to first-line treatments. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a final search was conducted in six databases on November 5, 2021 for all relevant literature using terms related to antiviral resistance, herpes, and HSV. Eligible manuscripts were required to report the presence of an existing or proposed second-line treatment for HSV-1, HSV-2, or varicella zoster virus (VZV); have full-text English-language access; and potentially reduce the rate of antiviral resistance. Following screening, 137 articles were included in qualitative synthesis. Of the included studies, articles that examined the relationship between viral resistance to first-line treatments and potential second-line treatments in HSV were included. The Cochrane risk-of-bias tool for randomized trials was used to assess risk of bias. Due to the heterogeneity of study designs, a meta-analysis of the studies was not performed. The dates in which accepted studies were published spanned from 2015-2021. In terms of sample characteristics, the majority (72.26%) of studies used Vero cells. When looking at the viruses on which the interventions were tested, the majority (84.67%) used HSV-1, with (34.31%) of these studies reporting testing on resistant HSV strains. Regarding the effectiveness of the proposed interventions, 91.97% were effective as potential managements for resistant strains of HSV. Of the papers reviewed, nectin in 2.19% of the reviews had efficacy as a second-line treatments in HSV, amenamevir in 2.19%, methanol extract in 2.19%, monoclonal antibodies in 1.46%, arbidol in 1.46%, siRNA swarms in 1.46%, Cucumis melo sulfated pectin in 1.46%, and components from Olea europeae in 1.46%. In addition to this griffithsin in 1.46% was effective, Morus alba L. in 1.46%, using nucleosides in 1.46%, botryosphaeran in 1.46%, monoterpenes in 1.46%, almond skin extracts in 1.46%, bortezomib in 1.46%, flavonoid compounds in 1.46%, andessential oils were effective in 1.46%, but not effective in 0.73%. The available literature reviewed consistently supports the existence and potentiality of second-line treatments for HSV strains that are resistant to first-line treatments. Immunocompromised patients have been noted to be the population most often affected by drug-resistant variants of HSV. Subsequently, we found that HSV infections in this patient population are challenging to manage clinically effectively. The goal of this systematic review is to provide additional information to patients on the potentiality of second-line treatment in HSV strains resistant to first-line treatments, especially those who are immunocompromised. All patients, whether they are immunocompromised or not, deserve to have their infections clinically managed in a manner supported by comprehensive research. This review provides necessary information about treatment options for patients with resistant HSV infections and their providers.
Collapse
Affiliation(s)
- Kimberly C Lince
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Virgil K DeMario
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - George T Yang
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rita T Tran
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Daniel T Nguyen
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Jacob N Sanderson
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rachel Pittman
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Rebecca L Sanchez
- Department of Clinically Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| |
Collapse
|
7
|
Kumar R, Mehta D, Chaudhary S, Nayak D, Sunil S. Impact of CHIKV Replication on the Global Proteome of Aedes albopictus Cells. Proteomes 2022; 10:proteomes10040038. [PMID: 36412637 PMCID: PMC9680348 DOI: 10.3390/proteomes10040038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Arboviruses are some of the important causative agents of mosquito-mediated viral diseases. These viruses are transmitted between vector and host during the blood meal. Upon viral entry, host replication machinery is hijacked, supporting new virus particle production and thereby allowing viral survival in the host. In this process, host proteins interact with viral proteins to either facilitate viral replication, or they may provide antiviral defense mechanisms. In this study, we analyzed the impact of chikungunya virus (CHIKV) infection on the global proteome of Dicer active Aedes albopictus cells during the early and late time points of infection. We utilized a bottom-up approach of global proteomics analysis, and we used label-free quantitative mass spectrometry to identify the global protein signatures of Ae. albopictus at two different time points upon CHIKV infection. The mass spectrometry data analysis of the early time point revealed that proteins belonging to pathways such as translation, RNA processing, and cellular metabolic processes were less in abundance, whereas those belonging to pathways such as cellular catabolic process and organic substance transport were significantly abundant. At later time points, proteins belonging to pathways such as cellular metabolic processes, primary metabolic process, organonitrogen compound metabolic process, and organic substance metabolic process were found to be decreased in their presence, whereas those belonging to pathways such as RNA processing, gene expression, macromolecule metabolic processing, and nitrogen compound metabolic processing were found to be abundant during CHIKV infection, indicating that modulation in gene expression favoring cell survival occurs at a later time point, suggesting a survival strategy of Aedes cells to counter prolonged CHIKV infection.
Collapse
Affiliation(s)
- Ramesh Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Divya Mehta
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Sakshi Chaudhary
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- Correspondence:
| |
Collapse
|
8
|
In Vitro Evaluation of Antiviral Activity Effect of Selenium, Bacillus clausii Supernatant, and Their Combination on the Replication of Herpes Simplex Virus 1. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: About 70% of individuals worldwide suffer from herpes simplex virus 1 (HSV-1). Several studies have reported that selenium and supernatant of probiotic bacteria are antiviral; nevertheless, their effect alone or synergistically on HSV-1 is unknown. Objectives: The present study aimed to evaluate the antiviral effects of Bacillus clausii supernatant, selenium (Se), and their combination on HSV-1. Methods: After determining cytotoxicity by the MTT assay, selenium and B. clausii supernatants were added to HeLa cells 24 hours before (pre-infection treatment) and after (post-infection treatment) HSV-1 inoculation. After 47 hours of incubation at 37°C, the viral titer and expression levels of the unique long 47 (UL47) gene were determined by the 50% tissue culture infectious dose (TCID50) and real-time polymerase chain reaction methods, respectively. Results: The bacterial supernatant in dilutions of 1:4 and 1:8, selenium in concentrations of 0.5 and 1 μM, and a combination of them had a cytotoxicity level lower than 80% in HeLa cells. The HSV-1 titers in pre-infection and post-infection assays with a dilution of 1:4 supernatant decreased by about 2.16 and 1 log10 TCID50/mL, respectively. Moreover, 1 μM Se could reduce the virus titer by 2.33 log10 TCID50/mL. The virus titer showed a greater decrease when Se and the bacterial supernatants were combined than when only one of the two was used. The highest selectivity index (SI) was obtained when selenium and bacterial supernatant were combined (SI = 29.2). The combined use of 1 μM Se and a 1:4 dilution of B. clausii supernatant caused the greatest drop in virus titer (3.3 log10 TCID50/mL) in comparison to other treatment conditions. The UL47 gene expression was reduced by Se at concentrations of 0.5 and 1 μM by about 1.6- and 2-fold, respectively. The UL47 expression showed a higher decline when selenium and bacterial supernatant were combined than when only one of the two was employed, which is similar to viral titer data. Conclusions: Selenium and the supernatant of B. clausii have potent antiviral activity against HSV-1. The combination of selenium and the bacterial supernatant has a synergistic effect in reducing HSV-1 replication. However, further research is required to fully understand how they inhibit viruses.
Collapse
|
9
|
Comments about the IJMS Special Issue: Molecular Interactions and Mechanisms of COVID-19 Inhibition. Int J Mol Sci 2022; 23:ijms23179607. [PMID: 36077005 PMCID: PMC9455758 DOI: 10.3390/ijms23179607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
|
10
|
Sharma V, Gautam DNS, Radu AF, Behl T, Bungau SG, Vesa CM. Reviewing the Traditional/Modern Uses, Phytochemistry, Essential Oils/Extracts and Pharmacology of Embelia ribes Burm. Antioxidants (Basel) 2022; 11:1359. [PMID: 35883850 PMCID: PMC9311956 DOI: 10.3390/antiox11071359] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES Embelia ribes Burm. (E. ribes, Myrsinaceae), also known as Vidanga in Ayurveda, has been shown to have significant therapeutic benefits on several disorders, and its main chemical bioactive constituent, embelin, has the therapeutic potential to be converted into innovative drugs, which is why it has recently received considerable interest. In the present work, we provide a higher level of comprehension, awareness, and extensive knowledge of the traditional uses, phytochemistry, and pharmacological characteristics of E. ribes throughout the last several decades (February 1965 to June 2021), emphasizing the importance of the study of essential oils extracted from E. ribes, which show a major potential for exerting antioxidant and anti-inflammatory activity. MATERIALS AND METHODS Google Scholar, MEDLINE, EMBASE, Scifinder, Scopus, and ScienceDirect were used to conduct a thorough literature search. RESULTS E. ribes is high in essential oils, alkaloids, flavonoids, steroids, and phenolics, all of which have medicinal benefits. The essential oils/extracts and isolated chemical constituents exhibited antioxidant activity, wound healing, antidiabetic, central nervous system (CNS)-related disease, antiviral, antiobesity, cardioprotective, antifungal, antibacterial, and antifertility activity, among other promising pharmacological effects. CONCLUSION The translation between traditional applications and modern medicine may make E. ribes a promising target for the implementation of innovative medication. To investigate the efficacy and safety profile of E. ribes, further high-quality preclinical studies using advanced methodologies are required.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
11
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
12
|
Basha NJ, Basavarajaiah SM, Baskaran S, Kumar P. A comprehensive insight on the biological potential of embelin and its derivatives. Nat Prod Res 2021; 36:3054-3068. [PMID: 34304655 DOI: 10.1080/14786419.2021.1955361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naturally occurring bioactive molecules are known for their diverse biological applications such as antimicrobial, anticancer, anti-inflammatory, and analgesic activities. Also, some of the natural products act as medicinal drugs. Further, bioactive cell-permeable molecule embelin has been reported for its diverse biological activities such as antimalarial, anticancer, and anti-inflammatory in the literature. With the continuation of our research work on biologically active molecules, based on structural activity relationship and docking studies of embelin and its derivatives, we have reported target-specific anticancer and antimalarial activities of embelin and its analogs. Also, it has been reported in many recent research articles that embelin and its derivatives are known to possess medicinal properties. This review mainly highlights recent reports on broad-spectrum biological activities of the embelin and its analogs to date.
Collapse
Affiliation(s)
- N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bangalore, India
| | | | - Swathi Baskaran
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bangalore, India
| | - Prasanna Kumar
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bangalore, India
| |
Collapse
|