1
|
Kato T, Inagaki S, Shibata C, Takayanagi K, Uehara H, Nishimura K, Park EY. Topical Infection of Cordyceps militaris in Silkworm Larvae Through the Cuticle has Lower Infectivity Compared to Beauveria bassiana and Metarhizium anisopliae. Curr Microbiol 2024; 82:26. [PMID: 39621154 DOI: 10.1007/s00284-024-03989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025]
Abstract
Topical infection of entomopathogenic fungi in insects occurs when the fungal conidia attach to the insect's surface (cuticle), germinate, and then form appressoria that penetrate the cuticle and enter their bodies. In this study, we inoculated silkworm larvae with three entomopathogenic fungi, Cordyceps militaris, Beauveria bassiana, and Metarhizium anisopliae, and investigated their mechanisms of infection. Attachment of the conidia of the three entomopathogenic fungi to the surface of silkworm larvae was observed under a microscope. We counted the number of conidia attached to the surface of the silkworm larvae and the number of conidia detached from the surface was counted. The number of C. militaris conidia that attached to the surface was less than that of B. bassiana and M. anisopliae; however, it germinated and formed appressoria on hydrophobic surfaces, similar to the other two strains. Mycelial growth of C. militaris was inhibited compared to that of B. bassiana in PDA medium containing 0.1% linoleic and linolenic acids. The germination of C. militaris conidia was also inhibited in PD medium containing 0.1% linoleic or linolenic acids. These results suggest that the attachment of low numbers of C. militaris conidia on the surface of silkworm larvae and presence of inhibitory linoleic or linolenic acids in the silkworm cuticles may cause low topical infectivity by C. militaris. This study improves the efficacy of topically infecting silkworms with C. militaris to produce fungal fruiting bodies for use in traditional Chinese medicine and dietary supplement production.
Collapse
Affiliation(s)
- Tatsuya Kato
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| | - Sota Inagaki
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Chisato Shibata
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Keito Takayanagi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hiroki Uehara
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Konomi Nishimura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Enoch Y Park
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
2
|
Hu Y, Wu Y, Song J, Ma M, Xiao Y, Zeng B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering (Basel) 2024; 11:783. [PMID: 39199741 PMCID: PMC11351413 DOI: 10.3390/bioengineering11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.H.); (Y.W.); (J.S.); (M.M.); (Y.X.)
| |
Collapse
|
3
|
Kryukov VY, Glupov VV. Special Issue on "Entomopathogenic Fungi: Ecology, Evolution, Adaptation": An Editorial. Microorganisms 2023; 11:1494. [PMID: 37374996 DOI: 10.3390/microorganisms11061494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Entomopathogenic endophytic ascomycetes are the most widespread and commercially promising fungi and are used to solve many problems in basic and applied research in ecology, evolution, and agricultural sciences [...].
Collapse
Affiliation(s)
- Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| |
Collapse
|
4
|
Raethong N, Thananusak R, Cheawchanlertfa P, Prabhakaran P, Rattanaporn K, Laoteng K, Koffas M, Vongsangnak W. Functional genomics and systems biology of Cordyceps species for biotechnological applications. Curr Opin Biotechnol 2023; 81:102939. [PMID: 37075529 DOI: 10.1016/j.copbio.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/21/2023]
Abstract
The use of Cordyceps species for the manufacture of natural products has been established; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionized the optimization of Cordyceps as cell factories and drastically expanded the biotechnological potential of these fungi. Here, we present a review of systems and synthetic biology studies of Cordyceps and their implications for fungal biology and industrial applications. We summarize the current status of synthetic biology for enhancing targeted metabolites in Cordyceps species, such as cordycepin, adenosine, polysaccharide, and pentostatin. Progress in the systems and synthetic biology of Cordyceps provides a strategy for comprehensively comprehensive controlling efficient cell factories of natural bioproducts and novel synthetic biology toolbox for targeted engineering.
Collapse
Affiliation(s)
- Nachon Raethong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Pattsarun Cheawchanlertfa
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pranesha Prabhakaran
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kittipong Rattanaporn
- Fermentation Technology Research Center (FTRC), Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathum Thani 12120, Thailand
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand.
| |
Collapse
|
5
|
Choi H, Park SW, Oh J, Kim CS, Sung GH, Sang H. Efficient disruption of CmHk1 using CRISPR/Cas9 ribonucleoprotein delivery in Cordyceps militaris. FEMS Microbiol Lett 2023; 370:fnad072. [PMID: 37475654 DOI: 10.1093/femsle/fnad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Cordyceps militaris, an entomopathogenic ascomycete, produces edible medicinal mushrooms known to have medicinal and therapeutic functions. To develop the genetic transformation system in C. militaris, green fluorescent protein (GFP) mutants of C. militaris were generated by PEG-mediated protoplast transformation. The CRISPR/Cas9 ribonucleoprotein (RNP) targeting the class III histidine kinase of C. militaris (CmHk1) was then delivered into protoplasts of C. militaris through the transformation system. Mutations induced by the RNP in selected mutants were detected: 1 nt deletion (6 mutants), 3 nt deletion with substitution of 1 nt (1 mutant), insertion of 85 nts (1 mutant), 41 nts (2 mutants), and 35 nts (5 mutants). An in vitro sensitivity assay of the mutants indicated that knockout of CmHk1 reduced sensitivity to two fungicides, iprodione and fludioxonil, but increased sensitivity to osmotic stresses compared to the wild type. Summing up, the CRISPR/Cas9 RNP delivery system was successfully developed, and our results revealed that CmHk1 was involved in the fungicide resistance and osmotic stress in C. militaris.
Collapse
Affiliation(s)
- Hyeongju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Sung-Won Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Junsang Oh
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Korea
| | - Gi-Ho Sung
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
- Department of Microbiology, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
6
|
Kato T, Nishimura K, Misu S, Ikeo K, Park EY. Changes of the gene expression in silkworm larvae and Cordyceps militaris at late stages of the pathogenesis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21968. [PMID: 36116100 DOI: 10.1002/arch.21968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Cordyceps militaris is an entomopathogenic fungus that forms its fruiting body. The gene expression change in C. militaris and silkworm larvae were analyzed using RNA-seq to investigate the relationship of C. militaris with the host, silkworm larvae before the death by mycosis. At 144 h after the injection of C. militaris conidia, genes encoding proteases, protease inhibitors, and cuticle proteins in the fat body of silkworm larvae were upregulated, but genes encoding lipoproteins and other proteins in hemolymph were downregulated. On the other hand, at 168 h after the injection of C. militaris conidia, genes encoding amino acid and oligopeptide transporters and permeases in C. militaris were upregulated, suggesting that C. militaris may use peptides and amino acids in silkworm larvae as a nutrient to grow in vivo. Additionally, one gene cluster composed of genes putatively involved in the degradation of phenolic substrates was also upregulated. The addition of 4,5-dichlorocatechol, an inhibitor of catechol 1,2-dioxygenase, inhibited the in vivo growth of C. militaris, Beauveria bassiana and Metarhizium anisopliae. These results also suggest that the expression of the gene cluster may be crucial for the in vivo growth of C. militaris and entomopathogenic fungi. This study will clarify how C. militaris grows in insect hosts by avoiding host's immune systems.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Konomi Nishimura
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Sadahiko Misu
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
7
|
Li A, Song Y, Wang C, Wang J. The molecular recognition of cordycepin arabinoside and analysis of changes on cordycepin and its arabinoside in fruiting body and pupa of Cordyceps militaris. Food Chem 2022; 389:133070. [PMID: 35490522 DOI: 10.1016/j.foodchem.2022.133070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Cordyceps militaris is an edible fungus that is widely used as a functional food in many countries. In order to objectively evaluate its nutritional value, free and glycosidic cordycepins need to be analyzed. The cordycepin arabinoside molecule was recognized by the MS2 fragmentation rule, and both cordycepin and its arabinoside were quantitatively analyzed in the fruiting body and pupa of Cordyceps militaris by high-performance liquid chromatography with tandem mass spectrometric (HPLC-MS/MS). The method had good linear regression (R2 = 0.9999), with a detection limit of 0.021 ng/mL. The recovery range was 94.32-103.09% in the fruiting body and pupa. The content of cordycepin and its arabinoside showed an upward trend with growth, and the total contents reached the highest level at the mature stage (60-70th day) without mildew. This study provides a useful reference for the evaluation and application of Cordyceps militaris as a functional food resource.
Collapse
Affiliation(s)
- Ankang Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiqiao Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Can Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jun Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Kuhnert E, Collemare J. A genomic journey in the secondary metabolite diversity of fungal plant and insect pathogens: from functional to population genomics. Curr Opin Microbiol 2022; 69:102178. [PMID: 35870224 DOI: 10.1016/j.mib.2022.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022]
Abstract
Fungal pathogens produce a broad array of secondary metabolites (SMs), which allow the fungus to thrive in its natural habitat and gain competitive advantage. Analysis of the genetically encoded blueprints for SM assembly highlighted that only a small portion of the SMs these fungi are capable of producing are known, and even fewer have been investigated for their natural function. Using molecular tools, a lot of progress has been made recently in identifying the blueprint products and linking them to their ecological purpose such as the peptide virulence factor fusaoctaxin A released by Fusarium graminearum during infection of wheat or the F. oxysporum polyketide bikaverin that provides competitive advantage against bacteria in tomato. In addition, population genomics have given particularly important insights into the species-specific plasticity of the SM blueprint arsenal, showcasing the ongoing evolution and adaptation of fungal pathogens. This approach holds promise in inferring roles in pathogenicity of many more fungal SMs.
Collapse
Affiliation(s)
- Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
9
|
Yu C, Li Y, Chen G, Wu C, Wang X, Zhang Y. Bioactive constituents of animal-derived traditional Chinese medicinal materials for breast cancer: opportunities and challenges. J Zhejiang Univ Sci B 2022; 23:547-563. [PMID: 35794685 PMCID: PMC9264107 DOI: 10.1631/jzus.b2101019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Breast cancer is globally the most common invasive cancer in women and remains one of the leading causes of cancer-related deaths. Surgery, radiotherapy, chemotherapy, immunotherapy, and endocrine therapy are currently the main treatments for this cancer type. However, some breast cancer patients are prone to drug resistance related to chemotherapy or immunotherapy, resulting in limited treatment efficacy. Consequently, traditional Chinese medicinal materials (TCMMs) as natural products have become an attractive source of novel drugs. In this review, we summarized the current knowledge on the active components of animal-derived TCMMs, including Ophiocordycepssinensis-derived cordycepin, the aqueous and ethanolic extracts of O.sinensis, norcantharidin (NCTD), Chansu, bee venom, deer antlers, Ostreagigas, and scorpion venom, with reference to marked anti-breast cancer effects due to regulating cell cycle arrest, proliferation, apoptosis, metastasis, and drug resistance. In future studies, the underlying mechanisms for the antitumor effects of these components need to be further investigated by utilizing multi-omics technologies. Furthermore, large-scale clinical trials are necessary to validate the efficacy of bioactive constituents alone or in combination with chemotherapeutic drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Chaochao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chaoyan Wu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiuping Wang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yingwen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Chang Y, Xia X, Sui L, Kang Q, Lu Y, Li L, Liu W, Li Q, Zhang Z. Endophytic colonization of entomopathogenic fungi increases plant disease resistance by changing the endophytic bacterial community. J Basic Microbiol 2021; 61:1098-1112. [PMID: 34738230 DOI: 10.1002/jobm.202100494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/07/2022]
Abstract
Various mechanisms are involved in plant disease resistance mediated by entomopathogenic fungi; however, the role of plant endophytic microbes in disease resistance is unknown. In the present study, we showed that the disease incidence of northern corn leaf blight caused by Exserohilum turcicum (Et) on maize was reduced significantly by soil inoculation with Beauveria bassiana (Bb). Meanwhile, B. bassiana colonization and E. turcicum infection increased the diversity and abundance and diversity of endophytic bacteria and fungi, respectively, while the abundance of endophytic bacterial of the Bb + Et treatment decreased significantly compared with that of Et treatment alone. However, Bb + Et treatment increased the relative abundance of plant beneficial bacteria significantly, for example, Burkholderia and Pseudomonas. Network analyses showed that the microbiome complexity increased after soil inoculation with B. bassiana. Taken together, these results revealed the potential mechanism by which entomopathogenic fungi exert biological control of maize leaf spot disease.
Collapse
Affiliation(s)
- Yuming Chang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China.,College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Li Sui
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Qin Kang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China.,Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Lu
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Le Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Qiyun Li
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhengkun Zhang
- Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
11
|
Wellham PAD, Hafeez A, Gregori A, Brock M, Kim DH, Chandler D, de Moor CH. Culture Degeneration Reduces Sex-Related Gene Expression, Alters Metabolite Production and Reduces Insect Pathogenic Response in Cordyceps militaris. Microorganisms 2021; 9:microorganisms9081559. [PMID: 34442638 PMCID: PMC8400478 DOI: 10.3390/microorganisms9081559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cordyceps militaris is an entomopathogenic ascomycete, known primarily for infecting lepidopteran larval (caterpillars) and pupal hosts. Cordycepin, a secondary metabolite produced by this fungus has anti-inflammatory properties and other pharmacological activities. However, little is known about the biological role of this adenosine derivate and its stabilising compound pentostatin in the context of insect infection the life cycle of C. militaris. During repeated subcultivation under laboratory conditions a degeneration of C. militaris marked by decreasing levels of cordycepin production can occur. Here, using degenerated and parental control strains of an isolate of C. militaris, we found that lower cordycepin production coincides with the decline in the production of various other metabolites as well as the reduced expression of genes related to sexual development. Additionally, infection of Galleria mellonella (greater wax moth) caterpillars indicated that cordycepin inhibits the immune response in host haemocytes. Accordingly, the pathogenic response to the degenerated strain was reduced. These data indicate that there are simultaneous changes in sexual reproduction, secondary metabolite production, insect immunity and infection by C. militaris. This study may have implications for biological control of insect crop pests by fungi.
Collapse
Affiliation(s)
- Peter A. D. Wellham
- Gene Regulation and RNA Biology Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK; (P.A.D.W.); (A.H.)
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
- Fungal Genetics and Biology Group, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Abdul Hafeez
- Gene Regulation and RNA Biology Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK; (P.A.D.W.); (A.H.)
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Andrej Gregori
- Mycomedica d.o.o., Podkoren 72, 4280 Kranjska Gora, Slovenia;
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK;
| | - David Chandler
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick CV35 9EF, UK;
| | - Cornelia H. de Moor
- Gene Regulation and RNA Biology Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK; (P.A.D.W.); (A.H.)
- Correspondence:
| |
Collapse
|
12
|
Wang Y, Yang Z, Bao D, Li B, Yin X, Wu Y, Chen H, Tang G, Li N, Zou G. Improving Hypoxia Adaption Causes Distinct Effects on Growth and Bioactive Compounds Synthesis in an Entomopathogenic Fungus Cordyceps militaris. Front Microbiol 2021; 12:698436. [PMID: 34239513 PMCID: PMC8258390 DOI: 10.3389/fmicb.2021.698436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cordyceps militaris is an entomopathogenic fungus producing a variety of bioactive compounds. To meet the huge demand for medicinal and edible products, industrialized fermentation of mycelia and cultivation of stromata have been widely developed in China. The content of bioactive metabolites of C. militaris, such as cordycepin, is higher when cultivated on silkworm pupae than on rice or in broth. However, compared with other cultivation methods, C. militaris grows more slowly and accumulates less biomass. The hypoxic environment in pupa hemocoel is one of environmental factor which is not existed in other cultivation methods. It is suggested that hypoxia plays an important role on the growth and the synthesis of bioactive compounds in C. militaris. Here, we demonstrated that the distinct effects on the growth and synthesis of bioactive compounds employing different strategies of improving hypoxia adaption. The introduction of Vitreoscilla hemoglobin enhanced growth, biomass accumulation, and crude polysaccharides content of C. militaris. However, cordycepin production was decreased to 9-15% of the control group. Meanwhile, the yield of adenosine was increased significantly. Nonetheless, when the predicted bHLH transcription factor of sterol regulatory element binding proteins (SREBPs) was overexpressed in C. militaris to improve the hypoxia adaption of fungal cells, cordycepin content was significantly increased more than two-fold. These findings reveal the role of SREBPs on growth and bioactive compounds synthesis. And it also provides a scientific basis for rationally engineering strains and optimization strategies of air supply in cultivation and fermentation.
Collapse
Affiliation(s)
- Ying Wang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhanshan Yang
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, China
| | - Dapeng Bao
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bo Li
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xin Yin
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yingying Wu
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Chen
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guirong Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Nanyi Li
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, China
| | - Gen Zou
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|