1
|
Woo HE, Cho JY, Lim YH. Propionibacterium freudenreichii MJ2-derived extracellular vesicles inhibit RANKL-induced osteoclastogenesis and improve collagen-induced rheumatoid arthritis. Sci Rep 2024; 14:24973. [PMID: 39443658 PMCID: PMC11500175 DOI: 10.1038/s41598-024-76911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Rheumatoid arthritis causes excessive bone loss by stimulating osteoclast differentiation. Extracellular vesicles are valuable disease markers, conveyors of distant cell-to-cell communication, and carriers for drug delivery. The aim of this study was to investigate the anti-osteoclastogenic effects of extracellular vesicles derived from dairy Propionibacterium freudenreichii MJ2 (PFEVs) and the improvement effect of PFEVs on collagen-induced arthritis (CIA) animal model. PFEVs were observed by scanning electron microscopy, transmission electron microscopy, nanoparticle tracking analysis, and LC-MS/MS. The inhibitory activity of PFEVs against receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation was investigated in RAW 264.7 cells. PFEVs significantly decreased the expression levels of genes and proteins related to osteoclast differentiation. PFEVs decreased RANK-RANKL binding. In a CIA mouse model, PFEVs treatment significantly reduced arthritis scores and collagen-specific immunoglobulins. PFEVs treatment also reduced pro-inflammatory cytokines and increased anti-inflammatory cytokines. The anti-inflammatory effects were confirmed by H&E staining, and PFEVs treatment inhibited osteoclastogenesis in the CIA mouse model. In conclusion, PFEVs inhibited osteoclast differentiation by inhibiting RANK-RANKL signaling, thereby decreasing the expression of osteoclast differentiation-related genes. PFEVs also improved collagen-induced arthritis by inhibiting inflammation and osteoclastogenesis.
Collapse
Affiliation(s)
- Hee-Eun Woo
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Joo-Young Cho
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
2
|
Hu W, Chen S, Zou X, Chen Y, Luo J, Zhong P, Ma D. Oral microbiome, periodontal disease and systemic bone-related diseases in the era of homeostatic medicine. J Adv Res 2024:S2090-1232(24)00362-X. [PMID: 39159722 DOI: 10.1016/j.jare.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Homeostasis is a state of self-regulation and dynamic equilibrium, maintaining the good physiological functions of each system in living organisms. In the oral cavity, the interaction between the host and the oral microbiome forms oral microbial homeostasis. Physiological bone remodeling and renewal can occur under the maintenance of oral microbial homeostasis. The imbalance of bone homeostasis is a key mechanism leading to the occurrence of systemic bone-related diseases. Considering the importance of oral microbial homeostasis in the maintenance of bone homeostasis, it still lacks a complete understanding of the relationship between oral microbiome, periodontal disease and systemic bone-related diseases. AIM OF REVIEW This review focuses on the homeostatic changes, pathogenic routes and potential mechanisms in the oral microbiome in periodontal disease and systemic bone-related diseases such as rheumatoid arthritis, osteoarthritis, osteoporosis and osteomyelitis. Additionally, this review discusses oral microbiome-based diagnostic approaches and explores probiotics, mesenchymal stem cells, and oral microbiome transplantation as promising treatment strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the association between oral microbial homeostasis imbalance and systemic bone-related diseases, and highlights the possibility of remodeling oral microbial homeostasis for the prevention and treatment of systemic bone-related diseases.
Collapse
Affiliation(s)
- Weiqi Hu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Yan Chen
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Peiliang Zhong
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China.
| |
Collapse
|
3
|
Goudarzi F, Kiani A, Nami Y, Shahmohammadi A, Mohammadalipour A, Karami A, Haghshenas B. Potential probiotic Lactobacillus delbrueckii subsp. lactis KUMS-Y33 suppresses adipogenesis and promotes osteogenesis in human adipose-derived mesenchymal stem cell. Sci Rep 2024; 14:9689. [PMID: 38678043 PMCID: PMC11055903 DOI: 10.1038/s41598-024-60061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.
Collapse
Affiliation(s)
- Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Azin Shahmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Karami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Vongsakulpaisarn P, Sangkhamanee SS, Rassameemasmaung S, Sritanaudomchai H. Effect of Periodontal Ligament Stem Cells-Derived Conditioned Medium on Gene Expression and Differentiation of Tumor Necrosis Factor-α-Challenged Osteoblasts. Eur J Dent 2024; 18:378-386. [PMID: 37562430 PMCID: PMC10959631 DOI: 10.1055/s-0043-1771337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVES Tumor necrosis factor-α (TNF-α) causes bone resorption in periodontitis. It induces the production of receptor activator of NF-κB ligand (RANKL) from osteoblasts, leading to the disturbance of bone homeostasis through RANKL, RANK, and osteoprotegerin (OPG) axis. This study aimed to explore the effect of periodontal ligament stem cells-derived conditioned medium (PDLSCs-CM) on gene expression related to bone homeostasis and the differentiation of TNF-α-challenged osteoblasts. MATERIALS AND METHODS Human osteoblasts were cultured with 50 ng/mL of TNF-α and 0, 1, 10, and 100 µg/ mL of PDLSCs-CM. Osteoblasts cultured without TNF-α and PDLSCs-CM were served as control. Gene expression of RANKL, OPG, and interleukin-1β (IL-1β) was evaluated by reverse transcription quantitative polymerase chain reaction at 48 hours. The early-stage and late-stage differentiation of TNF-α-challenged osteoblasts without or with PDLSCs-CM was explored by alkaline phosphatase (ALP) activity and alizarin red staining, respectively, at day 1, 3, 6, 9, and 12. STATISTICAL ANALYSIS Mann-Whitney U test was used to analyze the differences in gene expression of TNF-α-challenged osteoblasts at 24 and 48 hours, and Kruskal-Wallis test was used to analyze the effect of PDLSCs-CM on gene expression and ALP activity among all experimental groups using SPSS software version 21.0. Statistical significance was considered with p-value less than 0.05. RESULTS Expression of RANKL, OPG and IL-1β was significantly upregulated in TNF-α-challenged osteoblasts compared to the untreated control. The PDLSCs-CM at 1 and 10 μg/mL downregulated gene expression of TNF-α-challenged osteoblasts compared to the group without PDLSCs-CM, but the difference did not reach statistical significance. The ALP activity was decreased in TNF-α-challenged osteoblasts. The addition of PDLSCs-CM did not alter ALP activity of TNF-α-challenged osteoblasts. Alizarin red staining was comparable in the TNF-α-challenged osteoblasts cultured without or with PDLSCs-CM. CONCLUSIONS The PDLSCs-CM did not alter gene expression involved in bone homeostasis and differentiation of TNF-α-challenged osteoblasts.
Collapse
Affiliation(s)
- Poranee Vongsakulpaisarn
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Supanee Rassameemasmaung
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
5
|
Li S, Han X, Liu N, Chang J, Liu G, Hu S. Lactobacillus plantarum attenuates glucocorticoid-induced osteoporosis by altering the composition of rat gut microbiota and serum metabolic profile. Front Immunol 2024; 14:1285442. [PMID: 38264658 PMCID: PMC10803555 DOI: 10.3389/fimmu.2023.1285442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Osteoporosis, one of the most common non-communicable human diseases worldwide, is one of the most prevalent disease of the adult skeleton. Glucocorticoid-induced osteoporosis(GIOP) is the foremost form of secondary osteoporosis, extensively researched due to its prevalence.Probiotics constitute a primary bioactive component within numerous foods, offering promise as a potential biological intervention for preventing and treating osteoporosis. This study aimed to evaluate the beneficial effects of the probiotic Lactobacillus plantarum on bone health and its underlying mechanisms in a rat model of glucocorticoid dexamethasone-induced osteoporosis, using the osteoporosis treatment drug alendronate as a reference. Methods We examined the bone microstructure (Micro-CT and HE staining) and analyzed the gut microbiome and serum metabolome in rats. Results and discussion The results revealed that L. plantarum treatment significantly restored parameters of bone microstructure, with elevated bone density, increased number and thickness of trabeculae, and decreased Tb.Sp. Gut microbiota sequencing results showed that probiotic treatment increased gut microbial diversity and the ratio of Firmicutes to Bacteroidota decreased. Beneficial bacteria abundance was significantly increased (Lachnospiraceae_NK4A136_group, Ruminococcus, UCG_005, Romboutsia, and Christensenellaceae_R_7_group), and harmful bacteria abundance was significantly decreased (Desulfovibrionaceae). According to the results of serum metabolomics, significant changes in serum metabolites occurred in different groups. These differential metabolites were predominantly enriched within the pathways of Pentose and Glucuronate Interconversions, as well as Propanoate Metabolism. Furthermore, treatment of L. plantarum significantly increased serum levels of Pyrazine and gamma-Glutamylcysteine, which were associated with inhibition of osteoclast formation and promoting osteoblast formation. Lactobacillus plantarum can protect rats from DEX-induced GIOP by mediating the "gut microbial-bone axis" promoting the production of beneficial bacteria and metabolites. Therefore L. plantarum is a potential candidate for the treatment of GIOP.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiang Chang
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
6
|
An M, Lim YH. Surface-exposed chaperonin 60 derived from Propionibacterium freudenreichii MJ2 inhibits adipogenesis by decreasing the expression of C/EBPα/PPARγ. Sci Rep 2023; 13:19251. [PMID: 37935755 PMCID: PMC10630399 DOI: 10.1038/s41598-023-46436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
Recent studies have shown that the health benefits of probiotics are not limited to those offered by living bacteria. It was reported that both live and killed cells of Propionibacterium freudenreichii MJ2 (MJ2) isolated from raw milk showed antiobesity activity in 3T3-L1 cells and high-fat diet-induced obese mice. This study was aimed at identifying the active component(s) responsible for the antiadipogenic activity of MJ2. Cell wall, surface protein, and cytoplasmic fractions of MJ2 were investigated for their inhibitory effects on adipogenesis in 3T3-L1 cells. Adipocytes treated with the surface protein fraction showed significantly lower lipid accumulation. Using the MASCOT algorithm following LC-MS/MS analysis, 131 surface proteins were identified and they were principally classified into three categories (network clusters related to ribosomes, carbon metabolism, and chaperones). Among them, chaperonin 60 (Cpn60) was selected as a potential candidate protein. Cpn60 inhibited lipid accumulation and adipogenesis during the early period of differentiation (days 0-2) and decreased expression of genes related to adipogenesis (Pparg and Cebpa) and lipogenesis (Fas and Scd1). The expression of Gata2/3, which suppresses adipogenesis, significantly increased in Cpn60-treated cells. Moreover, the nuclear translocation of C/EBPβ was inhibited by Cpn60 treatment. In conclusion, Cpn60, a surface protein in MJ2, shows antiadipogenic activity by reducing the expression of C/EBPβ through the upregulation of Gata2/3 expression followed by downregulation of Pparg and Cebpa expression.
Collapse
Affiliation(s)
- Mirae An
- Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
7
|
Yeom J, Ma S, Yim DJ, Lim YH. Surface proteins of Propionibacterium freudenreichii MJ2 inhibit RANKL-induced osteoclast differentiation by lipocalin-2 upregulation and lipocalin-2-mediated NFATc1 inhibition. Sci Rep 2023; 13:15644. [PMID: 37730858 PMCID: PMC10511438 DOI: 10.1038/s41598-023-42944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023] Open
Abstract
Osteoclasts degrade bone and osteoclast differentiation has been implicated in bone destruction in rheumatoid arthritis. The dairy bacterium Propionibacterium freudenreichii MJ2 (MJ2) isolated from raw milk inhibits osteoclast differentiation and ameliorates collagen-induced arthritis. This study aimed to investigate the inhibitory effect of the surface proteins of MJ2 on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and explain the underlying mechanism. The murine macrophage cell line RAW 264.7 was used to study the inhibition of osteoclast differentiation. The surface proteins significantly inhibited RANKL-induced osteoclast differentiation in a protein concentration-dependent manner by inhibiting the expression of genes and proteins related to osteoclast differentiation. RNA microarray analysis showed that the surface proteins significantly upregulated lipocalin-2 (lcn2) expression. In addition, they downregulated c-fos and NFATc1 and inhibited the expression of NFATc1-downstream genes Atp6v0d2, Calcr, and Ctsk. siRNA silencing of lcn2 decreased the extent of surface protein inhibition on osteoclast differentiation, suggesting that lcn2 plays an important role in the inhibition of RANKL-induced osteoclast differentiation. In conclusion, surface proteins of MJ2 show inhibitory effects on RANKL-induced osteoclast differentiation by upregulating lcn2 expression, in turn downregulating NFATc1, leading to the inhibition of NFATc1-downstream osteoclastogenesis-related gene expression.
Collapse
Affiliation(s)
- Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Dong Joon Yim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
8
|
Aprea G, Del Matto I, Tucci P, Marino L, Scattolini S, Rossi F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023; 11:1787. [PMID: 37512959 PMCID: PMC10385490 DOI: 10.3390/microorganisms11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This literature review aimed to collect investigations on the in vivo evidence for bacteria associated with fermented dairy foods to behave as probiotics with beneficial effects in the prevention and treatment of various diseases. All main bacterial groups commonly present in high numbers in fermented milks or cheeses were taken into account, namely starter lactic acid bacteria (SLAB) Lactobacillus delbrueckii subsp. bulgaricus and lactis, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, non-starter LAB (NSLAB) Lacticaseibacillus spp., Lactiplantibacillus plantarum, dairy propionibacteria, and other less frequently encountered species. Only studies regarding strains of proven dairy origin were considered. Studies in animal models and clinical studies showed that dairy bacteria ameliorate symptoms of inflammatory bowel disease (IBD), mucositis, metabolic syndrome, aging and oxidative stress, cancer, bone diseases, atopic dermatitis, allergies, infections and damage caused by pollutants, mild stress, and depression. Immunomodulation and changes in the intestinal microbiota were the mechanisms most often involved in the observed effects. The results of the studies considered indicated that milk and dairy products are a rich source of beneficial bacteria that should be further exploited to the advantage of human and animal health.
Collapse
Affiliation(s)
- Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Ilaria Del Matto
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Patrizia Tucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
9
|
Luo Z, Lu Y, Shi Y, Jiang M, Shan X, Li X, Zhang J, Qin B, Liu X, Guo X, Huang J, Liu Y, Wang S, Li Q, Luo L, You J. Neutrophil hitchhiking for drug delivery to the bone marrow. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01374-7. [PMID: 37081080 DOI: 10.1038/s41565-023-01374-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceuticals have been developed for the treatment of a wide range of bone diseases and disorders, but suffer from problematic delivery to the bone marrow. Neutrophils are naturally trafficked to the bone marrow and can cross the bone marrow-blood barrier. Here we report the use of neutrophils for the targeted delivery of free drugs and drug nanoparticles to the bone marrow. We demonstrate how drug-loaded poly(lactic-co-glycolic acid) nanoparticles are taken up by neutrophils and are then transported across the bone marrow-blood barrier to boost drug concentrations in the bone marrow. We demonstrate application of this principle to two models. In a bone metastasis cancer model, neutrophil delivery is shown to deliver cabazitaxel and significantly inhibit tumour growth. In an induced osteoporosis model, neutrophil delivery of teriparatide is shown to significantly increase bone mineral density and alleviate osteoporosis indicators.
Collapse
Affiliation(s)
- Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, P. R. China.
| |
Collapse
|
10
|
Zhang YW, Cao MM, Li YJ, Sheng RW, Zhang RL, Wu MT, Chi JY, Zhou RX, Rui YF. The Preventive Effects of Probiotic Prevotella histicola on the Bone Loss of Mice with Ovariectomy-Mediated Osteoporosis. Microorganisms 2023; 11:microorganisms11040950. [PMID: 37110373 PMCID: PMC10146713 DOI: 10.3390/microorganisms11040950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
It has been demonstrated that the disturbance of gut microbiota (GM) is closely related to the reduction of bone mass and incidence of osteoporosis (OP). The aim of this study is to investigate whether the supplementation of Prevotella histicola (Ph) can prevent the bone loss in mice with ovariectomy (OVX)-mediated OP, and further explore relevant mechanisms. Regular (once a day for 8 consecutive weeks) and quantitative (200 µL/d) perfusion of Ph (the bacteria that orally gavaged) was conducted starting from 1 week after the construction of mice models. Bone mass and bone microstructure were detected by Micro-computed tomography (Micro-CT). Expressions of intestinal permeability, pro-inflammatory cytokines, and osteogenic and osteoclastic activities of mice were analyzed by histological staining and immunohistochemistry (IHC). 16S rRNA high throughput sequencing technique was applied to analyze the alterations of composition, abundance, and diversity of collected feces. Regular and quantitative perfusion of Ph mitigated the bone loss in mice with OVX-mediated OP. Compared with OVX + PBS group, perfusion of Ph repressed osteoclastogenesis and promoted osteogenesis, reduced release of pro-inflammatory cytokine cytokines (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)), and reversed expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin). Besides, the perfusion of Ph improved the composition, abundance, and diversity of GM. Collectively, this study revealed that regular and quantitative perfusion of Ph can improve the bone loss in mice with OVX-mediated OP by repairing intestinal mucosal barrier damage, optimizing intestinal permeability, inhibiting release of pro-osteoclastogenic cytokines, and improving disturbance of GM.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ren-Wang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ruo-Lan Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Meng-Ting Wu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jia-Yu Chi
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Rui-Xin Zhou
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing 210009, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
11
|
Cao Z, Liu W, Bi B, Wu H, Cheng G, Zhao Z. Isoorientin ameliorates osteoporosis and oxidative stress in postmenopausal rats. PHARMACEUTICAL BIOLOGY 2022; 60:2219-2228. [PMID: 36382865 PMCID: PMC9673777 DOI: 10.1080/13880209.2022.2142614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Isoorientin has many biological activities, including antioxidant, anti-inflammatory, antitumor. However, the effect of isoorientin on postmenopausal osteoporosis remains unclear. OBJECTIVE To evaluate the effect of isoorientin on postmenopausal osteoporosis. MATERIALS AND METHODS Sprague-Dawley rats were divided into five groups (n = 5): sham, model, 17-β-oestradiol (E2, 10 μg/kg/day), low-dose isoorientin (L-Iso, 50 mg/kg), and high-dose isoorientin (H-Iso, 100 mg/kg). The rats were ovariectomized, treated by gavage daily for 12 weeks, and serum and femur samples were collected. Bone mineral density, bone metabolism, and oxidative stress were assessed. H&E staining, immunohistochemistry, and western blotting were employed. RESULTS Isoorientin improved the bone mineral density of the lumbar vertebrae (2.01 ± 0.05 g/cm3 in H-Iso group vs. 1.74 ± 0.07 g/cm3 in model group) and femur (1.46 ± 0.06 g/cm3 vs. 1.19 ± 0.03 g/cm3), increased the trabecular bone number (1.97 ± 0.03 vs. 1.18 ± 0.13) and thickness (0.27 ± 0.02 vs. 0.16 ± 0.03 mm). Isoorientin decreased the separation degree of trabecular bone, ameliorated bone histomorphology changes, and significantly improved the mechanical properties. Isoorientin diminished MDA (by 60%) and increased SOD (by 49.2%), and GSH-Px (by 159%) activity. Furthermore, osteoprotegerin (OPG), nuclear factor erythroid 2-like 2 (Nrf2), haem oxygenase (HO-1), NAD(P)H quinone dehydrogenase 1(NQO1), and oestrogen receptor 1(ESR1) protein expression increased, while receptor activator of nuclear factor-κB ligand (RANKL) protein expression decreased after treatment. CONCLUSIONS Isoorientin ameliorates osteoporosis via upregulating OPG and Nrf2/ARE signalling, suggesting isoorientin maybe a potential therapeutic drug for PMOP.
Collapse
Affiliation(s)
- Zhilin Cao
- Department of Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Yantai, China
| | - Benjun Bi
- Department of Hand and Foot Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Wu
- Department of Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Gong Cheng
- Department of Sports Medicine, Yantaishan Hospital, Yantai, China
| | - Zhongyuan Zhao
- Department of Articulation surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
12
|
Kim H, Oh N, Kwon M, Kwon OH, Ku S, Seo J, Roh S. Exopolysaccharide of Enterococcus faecium L15 promotes the osteogenic differentiation of human dental pulp stem cells via p38 MAPK pathway. Stem Cell Res Ther 2022; 13:446. [PMID: 36056447 PMCID: PMC9440579 DOI: 10.1186/s13287-022-03151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Bone has important functions in the body. Several researchers have reported that the polysaccharides and lipopolysaccharide derived from microbes can promote osteogenic differentiation of stem cells. Enterococcus faecium, a lactic acid bacterium (LAB), produces several bioactive metabolites and has been widely applied in the food and nutraceutical industries. The exopolysaccharide (EPS) from LAB has also been extensively examined for its postbiotic effects and for its in vivo and in vitro functionalities. However, studies on promoting bone differentiation using polysaccharides from LAB are lacking. Therefore, the purpose of this study was to investigate the effect of E. faecium L15 extract and EPS on osteogenic differentiation of human dental pulp stem cells (hDPSCs) and to identify the underlying mechanisms. Methods hDPSCs were obtained from dental pulp tissue, and L15 extract and EPS were isolated from L15. Gene and protein expression of the osteogenic differentiation markers were analyzed with qPCR and western blotting and the possible signaling pathways were also investigated using western blotting. Osteogenic differentiation potential was examined by alkaline phosphatase (ALP) staining and alizarin red s (ARS) staining. In addition, osteogenic differentiation potential of L15 EPS was explored in ex vivo culture of neonate murine calvaria. Results The calcium deposition and ALP activity were enhanced by addition of L15 extract or EPS. The expression levels of RUNX2, ALP, and COL1A1 mRNA and the protein expression levels of RUNX2, ALP, and BMP4 were increased in hDPSCs treated with the L15 extract or EPS. The L15 EPS treatment enhanced phosphorylation of the p38 mitogen-activated protein kinase (MAPK). The L15 EPS-induced increases in RUNX2, ALP, and BMP4 expression were suppressed by the p38 MAPK inhibitor SB203580. The promoting effect of L15 EPS on osteogenic differentiation was not only seen in hDPSCs, but also in osteoblast precursors. ALP activity and the expression of RUNX2, ALP, and COL1A1 increased in the L15 EPS-treated osteoblast precursors. In addition, L15 EPS increased bone thickness of neonate murine calvaria in ex vivo culture. Conclusions The stimulatory effect of L15 extract and EPS on osteogenic differentiation occurred through the p38 MAPK pathway, and L15 EPS enhanced new bone formation in neonate murine calvaria. These data suggest that L15 EPS has therapeutic potential applicable to bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03151-0.
Collapse
Affiliation(s)
- Hyewon Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea
| | - Naeun Oh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea
| | - Mijin Kwon
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea
| | - Oh-Hee Kwon
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do, 16641, Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jeongmin Seo
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea. .,Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do, 16641, Korea.
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea.
| |
Collapse
|
13
|
Yeom J, Yim DJ, Ma S, Lim YH. Propionibacterium freudenreichii Inhibits RANKL-Induced Osteoclast Differentiation and Ameliorates Rheumatoid Arthritis in Collagen-Induced Arthritis Mice. Microorganisms 2021; 10:microorganisms10010048. [PMID: 35056497 PMCID: PMC8780394 DOI: 10.3390/microorganisms10010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoclast differentiation is crucial for bone absorption, and osteoclasts are involved in bone destruction in rheumatoid arthritis (RA). Dairy Propionibacterium freudenreichii is used as a cheese starter and possesses prebiotic and postbiotic properties. It is known to stimulate the growth of bifidobacteria and produces valuable metabolites, such as vitamin B12 and propionic acid. However, limited information is available on the beneficial effects of P. freudenreichii on human disease. Herein, we aimed to investigate the inhibitory effect of P. freudenreichii MJ2 (MJ2) isolated from raw milk on osteoclast differentiation and evaluate the improvement in RA. The murine macrophage cell line, RAW 264.7, and a collagen-induced arthritis (CIA) mouse model were used to perform in vitro and in vivo studies, respectively. Heat-killed P. freudenreichii MJ2 (hkMJ2)-treated cells significantly inhibited RANKL-induced osteoclast differentiation and TRAP activity. HkMJ2-treated cells exhibited significantly decreased expression of genes and proteins related to RANKL-induced osteoclast differentiation. MJ2 administration decreased the arthritic score in the CIA mouse model. Live and dead MJ2 inhibited bone loss and afforded protection against bone erosion and joint damage in CIA mice. MJ2 decreased the levels of collagen-specific antibodies and inflammatory cytokines and the expression of osteoclast differentiation-related genes and proteins in CIA mice. Interestingly, live and dead MJ2 showed similar RA improvement effects in CIA mice. In conclusion, P. freudenreichii MJ2 inhibited osteoclast differentiation by inhibiting the NF-κB signaling pathway and ameliorated CIA.
Collapse
Affiliation(s)
- Jiah Yeom
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (D.J.Y.); (S.M.)
| | - Dong Joon Yim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (D.J.Y.); (S.M.)
| | - Seongho Ma
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (D.J.Y.); (S.M.)
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Korea; (J.Y.); (D.J.Y.); (S.M.)
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Korea
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Korea
- Correspondence: ; Tel.: +82-2-3290-5635
| |
Collapse
|
14
|
Probiotics Treatment of Leg Diseases in Broiler Chickens: a Review. Probiotics Antimicrob Proteins 2021; 14:415-425. [PMID: 34757604 DOI: 10.1007/s12602-021-09869-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Normal development and growth of bones are critical for poultry. With the rapid growth experienced by broiler chickens, higher incidences of leg weakness and lameness are common problems in adolescent meat-type poultry that present huge economic and welfare issues. Leg disorders such as angular bone deformities and tibial dyschondroplasia have become common in broilers and are associated with poor growth, high mortality rates, increased carcass condemnation, and downgrading at slaughter. Probiotics have shown promise for a variety of health purposes, including preventing diarrhea, elevating carcass quality, and promoting growth of the poultry. In addition, recent studies have indicated that probiotics can maintain the homeostasis of the gut microbiota and improve the health of the gastrointestinal tract, which confers a potentially beneficial effect on bone health. This review mainly describes the occurrence of broiler leg disease and the role of probiotics in bone health through regulating the gut microbiota and improving intestinal function, thus providing a relevant theoretical basis for probiotics to hinder the development of skeletal disorders in broiler chickens.
Collapse
|
15
|
Lee MH. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond) 2021; 41:937-967. [PMID: 34355542 PMCID: PMC8504147 DOI: 10.1002/cac2.12200] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It has been shown that gut microbiota dysbiosis leads to physiological changes and links to a number of diseases, including cancers. Thus, many cancer categories and treatment regimens should be investigated in the context of the microbiome. Owing to the availability of metagenome sequencing and multiomics studies, analyses of species characterization, host genetic changes, and metabolic profile of gut microbiota have become feasible, which has facilitated an exponential knowledge gain about microbiota composition, taxonomic alterations, and host interactions during tumorigenesis. However, the complexity of the gut microbiota, with a plethora of uncharacterized host‐microbe, microbe‐microbe, and environmental interactions, still contributes to the challenge of advancing our knowledge of the microbiota‐cancer interactions. These interactions manifest in signaling relay, metabolism, immunity, tumor development, genetic instability, sensitivity to cancer chemotherapy and immunotherapy. This review summarizes current studies/molecular mechanisms regarding the association between the gut microbiota and the development of cancers, which provides insights into the therapeutic strategies that could be harnessed for cancer diagnosis, treatment, or prevention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|